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Abstract

Chlorophyll, being the most abundant pigment that commonly found in plants, bacte-
ria, bryophytes and algae, plays a vital role in photosynthesis. Chlorophylls are natu-
ral pigments and therefore safe, environmental friendly, easily available and cheap. 
Chlorophyll has been experimented to function as a photosensitizer in dye-sensitized 
solar cells (DSSCs) as DSSCs mimic the photosynthesis process in green plants. DSSC 
was first developed by Gratzel in 1991 and since then has gained tremendous atten-
tion as its fabrication is cheap and easy. A DSSC basically comprises a semiconductor 
that has been soaked in sensitizing dye (chlorophyll), a counter electrode, and an elec-
trolyte containing a redox mediator. The dye absorbs light, which is transformed into 
electricity. Chlorophyll can be extracted from the leaves of pomegranate, bougainvillea, 
papaya, Pandanus amaryllifolius, spinach, green grasses, seaweeds, algae and bryophytes. 
Chlorophyll from these sources has been studied as possible photosensitizers for DSSCs. 
Most researches done in chlorophyll DSSC use the extracted natural pigments. The type 
of solvent and pH of the dye solution will also affect the stability of chlorophyll and 
subsequently the performance of the DSSCs. This chapter will present an inexhaustive 
overview on DSSCs using chlorophyll as dye.

Keywords: chlorophyll, photosensitizer, light adsorption, dye-sensitized solar cells, 

efficiency

1. Introduction

Over billions of years, Mother Nature has been converting light from the sun into energy via 

photosynthesis. Sunlight is the most abundant and sustainable energy source that is free. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The Earth receives energy from the sun at the rate of ~12 × 1017 J s−1 [1]. This has exceeded the 

yearly worldwide energy consumption rate of ~1.5 × 1013 J s−1 [1]. Therefore, it is a challenge 

to devise an approach for the effective capture and storage of solar energy for our consump-

tion since fossil fuels such as oil and gas will be depleted in the years to come. In order to 

imitate the photosynthesis process, Gratzel and coworkers have developed dye-sensitized 
solar cells (DSSCs) based on the similar working mechanism [2]. Nevertheless, one main 

difference between photosynthesis of plants and DSSCs is that the energy can be stored in 
plants for later use but DSSC is unable to store energy. Ever since the birth of DSSCs, they 

have become the spotlight of attention among scientists and researchers around the world as 
they are much cheaper, easier to fabricate, and more environmental friendly when compared 

with conventional silicon solar cells [3, 4]. A DSSC is an electrochemical device that com-

prises a transparent-conducting oxide (TCO) glass over which is deposited a semiconductor. 

The semiconductor will be soaked in a dye solution. An electrolyte with reduction-oxidation 

(redox) mediator and cathode are the other remaining components. The fluorine-doped tin 
oxide (FTO)/semiconductor/dye assembly is referred to as photoanode. Indium-doped tin 

oxide (ITO) and FTO are two TCOs used commonly in DSSCs. Titanium dioxide (TiO2) is 

one of the popular semiconductors used for DSSC since it is cheap, non-toxic, and possesses 

a large bandgap [5]. TiO2 is deposited on the TCO substrate in the form of TiO2 nanoporous 

particle network to increase the coverage area for the sensitizing dye. The cathode is made up 

of another TCO on top of which platinum is deposited. Carbon and conducting polymers can 

also be employed as counter electrode. If a gel polymer electrolyte is used, it is sandwiched 

between the photoanode and cathode. The dye, on the other hand, can be categorized into 

two groups: synthetic and natural. The most frequently used synthetic dye is the ruthenium 

(Ru)-based dyes but they are not environmental friendly since Ru is a heavy metal [6]. Such 

dyes are also very expensive due to the scarcity of Ru. By contrast, natural dyes are read-

ily available and thus cheap besides being non-toxic, environmental friendly, biodegradable, 

easily extracted as well as can be used without any purification [6]. Since DSSC mimics the 

photosynthesis of green plants, therefore chlorophyll can also function as photosensitizer for 

DSSC. In fact, report on chlorophyll as photosensitizer on zinc oxide (ZnO) semiconductor 

was first published by Tributsch in 1972 [7].

2. Basic working principle of chlorophyll-sensitized DSSC

In this chapter, discussion is based on the TiO2 semiconductor photoanode. However, occa-

sionally we refer to zinc oxide (ZnO) and tin dioxide (SnO2). The dye is chlorophyll extracted 

from various sources including leaves, grasses, flowers, seaweeds, and algae. The electrolyte 
is generally in the form of liquid and quasi-solid state. The commonly used mediator is the 

I−/I3
− redox couple and the counter electrode chosen in the preceding discussion is platinum 

(Pt) or carbon (C). Upon shining light on the cell, the molecules of the chlorophyll dye (D) 

will be excited (D*) after absorbing photons (hν) and inject electrons into the semiconductor 

conduction band as described in the equation below:
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  hv + D →  D   *   (1)

The excited chlorophyll molecules (D*) will inject electrons into the TiO2 conduction band 

and the excited dye will then be oxidized or ionized (D+). The reaction process involved is as 

follows:

   D   *  +  TiO  2   →  D   +  +  e  
cb

  −    (   TiO  2   )     (2)

The oxidized chlorophyll dye molecules (D+) will accept electrons from an iodide ion (I−) in 

the electrolyte when the I− ions were released to the oxidized molecules and in turn oxidized 

to triiodide ions (I3
−) according to the equation below:

  2 D   +  + 3  I   −  →  I  3  
−  + 2D  (3)

The electron in the TiO2 conduction band flows out of the device through the load to reach the 
counterelectrode and reduced the triiodide ion as follows:

   I  3  
−  + 2  e   −  → 3  I   −   (4)

The iodide ion is now restored, the electron circuit is completed, and the whole system is back 

to its original state to start a new cycle. These processes will continue as long as there is light 

and current is produced in the external circuit continuously. Under illumination, the voltage 

generated is given by the energy difference between the photoanode’s Fermi level and the 

electrolyte’s redox potential. Figure 1 illustrates the schematic diagram of the chlorophyll-

sensitized DSSC and its operating principle.

The light to electricity conversion efficiency (η) of the chlorophyll DSSC can be calculated 

from the equation below:

  η =   
 J  
sc

   ×  V  
oc

   × FF
 __________ 

 P  
in

  
   × 100%  (5)

Here J
sc

 is the short circuit current density (unit: mA cm−2), which is obtained without any 

external applied voltage or potential, V
oc

 is the open circuit voltage (unit: mV) obtained under 

the condition of open circuit when there is no current, P
in

 is the input power (total incident 

light power density), and FF is the fill factor which can be expressed as

  FF =   
 J  
max

   ×  V  
max

  
 ______________ 

 J  
sc

   ×  V  
oc

  
    (6)

Figure 1. Operating principle of a chlorophyll-sensitized DSSC.
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Here J
max

 and V
max

 are the photocurrent density and voltage in the J-V curve at the maximum 

power output. Each single component in a DSSC is important to ensure good performance. 

The main focus in this chapter is the chlorophyll dye. The dye is to absorb light, injects elec-

trons into the semiconductor, and receives electrons from the redox mediator in the electro-

lyte. The cycle continues. An efficient dye sensitizer should display unique characteristics as 
listed below [8, 9]:

• Absorb light in the visible region.

• Good attachment at the surface of photoelectrode to ensure fast electron transfer.

• Good interfacial properties and high stability to enable good absorption to TiO2.

• Easily accepting replacement electron from electrolyte.

• Excited state of dye must be slightly above the TiO2 conduction band and its ground-state 

level below the redox potential of the electrolyte.

• Lifetime of the dye must be consistent with device life.

• Stable enough to sustain about 20 years exposure to natural light.

3. Performance of chlorophyll-sensitized DSSCs

Table 1 summarizes the performance of some DSSCs employing chlorophyll as photosen-

sitizer reported by researchers worldwide. Herein, the illumination of the chlorophyll- 

sensitized DSSCs was carried out under intensity of 100 mW cm−2 unless stated otherwise.

It is evident that the condition of leaves whether fresh or dried affects the adsorption of 
chlorophyll onto the photoanode surface and consequently the performance. Taya et al. [10] 

observed that DSSCs having chlorophyll extracted from fresh leaves of Anethum graveolens 

(Indian traditional medicinal herb and spice) and arugula (arugula salad leaves) exhibited 

better performance than DSSCs with A. graveolens and arugula leaves that have been dried 

for 1 week. On the other hand, higher efficiencies were detected in DSSCs with dried parsley, 
spinach, and green algae as compared to fresh ones. However, the authors did not discuss 

the reason behind this. Among parsley, arugula, A. graveolens, Spinach oleracea, and green 

algae, chlorophyll extracted from spinach produced the best efficiency of 0.290 % [10]. The 

efficiency of the DSSCs depends on the soaking temperature and time. The 0.290% efficiency 
was obtained when the TiO2 photoanode was soaked in the spinach extract solution at 60°C 
for 12 h [10]. Decreasing the temperature yielded low efficiency with η = ~0.0380% at 30°C. 
Beyond the optimum temperature, the efficiency decreased to ~0.175% (70°C) and ~0.0190% 
(80°C), respectively. Reducing the TiO2 soaking time in the chlorophyll spinach solution to 2 h 
gave poor efficiency of ~0.021% [10]. Beyond 12 h of soaking, no obvious change in efficiency 
was observed from the spinach chlorophyll-sensitized DSSC [10]. Therefore, it can be inferred 

that the freshness of chlorophyll leaves, the soaking temperature of TiO2 in chlorophyll solu-

tion, and its duration influenced the DSSC performance. From Table 1, comparison has been 
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Dye Photoanode Electrolyte Counter electrode J
sc

 (mA cm−2) V
oc 

(V) FF η (%) Ref.

Anethum graveolens leaves (fresh) TiO2/FTO I−/I3
− LE Pt/FTO 0.965 0.579 0.400 0.220 [10]

Anethum graveolens leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 0.454 0.562 0.320 0.080 [10]

Arugula leaves (fresh) TiO2/FTO I−/I3
− LE Pt/FTO 0.788 0.599 0.420 0.200 [10]

Arugula leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 0.713 0.594 0.430 0.180 [10]

Parsley leaves (fresh) TiO2/FTO I−/I3
− LE Pt/FTO 0.535 0.445 0.340 0.070 [10]

Parsley leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 0.448 0.553 0.400 0.090 [10]

Bougainvillea spectabilis flower TiO2/ITO I−/I3
− GPE PEDOT/FTO 1.110 0.500 0.586 0.325 [11]

Amaranthus caudatus flower TiO2/ITO I−/I3
− GPE PEDOT/FTO 1.820 0.550 0.610 0.610 [11]

Cordyline fruticosa leaves TiO2 Not stated Not stated 1.300 0.616 0.602 0.500 [12]

Pawpaw leaves TiO2/FTO LE Not stated 0.649 0.504 0.605 0.200 [13]

Pomegranate leaves TiO2/ITO I−/I3
− LE Pt/FTO 2.050 0.560 0.520 0.597 [14]

Platanus orientalis L. (Chinar leaves) TiO2/ITO I−/I3
− LE Pt/ITO 0.012 0.468 0.004 0.550 [15]

Shiso leaves TiO2/FTO p-CuI - 3.520 0.432 0.390 0.590 [16]

Bougainvillea leaves Au/TiO2/FTO I−/I3
− LE Pt/FTO 3.230 0.500 0.410 0.618 [17]

Ocimum Gratissimum (scent leaves) TiO2/FTO I−/I3
− LE Pt/FTO 0.044 0.466 0.400 0.021 [18]

Spinach oleracea TiO2/ITO I−/I3
− LE Pt/ITO 0.467 0.550 0.510 0.131 [19]

Spinach oleracea (fresh) TiO2/FTO I−/I3
− LE Pt/FTO 0.332 0.590 0.420 0.080 [10]

Spinach oleracea (dried) TiO2/FTO I−/I3
− LE Pt/FTO 1.110 0.583 0.460 0.290 [10]

ZnO/FTO I−/I3
− LE Pt/FTO 0.123 0.226 0.200 0.008 [10]

Red spinach leaves TiO2/ITO I−/I3
− LE C/FTO 1.000 0.505 0.578 0.583 [20]

TiO2/ITO I−/I3
− LE C/FTO 0.700 0.559 0.455 0.357 [20]

TiO2/ITO I−/I3
− LE C/FTO 0.500 0.750 0.394 0.296 [20]

Green spinach leaves ZnO/ITO I−/I3
− LE C/ITO 0.052 0.590 0.530 0.016 [21]
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Dye Photoanode Electrolyte Counter electrode J
sc

 (mA cm−2) V
oc 

(V) FF η (%) Ref.

Papaya leaves TiO2/FTO I−/I3
− LE Pt/FTO 0.360 0.325 0.560 0.070 [22]

TiO2/ITO I−/I3
− LE C/FTO 0.060 mA 0.394 0.250 - [23]

Jatropha leaves TiO2/ITO I−/I3
− LE C/FTO 0.042 mA 0.350 0.250 - [23]

Ipomoea leaves extract TiO2/ITO I−/I3
− LE Pt/ITO 0.850 0.495 0.536 0.233 [19]

TiO2/ITO I−/I3
− LE Pt/ITO 0.914 0.540 0.563 0.278 [19]

TiO2/ITO I−/I3
− LE Pt/ITO 0.825 0.533 0.548 0.259 [19]

TiO2/ITO I−/I3
− LE Pt/ITO 1.120 0.565 0.592 0.318 [19]

TiO2/ITO I−/I3
− LE Pt/ITO 0.982 0.543 0.564 0.292 [19]

TiO2/ITO I−/I3
− LE Pt/ITO 0.915 0.510 0.552 0.253 [19]

Azadirachta indica (Neem) leaves TiO2/FTO I−/I3
− LE C/FTO 0.430 0.404 0.401 0.720 [24]

TiO2/FTO I−/I3
− LE Pt/FTO 0.230 0.467 0.392 0.050 [25]

Ziziphus jujuba leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 3.180 0.652 0.519 1.077 [26]

Basil leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 1.398 0.581 0.499 0.409 [26]

Basil flower TiO2/FTO I−/I3
− LE Pt/FTO 1.120 0.600 0.400 0.270 [27]

Mint flower TiO2/FTO I−/I3
− LE Pt/FTO 0.450 0.560 0.380 0.090 [27]

Mint leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 0.980 0.579 0.400 0.227 [26]

Lemon leavesa TiO2/FTO I−/I3
− LE C/FTO 1.080 0.592 0.100 0.036 [28]

Morula leavesa TiO2/FTO I−/I3
− LE C/FTO 0.059 0.472 0.050 0.001 [28]

Fig leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 2.091 0.596 0.515 0.642 [26]

Berry leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 3.573 0.595 0.441 0.939 [26]

Pandanus amaryllifolius leaves TiO2/ITO GPE Pt/ITO 1.610 0.360 0.410 0.240 [29]

TiO2/FTO GPE Pt/FTO 1.190 0.490 0.630 0.390 [30]

TiO2/FTO GPE Pt/FTO 1.910 0.480 0.560 0.510 [31]
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Dye Photoanode Electrolyte Counter electrode J
sc

 (mA cm−2) V
oc 

(V) FF η (%) Ref.

Banana leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 1.770 0.596 0.492 0.522 [26]

Peach leaves (dried) TiO2/FTO I−/I3
− LE Pt/FTO 2.555 0.611 0.422 0.659 [26]

Black tea leaves TiO2/FTO I−/I3
− LE Pt/FTO 0.390 0.550 0.400 0.080 [27]

Coccinia indica leaves SnO2/FTO I−/I3
− LE Not stated 0.700 0.540 0.610 0.260 [32]

La-SnO2/FTO I−/I3
− LE Not stated 0.820 0.540 0.540 0.290 [32]

La-Cu-SnO2/FTO I−/I3
− LE Not stated 1.010 0.560 0.510 0.310 [32]

Ficus retusa Linn. Au-TiO2/ITO Ce4+/3+ LE Pt/ITO 7.850 0.520 0.289 1.180 [33]

Garcinia suubelliptica Au-TiO2/ITO Ce4+/3+ LE Pt/ITO 6.480 0.322 0.331 0.691 [33]

Perilla TiO2/FTO I−/I3
− LE Pt/FTO 1.360 0.522 0.696 0.500 [34]

Petunia TiO2/FTO I−/I3
− LE Pt/FTO 0.850 0.616 0.605 0.320 [34]

Eggplant pulp TiO2/FTO I−/I3
− LE Pt/FTO 0.350 0.630 0.390 0.090 [27]

Festuca ovina grass TiO2/ITO I−/I3
− LE C/ITO 1.189 0.548 0.699 0.460 [35]

Hierochloe odorata grass TiO2/FTO I−/I3
− LE Pt/FTO 2.199 0.594 0.355 0.460 [36]

Torulinium odoratum grass TiO2/FTO I−/I3
− LE Pt/FTO 1.004 0.654 0.483 0.320 [36]

Dactyloctenium aegyptium grass TiO2/FTO I−/I3
− LE Pt/FTO 0.698 0.719 0.481 0.240 [36]

Moss bryophyte (hyophila involuta) TiO2/FTO GPE Pt/FTO 5.780 0.600 0.570 1.970 [37]

TiO2/FTO GPE Pt/FTO 4.590 0.610 0.640 1.770 [38]

TiO2/FTO GPE Pt/FTO 5.960 0.580 0.580 2.000 [38]

TiO2/FTO GPE Pt/FTO 3.710 0.640 0.720 1.690 [38]

TiO2/FTO GPE Pt/FTO 5.370 0.550 0.730 2.170 [38]

TiO2/FTO GPE Pt/FTO 8.440 0.540 0.580 2.620 [38]

Rhoeo spathacea (Sw.) Stearn Au-TiO2/ITO Ce4+/3+ LE Pt/ITO 10.900 0.496 0.274 1.490 [33]

Sargassum wightii (marine seaweed)b ZnO/FTO I−/I3
− LE Pt/FTO 0.203 0.330 0.460 0.070 [39]
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Dye Photoanode Electrolyte Counter electrode J
sc

 (mA cm−2) V
oc 

(V) FF η (%) Ref.

Kelp (brown algae) TiO2/TCO I−/I3
− LE Pt/TCO 0.433 0.441 0.620 - [40]

Undaria pinnatifida (brown seaweed) TiO2/FTO I−/I3
− LE Pt/FTO 0.800 0.360 0.690 0.178 [41]

TiO2/FTO I−/I3
− LE Pt/FTO 10.700 0.530 0.600 3.400 [42]

TiO2/FTO I−/I3
− LE Pt/FTO 13.800 0.570 0.580 4.600 [42]

TiO2/FTO I−/I3
− LE Pt/FTO 8.600 0.470 0.600 2.500 [42]

TiO2/FTO I−/I3
− LE Pt/FTO 9.000 0.470 0.610 2.600 [42]

Cladophora sp. (green algae) TiO2/FTO I−/I3
− LE Pt/FTO 0.145 0.585 0.590 0.055 [43]

Green algae (fresh) TiO2/FTO I−/I3
− LE Pt/FTO 0.134 0.416 0.210 0.010 [10]

Green algae (dried) TiO2/FTO I−/I3
− LE Pt/FTO 0.397 0.559 0.440 0.100 [10]

Chlorella vulgaris (microalgae) TiO2/FTO I−/I3
− LE Pt/FTO 2.530 0.551 0.650 0.900 [44]

aIntensity 80 mW cm−2.
bIntensity 45 mW cm−2.

LE: liquid electrolyte; GPE: gel polymer electrolyte; PEDOT: poly(3,4-ethylenedioxythiophene).

Table 1. The photovoltaic performance of some chlorophyll-sensitized DSSCs.
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made between TiO2 and ZnO photoanodes for chlorophyll spinach DSSCs where the former 

gave better performance than the latter [10].

In the case of chlorophyll extract from ipomoea leaves (leaves of morning glory flower), 50°C 
is the optimum temperature for TiO2 immersion with efficiency of 0.278% [19]. Lower efficien-

cies of 0.233 and 0.259% were obtained when the TiO2-soaking temperature in ipomoea leaves 

extract solution were at 30 and 80°C, respectively for 24 h [19]. Other than temperature, pH of 

the dye solution is another factor influencing the efficiency. Maintaining the soaking tempera-

ture at 50°C, the pH of ipomoea dye solutions was adjusted to pH 1, 2, and 3 [19]. However, 

there was no mention on the type of acid used. Thus, it is not known whether the anion of acid 

had any influence on the DSSC performance. Nevertheless, improvement in efficiency can be 
seen when the acidity of the dye solution was adjusted to pH 1 and 2 with efficiencies of 0.318 
and 0.292%, respectively. However, further increasing the pH to 3 decreased the efficiency 
(η = 0.253%) [19].

The type of solvent used for pigments extraction can also give different results in the absorp-

tion spectrum [45–47]. From the work of Al-Alwani et al. [45], it has been reported that the 

UV-vis absorption spectra of chlorophyll extracted from Pandanus amaryllifolius (screwpine 

leaves) and Cordyline fruticosa (commonly known as Ti plant or cabbage palm) in ethanol and 

methanol solution displayed highest intensity absorption peaks among other solvents such as 

n-butyl alcohol, ethyl-acetate, n-hexane, chloroform, acetonitrile, ethyl-ether, and petroleum 

ether. Then, 1 g TiO2 powder was added in chlorophyll extracted from P. amaryllifolius and 

C. fruticosa in respective solvents (ethanol for Pandanus leaves and methanol for Cordyline 

leaves) and water at different ratios. The addition of an appropriate quantity of water into 
the respective alcohol solvent increased the polarity of solution for better dye adsorption on 
the TiO2 surface [45]. For solution containing TiO2 and P. amaryllifolius chlorophyll, the best 

absorption spectrum was obtained at 2:1 of ethanol to water ratio, whereas the optimum ratio 
for TiO2-C. fruticosa solution with mixture solvents of methanol and water was 3:1. Better dye 
absorption onto TiO2 surface is said to improve the performance of DSSCs but there is no 

DSSC results in Ref. [45]. Nonetheless, in recent publication [12], the same group of authors 

have turned to response surface methodology (RSM) approach to investigate the various 

parameters involved in the chlorophyll extraction process from C. fruticosa simultaneously 

and then predict their response in order to obtain the optimized condition for its extraction. 

After taking three factors into consideration, that is, boiling temperature for organic solvents 

(acetonitrile, ethanol, and methanol), different pH ranging from 4 to 8 and temperature for 
chlorophyll extraction from 50 to 90°C, it was found that chlorophyll can be best extracted 
from the cordyline leaves under the condition where the solvent was ethanol (boiling point 

78°C), pH of 7.99, and at temperature of 78.33°C [12]. As a result, the efficiency of 0.500% was 
obtained for DSSC with C. fruticosa chlorophyll as listed in Table 1.

It should be noted that both betalain and chlorophyll pigments can be extracted from the flow-

ers of Amaranthus caudatus (common name: love-lies-bleeding, velvet flower) and Bougainvillea 

spectabilis using different solvents. Chlorophyll pigments have been obtained when 0.1 mol L−1 

hydrochloric acid (HCl) was used to dissolve the amaranthus and bougainvillea flowers, 
whereas ethanol as solvent will yield betalain pigments from the same flowers. Surprisingly, 
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DSSCs having chlorophyll from amaranthus and bougainvillea flowers in Table 1 demon-

strated better performance as compared to DSSCs with betalain from the same flowers. The J
sc

, 

V
oc

, FF, and η values of betalain DSSC from B. spectabilis were 0.081 mA cm−2, 0.450 V, 0.483, and 
0.018%, respectively [11]. DSSCs using betalain extracted from A. caudatus flower gave the J

sc
 

of 0.102 mA cm−2, V
oc

 of 0.530 V, FF of 0.610, and η of 0.033% [11]. The efficiencies exhibited by 
chlorophyll-sensitized DSSCs from amaranthus (η = 0.610 %) and bougainvillea (η = 0.  325 %) 
flowers were surprisingly high considering that gel polymer electrolyte and PEDOT counter-

electrode were used instead of conventional liquid electrolyte and Pt electrode [11].

Khan and coworkers [20] have examined the effect of acid treatment on TiO2 nanoparticles in 

the making of TiO2 paste to be coated on ITO glass substrate via the doctor blade method. It is 

found that chlorophyll from red spinach leaves-sensitized DSSC without any acid treatment 

on TiO2 photoanode exhibited the efficiency of 0.296% which is lower than the TiO2 acid-

treated DSSC with chlorophyll extracted from the same source under intensity of 50 mW cm−2 

[20]. The presence of acid can prevent agglomeration of TiO2 nanoparticles and results in 

better TiO2 dispersion and thereby offer more adsorption sites for the dye molecules [20]. 

Khan et al. [20] used citric acid (organic acid) and nitric acid (inorganic acid) to prevent TiO2 

agglomeration in the DSSC fabricated with chlorophyll from red spinach leaves, and TiO2 

treated with citric acid gave higher efficiency of 0.583% compared to that using nitric acid 
treatment on TiO2 electrode (η = 0.357%). The lower efficiency yielded by nitric acid treatment 
could be due to nitric acid being a strong oxidizing acid and its corrosive nature may ruin the 

TiO2 surface [48]. From Table 1, the J
sc

 and FF of the DSSC with chlorophyll extracted from 

red spinach leaves can also be seen to increase with efficiency following the order η (TiO2) < η 

(nitric acid treated TiO2) < η (citric acid treated TiO2), whereas the V
oc

 values decreased in the 

same order.

It can be noted from Table 1 that SnO2 was employed as photoanode instead of TiO2 in the 

cell having chlorophyll extracted from Coccinia indica (ivy gourd) leaves [32]. Comparison 

with TiO2 revealed that SnO2 is chemically stable and has larger bandgap of 3.6 eV and higher 
electron mobility [49, 50]. Due to its wide bandgap, it is less sensitive to UV degradation and 

thus possesses better stability as compared to TiO2 [51]. Nonetheless, its large bandgap will 

also cause SnO2 to have lower open circuit voltage. SnO2 having high electron mobility can 

yield fast electron transport and therefore electron recombination can be decreased. From 

the table, the cells with chlorophyll from C. indica leaves exhibited the efficiencies of 0.260, 
0.290, and 0.310% using three photoanodes, that is, SnO2, La-doped SnO2, and La-Cu-doped 

SnO2, respectively [32]. Doping elements into DSSC photoanode improved the performance 

since more dye molecules can be adsorbed in the working electrode due to larger surface area 

owing to increased roughness and pores after doping [52].

Chang et al. [17] have investigated the plasmonic effect of gold (Au) nanoparticles with an aver-

age size of 27 nm in TiO2 DSSC using chlorophyll from bougainvillea leaves. An efficiency 
of 0.618% was obtained. The Au nanoparticles showed localized surface plasmon resonance 
behavior when the frequency of the incident light came close to the surface plasmon frequency 

of Au and consequently improved light absorption leading to a considerably high efficiency of 
0.618% as listed in Table 1. Also, the interface between Au and TiO2 formed a Schottky  barrier 
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where electrons will be blocked from re-entering the dye or electrolyte, which decreased elec-

tron recombination and improved the DSSC performance. Earlier report on TiO2 loaded with 

Au nanoparticles prior to chlorophyll sensitization was published by Lai and coworkers [33]. 

Instead of using I−/I3
− LE, the authors employed water-based electrolyte at ethanol:water ratio 

of 7:13 with Ce4+/3+ as redox couple since water-based DSSC can be totally free from toxic 

and is biologically friendly. The chlorophyll was extracted from herbal plant Rhoeo spathacea 

(Sw.) Stearn. Unexpectedly, an efficiency of more than 1% was produced by the chlorophyll 
R. spathacea water-based DSSC which is higher than that of a similar cell but with one of the 

earliest synthetic dyes, that is, crystal violet (η = 0.010%) [33]. The authors attributed the aggre-

gation of crystal violet dyes as the culprit behind this based on its photocurrent density value 

(J
sc

 = 2.040 mA cm−2), which is lower than that of R. spathacea cell (J
sc

 = 10.900 mA cm−2) [33]. 

In fact, the other two water-based DSSCs using chlorophyll extracted from Ficus retusa Linn. 

(common name: bonsai plant) and Garcinia subelliptica (common name: happiness tree) have 

also demonstrated higher efficiency than that of crystal violet-sensitized DSSC with efficien-

cies of 1.180 and 0.691%, respectively [33].

From Table 1, it can be observed that most of the DSSCs employ liquid electrolytes based 

on I−/I3
− redox mediator. The maximum power conversion efficiencies of liquid electrolyte-

based DSSCs using synthetic dyes have reached around 14% [53]. Liquid-based electrolytes 

are desired since they can infiltrate into the TiO2 nanopores network to make contact with the 

dye molecules for dye regeneration. Still, liquid electrolyte-based cells have limited durability 

due to the possibility of leakage and volatility of solvents. Some of the solvents are flammable 
as well. In an attempt to avoid these complications, researchers worldwide are focusing on 
developing polymer-based electrolytes for DSSCs. Solid polymer electrolytes can exhibit rea-

sonable ionic conductivities but have poor interfacial contact with electrodes. Hence, gel-type 

polymer electrolytes (GPEs) are being developed. GPEs, which are basically liquid electrolyte 
trapped in the polymer matrix, have good flexibility and conductivities comparable to those 
of liquid electrolytes. It can be clearly seen from Table 1 that the DSSC using chlorophyll 

extracted from moss bryophyte and gel polymer electrolyte exhibited exceptionally high 

efficiencies of ~2–2.620% under different conditions. The bryophyte cell with η = 1.970% was 
obtained with GPE having polyacrylonitrile (PAN) as polymer host, tetrapropylammonium 
iodide (TPAI) salt, iodine, ethylene carbonate (EC), and propylene carbonate (PC) as solvent 

and plasticizer [37]. Efficiencies of 1.770 and 2.000% were attained for bryophyte cells using 
GPE based on poly(vinyl alcohol) (PVA) with single [potassium iodide (KI)] and double salts 
(KI and TPAI), respectively [38]. Higher efficiency and J

sc
 values observed in the cell having 

binary salts GPE could be most probably due to the higher number of iodide ions contained 
in the GPE. As for the second best performing chlorophyll bryophyte DSSC (η = 2.170 %), 
it is acquired using GPE based on poly(vinyl alcohol) (PVA) and double salts of potassium 
iodide (KI) and TPAI with the addition of 0.7 M tert-butylpyridine (TBP) [38]. TBP can be used 

either by incorporating it in electrolyte or photoanode in order to improve the V
oc

 and subse-

quently η. However, in this case where TBP was added into GPE, the TBP effect is insignificant 
as  compared to the bryophyte cell when the working electrode was immersed in TBP for 

1 h (η = 1.690%) [38]. Nonetheless, the efficiency of the latter is lower than the former owing 
to its lower J

sc
 value which might be due to lesser photon harvesting as a result of reflection 
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and light scattering by TBP [38]. The most efficient chlorophyll bryophyte DSSC having η of 

2.620% was attained when a co-adsorbent, that is, chenodeoxycholic acid (CDCA), was added 
in the moss bryophyte [38]. The GPE used was PVA-based double salt without TBP. CDCA 
served as spacer to prevent the self-aggregation of chlorophyll molecules, diminish electron 

recombination, and stabilize the chlorophyll, thereby improving the efficiency.

It is worth mentioning from Table 1 that the cell having the efficiency of 0.590% with chloro-

phyll extracted from shiso leaves used copper iodide (CuI) as hole transport material (HTM) 

instead of conventional liquid electrolyte [16]. Therefore, the DSSC has the configuration of 
FTO/TiO2/chlorophyll dye/CuI. CuI, a p-type semiconductor, has bandgap of 3.1 eV and good 
optical transparency [54, 55]. The p-CuI was coated onto the chlorophyll/TiO2/FTO using dip- 

and spray-coating technique as this method involves low calcination temperature and thus 

the degradation of dye will not occur [16, 54]. The p-CuI solid-state DSSC has similar working 

principle with conventional DSSC except that after photon absorption, the dye molecules will 

be excited and then inject electrons and holes into TiO2 and p-CuI, respectively. This indicates 

that the dye at ground state must be positioned below CuI valence band and the dye-excited 

state should be above the TiO2 conduction band in order to ensure proper functioning of 

chlorophyll CuI DSSC. With the usage of HTM, there will be no issue on pigment deteriora-

tion since natural pigment is unstable against the oxidized species in electrolyte with iodine 

as redox mediator [16].

Most of the reports on chlorophyll-sensitized DSSCs summarized in Table 1 do not contain 

information on the type of chlorophyll used. Among the six chlorophylls, chlorophyll a, which 

plays vital role in photosynthesis process, shows poor adsorption and sensitization on TiO2 

due to its structure that contains phytyl and alkyl groups causing steric hindrance that obstruct 

the chlorophyll molecules to bind efficiently with TiO2 molecules [40, 56, 57]. The structure 

of chlorophyll b only differs from chlorophyll a by the aldehyde group (–CHO) rather than 

methyl group (–CH3). On the other hand, chlorophyll c, which consists of chlorophyll c1 and 

chlorophyll c2, has carboxyl group (–COOH) that can effectively attach to TiO2 as reported in 

Ref. [41]. Chlorophyll c, which is the main pigment in Undaria pinnatifida (brown seaweed) 

yielded the efficiency of 0.178% when applied in DSSC as listed in Table 1. Wang et al. [42] 

have purified the pigments in U. pinnatifida to obtain chlorophyll c and remove chlorophyll a 

and carotenoids. Then, the purified chlorophyll c was subjected to polyethylene column chro-

matography to isolate chlorophyll c1 and chlorophyll c2. Using the same method, chlorophyll 

c1 and chlorophyll c2 in oxidized form can also be obtained. As a result, efficiencies of 3.400 
and 4.600% have been obtained from the chlorophyll c1- and chlorophyll c2-sensitized DSSCs 

with liquid electrolyte [42]. Decrement in efficiency can be seen in DSSCs employing oxidized 
chlorophyll c1 (designated as chlorophyll c’1) and oxidized chlorophyll c2 (chlorophyll c’2) with 

the values of 2.500 and 2.600%, respectively [42]. Nonetheless, to the best of our knowledge, 

the chlorophyll-sensitized DSSC utilizing chlorophyll c2 extracted from U. pinnatifida exhib-

ited the highest efficiency among other chlorophyll-sensitized DSSCs till date. However, there 
remains the stability issue encountered by chlorophyll-sensitized DSSCs. Therefore, further 

work must be done to enhance the stability as well as improving the chlorophyll-sensitized 

DSSCs performance before they can be put into practical usage.
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4. Summary

It has been shown that chlorophyll has good potential to serve as photosensitizer in dye-

sensitized solar cells. Moreover, they are cheap, non-toxic, biodegradable, easily found, and 

easy to use as sensitizer. Although the efficiency is still considerably low with highest effi-

ciency to date being only 4.600% from DSSC with U. pinnatifida chlorophyll c2, there remains 

the possibility and room for improvement to further enhance the performance and improve 

stability of chlorophyll-sensitized DSSCs for practical applications.
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