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Abstract

Cystic fibrosis (CF) is a genetic syndrome caused by mutations in the CF Transmembrane 
Conductance Regulator (CFTR) gene. In CF patients, chief morbidity and mortality are due 
to pulmonary manifestations. CFTR lack/dysfunction brings an altered ion flux through 
the airway epithelium and ablation of mucociliary clearance, which in turn ensues in 
colonization and infection by opportunistic bacterial pathogens and subsequent neutro-
phil‐dominated inflammation. This response eventually leads to the damage of the lung 
tissue. A host of inflammatory mediators attract, activate, and reprogramme neutrophils 
to survive (avoiding apoptosis) and produce a wealth of proteases and radical oxygen 
species. The protease/antiprotease imbalance and oxidative stress have multiple down-
stream effects, including impaired mucus clearance, increased and self‐perpetuating 
inflammation, and impaired immune responses, thus facilitating and fostering bacterial 
infections. On the other hand, CFTR lack or dysfunction is likely responsible for altera-
tions in neutrophils concerning chemotaxis, phagocytosis, oxidative burst, degranula-
tion, and neutrophil extracellular trap (NET) formation. A good opportunity to reveal 
new and non‐invasive biomarkers of CF lung disease is the evaluation of circulating 
neutrophils. Indeed, neutrophil responses are now investigated as outcomes of the aetio-
logical therapies in CF, such as hypertonic saline, antiproteases, CFTR correctors and 
potentiators.

Keywords: neutrophils, cystic fibrosis, proteases, NETs, oxidative burst, degranulation, 
chemotaxis
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1. Introduction

Cystic fibrosis (CF) is a rare autosomal recessive disease whose average birth incidence rate 
is now 2.9/10,000 (i.e. 1/3500) in Europe [1] and prevalence is 100,000 globally [2]. Although 
CF is a chronic disease affecting many organs, the lung manifestations are still today the 
major cause of morbidity and mortality of these individuals and are the consequences of 
an ongoing inflammatory process, which stems either in the absence or in the presence of 
opportunistic bacterial infections. Lung inflammation and respiratory infections affect the 
prognosis of CF patients [3, 4]; indeed, they are associated with the progressive destructive 
changes that are responsible for most of the morbidity and mortality in CF [5]. Over 1000 
microbial species (viruses, bacteria, mould, and fungi) have been found in the airways of CF 
patients [6]. Staphylococcus aureus and Haemophilus influenzae are the most common pathogens 
isolated from the sputum in the first decade of life, while Pseudomonas aeruginosa is found 
to dominate numerically in the second and third decades of life [7]. However, according to 
the Cystic Fibrosis Foundation Registry, P. aeruginosa is no longer the most common patho-
gen  cultured in individuals with CF in the USA, and there has been an increase in the preva-
lence of S. aureus and Stenotrophomonas maltophilia [8].

Mutations in the 250‐kb CF transmembrane conductance regulator (CFTR) gene are responsible 
for CF, but other environmental and genetic modifiers are thought to play a role in the phe-
notype of lung disease [9]. The CFTR gene encodes for a chloride channel that is expressed on 
the apical membrane of epithelial cells residing in organs with absorptive/secretory proper-
ties (Figure 1(a)). More than 2000 mutations have been identified at the moment (www.genet.
sickkids.on.ca/cftr/), which can be classified in six classes (Table 1).

Figure 1. CFTR structure and CF lung disease. (a) A supposed CFTR structure when inserted in the plasma membrane. 
CFTR is composed of a two‐membrane spanning domain (MSDs), each linked to nucleotide‐binding domains (NBD1 
and NBD2). Unique to CFTR, NBD1 is connected to the NBD2 by a regulatory domain (R). (b) The pathophysiological 
cascade of CF lung disease.
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The hallmark of the CF lung disease is a neutrophil‐dominated inflammatory response; 
however, the link between CFTR mutations and the complex inflammatory milieu of the CF 
lungs is largely still poorly understood. The pathophysiological cascade which leads from 
the lack/dysfunction of CFTR chloride channel activity to the airway inflammation and infec-
tion, and eventually to tissue damage and destruction, is represented in Figure 1(c). In the 
airways, the low excretion of chloride ions and bicarbonate, along with the hyperabsorption 
of sodium by the epithelial sodium channel (ENaC) and subsequently of water, contributes 
to the volume depletion from the periciliary liquid and its acidification. Thus, the loss of 
CFTR reduces the effectiveness of at least two defences—mucociliary transport and anti‐
microbial activity [10–12]. This eventually brings the colonization and infection by oppor-
tunistic bacterial pathogens and opposing inflammation, which, far from being resolutive, 
seems to be dysregulated, becoming chronic. In this context, polymorphonuclear leukocytes 
(PMNs) are thought to play a fundamental role on the onset and progression of lung tissue 
damage. Observational clinical studies made in the past have ascertained that infants with CF 
do show an airway inflammation prior to overt infection [13], indicating that the inflamma-
tory response is dysregulated a priori before any bacterial infection and also suggesting that 
CFTR mutations are implicated in this abnormal response (Figure 1(b)). This is supported by 
the findings showing that free and bound airway neutrophil elastase is detected very early in 
CF infants and predicts the development of bronchiectasis later in life [14]. Furthermore, it has 
been found that CFTR is involved in some functions of innate immune cells that are diverted 
by CFTR mutations. We will discuss these evidences in Section 4.

2. Recruitment and activation of neutrophils in CF lungs

Neutrophils are the main cell types involved in the first‐line defence of many organs, includ-
ing the respiratory tract. However, they remain in the blood circulation unless they are 
recruited in the tissue. In the airways, they are marginated along the endothelium of capil-
laries and are ready to migrate first through the endothelium and then across the respira-
tory epithelium [15]. Marginated neutrophils are recruited rapidly to sites of inflammation, 
where their primary role is to kill invading bacteria and certain fungal species through 
phagocytosis and production of a range of oxygen species within the phagolysosomes and 

CFTR mutation class Example Effect on CFTR protein

Class I (stop mutation) G542X No expression

Class II (trafficking mutants) F508del Very low expression

Class III (low ATP binding) G551D Very low function

Class IV (low conductance) R117H Low function

Class V (low synthesis) A455E Low expression

Class VI (high turnover) 120del23 Low expression

Table 1. The six classes of CFTR mutations and their effects at the protein level.
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also by preformed granular enzymes and proteins. Tissue inflammation results in the release 
of multiple inflammatory mediators and subsequent neutrophil priming. Priming results in 
a marked change in neutrophil shape and rheology that leads to their increased stiffness and 
retention within the capillary microvascular bed of the lung [16]. These mediators include 
an early wave comprised of cytokines, such as tumour necrosis factor (TNF)‐α, interleukin 
(IL)‐1β, and pathogen‐associated molecular patterns (PAMPs) such as endotoxin, the ligand 
of Toll‐like receptor (TLR)‐4, followed by a late wave of chemoattractants and growth factors 
including IL‐8, leukotriene B

4
 (LTB

4
), and granulocyte‐macrophage colony‐stimulating factor 

(GM‐CSF).

In the airways, macrophages and epithelial cells are the main cell types which sense the patho-
gens and secrete a wealth of factors both inducing priming and full activation of neutrophils, 
as well as their extravasation. Upon exposure to bacteria, respiratory epithelial cells release 
reactive oxygen species (ROS) as an innate anti‐infective mechanism, together with several 
anti‐microbial peptides such as human beta‐defensins (hBD‐1/2/4) and cathelicidins (LL‐37). 
The major pro‐inflammatory cytokines (e.g. IL‐1β, TNF‐α, and IL‐6) are initially expressed 
and released by surface epithelial cells of the conductive airways, which also release chemo-
kines directed to recruit neutrophils (e.g. IL‐8, GRO‐α/γ) [17–22]. Besides the phagocytosis of 
inhaled pathogens and apoptotic cells, alveolar macrophages (AMs) play an important role 
in orchestrating innate immune defences by releasing inflammatory mediators. One of the 
important regulatory functions of AMs may be to dampen immune responses [23] so that 
dysfunction of AMs in CF could be related to increased inflammation. Both airway epithelial 
cells and AMs have been shown to be dysfunctional in CF, contributing to the onset and 
progression of chronic lung disease [24, 25]. This is reflected by the high burden of cyto-
kines, chemokines, and other mediators found in the airway secretion of CF patients [26]. 
The CF airways contain massive amounts of cytokines and chemoattractants for neutrophils 
such as TNF‐α, IL‐1β, IL‐6, IL‐8, IL‐17, IL‐33, LTB

4
, C5a, high‐mobility group box 1 (HMGB1), 

proline‐glycine‐proline (PGP), and N‐acetyl PGP [27–32]. For example, TNF‐α enhances the 
neutrophil oxidative capacity, the granule release, and, with IL‐1β, induces the priming of 
neutrophils [33]. The concentration of IL‐8 in bronchoalveolar lavage (BAL) fluid is gener-
ally elevated and often correlates with the number of neutrophils in the airways [34]. It is 
thought that both extrinsic (e.g. microbes) and intrinsic (e.g. CFTR mutations) contribute to 
the alterations of the respiratory epithelium and AMs, ensuing in a hyper‐inflammatory state 
and defect in immune defence.

Besides chemokines, such as CXCL8 (IL‐8) [35], and lipid products, such as LTB
4
 [36], other 

mediators have also been recently implicated in the recruitment of neutrophils into the CF 
airways. UDP‐glucose levels are abnormally elevated in lung secretions from CF patients 
and from a mouse model of CF/chronic bronchitis, the βENaC‐Tg transgenic mouse [37]. 
Moreover, instillation of UDP‐glucose into mouse lung resulted in robust accumulation of 
neutrophils in BAL. Levels of damage‐associated molecular patterns (DAMP), HMGB1, were 
found elevated in CF sputum and in BAL from βENaC‐Tg transgenic mouse and shown to 
be chemotactic for neutrophils [38]. Upon activation, neutrophils secrete matrix metallopro-
teinases (MMP)‐8 and ‐9, which perform an initial digestion of collagen from the macromol-
ecule's size. Subsequently, neutrophils release prolyl endopeptidase (PE), a serine protease 
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previously only known to be a processor of neuropeptides. PE performs the final diges-
tion of collagen to the tri‐peptide PGP, which, upon binding to the same receptors as IL‐8, 
CXCR1 and CXCR2, acts as a neutrophil chemoattractant and activator [39]. Thus, release 
of this peptidic collagen fragment provides a positive feedback mechanism that contributes 
to persistent neutrophilic inflammation in the CF lung [40]. During the adaptive immune 
response phase, neutrophils are recruited to the lung via the IL‐23/IL‐17A axis. Dendritic 
cells, activated by bacterial antigens, produce IL‐23, which, in turn, binds to IL‐23 receptor 
on T cells and stimulates them to produce IL‐17A. This cytokine induces granulopoiesis via 
the induction of G‐CSF and neutrophil recruitment via induction of chemotactic mediators 
such as IL‐8. Both IL‐23 and IL‐17A have been found at high levels in the sputum from CF 
patients in acute exacerbation [41] and in stable condition [42], amplifying the extravasation 
and activation of neutrophils already induced by the innate immune response.

Once extravasated, neutrophils locate all along the CF bronchial tree and particularly in seg-
mental bronchi, where they preferentially locate at the level of the lamina propria and in 
the lumen [43]. In this position, they are already activated and try to phagocytose microbes 
(e.g. P. aeruginosa) which have adapted to the hypoxic environment by producing an exopoly-
saccharide called alginate [44]. This frustrated phagocytosis leads to neutrophil hyperactiva-
tion which is more harmful than protective.

In the following subsections, we shall revise the main features of neutrophil physiology and 
how these are modified in the CF airway microenvironment (Figure 2).

Figure 2. The role of neutrophils in maintaining inflammation and respiratory infections. The increased burden of 
neutrophils in the CF airways is the hallmark of the mucus plugs contained in the bronchioles lumen. From this location, 
PMNs secrete proteases and reactive oxygen species that overwhelm antiproteases and antioxidants, respectively, 
ensuing in various effects: (1) cleavage of pattern recognition receptors (PRR), (2) cleavage of opsonophagocytic 
receptors, and (3) disabling PMNs themselves and other immune cells. All these alterations facilitate bacterial infections.
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2.1. Activation

Neutrophils recruited from the blood into the CF airway environment undergo marked 
functional changes. They express high levels of markers conventionally found on long‐lived 
antigen‐presenting cells (APCs), including class II molecules of the Major Histocompatibility 
Complex (MHC), the costimulatory molecule CD80, and the chemoattractant receptor of Th2 
cells (CD294), all of which suggest profound reprogramming [45]. CF airway neutrophils 
present marked increases in glucose, amino acid, and phosphate transporters as compared 
with blood neutrophils [46], indicating that metabolic adaptation of neutrophils occurs as 
they are recruited to CF airways. However, these changes are not equal for all neutrophil 
subsets found in CF airways.

2.2. Apoptosis and resolution of inflammation

Apoptosis is a physiological process necessary for the clearance of inflammatory cells. Neutro‐
phils are short‐living cells which undergo apoptosis at the end of the inflammatory response, 
attracting macrophages which eventually ingest apoptotic cells in a process called efferocyto-
sis. The removal of apoptotic cells is relevant to avoid secondary necrosis and the release of 
pro‐inflammatory mediators that disrupt tissue homeostasis [47]. In CF, the lung disease is 
characterized by an alterated balance of pro‐ and anti‐inflammatory mediators. Studies have 
shown that CF airways are deficient in several anti‐inflammatory molecules, including IL‐10 
and lipoxin‐A

4
 (LXA

4
) [48]. IL‐10 inhibits the pro‐inflammatory activities of cytokines, che-

mokines, and transcription factors and induces neutrophil apoptosis [49]. Not surprisingly, 
IL‐10 knockout mice inoculated with P. aeruginosa that was embedded in agarose beads, in 
order to mimic a chronic Pseudomonas infection, had more drastic weight loss, greater neu-
trophil infiltration, larger inflammatory exudate of the lungs, and higher concentrations of 
pro‐inflammatory cytokines in BAL compared to wild‐type mice [50, 51]. Lipoxins are arachi-
donic metabolites generated by a lipoxigenase transcellular pathway involving neutrophils 
with epithelia, endothelia, monocytes, and platelets. In particular, LXA

4
 acts to down‐modu-

late acute inflammation by inhibiting neutrophil transmigration induced by LTB
4
 and IL‐8 

and stimulating macrophage phagocytosis of apoptotic PMNs [52, 53]. LXA
4
 levels have been 

found to be reduced in BAL fluid from CF patients, along with a significant suppression of 
LXA

4
/neutrophil ratios [54, 55].

It seems for a number of reasons that neutrophils are resistant to apoptosis when they have 
extravasated into the CF airways; for example, it has been suggested that the oversecretion 
of cytokines might be responsible of apoptosis inhibition of airway neutrophils. The release 
of G‐CSF or GM‐CSF by epithelial cells, stimulated by S. aureus or P. aeruginosa, inhibits apop-
tosis of CF neutrophils [56], suggesting that increased expression of cytokines by CF airway 
cells not only induces neutrophil response but also enhances their survival, perpetuating 
an inflammatory process. Also, it has been described that PMNs from CF patients showed 
delayed constitutive and TNF‐α or GM‐CSF‐induced phosphatidylinositol 3‐kinase (PI3K)‐
dependent apoptosis [57]. CF airway neutrophils also undergo strong activation of CREB and 
mTOR’s pro‐survival pathways [58]. Moreover, it has been postulated that delayed phospha-
tidylserine externalization and mitochondria depolarization might be responsible for delayed 
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apoptosis of CF neutrophils [59]. In another study [60], neutrophils isolated from CF patients 
showed enhanced survival and upregulation of p21/Waf1, a cyclin‐dependent kinase inhibitor 
and partner of proliferating cell nuclear antigen (PCNA). As also suggested by in vivo studies 
in p21(−/−) mice with P. aeruginosa lipopolysaccharide (LPS) challenge, p21/Waf1 is involved 
in the apoptotic response occurring during the resolution of inflammation [60]. In order to 
dissect the early phases of interaction between CF neutrophils and airway epithelial cells, 
it was found in co‐culture experiments that a high number of non‐apoptotic airway PMNs 
adhered to the CF airway epithelium in the presence of elevated levels of IL‐6 and IL‐8 [61], 
indicating another mechanism involved in enhanced inflammatory responses in airways of 
CF patients. Finally, independent of the sensitivity to apoptosis of CF cells, it has been shown 
that clearance of apoptotic cells by efferocytosis is defective in CF due to elastase‐mediated 
degradation of macrophage phosphatidylserine receptors and that accumulation of such cells 
may contribute to ongoing inflammation [62].

2.3. Phagocytosis, oxidative burst, and degranulation

In cystic fibrosis, there is a tendency for bacterial colonization that may be due to dysfunc-

tion of phagocytosis. Airway neutrophils of CF patients showed a blunted phagocytic capac-

ity and a reduced expression of cell surface recognition receptors, namely TLRs, leading to 
impaired bacterial killing [63]. Recent studies have demonstrated that CF neutrophils display 
an absence or dysfunction of CFTR at the level of phagolysosomes [64]. Likely due to this 
defect, CF neutrophils are impaired in chlorination of engulfed pathogens due to defective 
hypochlorous acid (HOCl) production [65].

One of the major mechanisms through which neutrophil phagocytosis kills pathogens 
entrapped inside the phagolysosomal vacuole is the release of high quantities of ROS [66]. 
The activation of the nicotinamide adenine dinucleotide phosphate oxidase (NOX2) in the 
neutrophils induces the production of superoxide anion and consequently the other ROS. 
Excessive activation of the neutrophil NOX2 results in exaggerated ROS release in the exter-

nal surroundings, which increases the oxidative damage to tissues [67]. Furthermore, the 
inflammatory response can be enhanced by imbalance created by excessive release of pro‐oxi-
dative and impaired release of anti‐oxidative molecules. While some authors have reported 
that ROS production by CF blood PMNs can be higher than or identical to that of healthy con-

trols [68, 69], others have demonstrated that ROS generation varied according to the infecting 
pathogen [70] or to the method employed to detect respiratory burst activity [71]. For example, 
it has been shown that an extracellular polysaccharide of non‐mucoid P. aeruginosa strain (Psl) 
inhibits opsonization and reduces ROS production by neutrophils [72]. Montemurro et al. [73] 

have established that CF blood neutrophils at the baseline are characterized by a higher ROS 
release as compared with controls PMNs and that the antibiotic therapy does not change this 
pattern. Nevertheless, ROS production is reduced in airway neutrophils compared to blood 
neutrophils that have different ROS oxidant activity profiles [74].

Neutrophils are identified by the presence of cytoplasmic primary (azurophilic), secondary 
(specific), and tertiary (gelatinase) granules as well as the secretory vesicles [75]. Focusing 
on granules, neutrophils abundantly express a cell‐type specific set of neutrophil serine pro-
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teases, namely cathepsin G, proteinase 3, and neutrophil elastase (NE), which are stored 
in the azurophilic granules. Also, myeloperoxidase (MPO) is stored in primary granules. 
Secondary granules are characterized by the presence of lactoferrin and cathelicidins, such 
as hCAP‐18, while tertiary granules are enriched with gelatinase, an old name for MMPs, in 
particular MMP‐9.

A dysregulated neutrophil degranulation capacity in CF has been shown. Neutrophils 
obtained from CF patients have an increased capacity to release primary granule contents 
such as MPO and NE [76]. In the airways, CF neutrophils undergo active exocytosis of pri-
mary granules, leading to a massive release of enzymes (e.g. NE, MPO) that damage the 
airway tissue and perpetuate inflammation [45]. On the other hand, Pohl et al. [77] have 
demonstrated that blood neutrophils obtained from CF patients can release less secondary 
(lactoferrin and hCAP‐18) and tertiary (MMP‐9) granule components compared with cells 
obtained from healthy individuals. The dysfunction of CFTR channel in neutrophils results in 
the deactivation of the GTP‐binding protein Rab27a and in an impaired granule exocytosis. 
Interestingly, hypoxia, which is a hallmark of the CF bronchiolar environment, augmented 
neutrophil degranulation and possibly enhanced damage to respiratory airway cells in a 
hypoxia‐inducible factor (HIF)‐independent but PI3Kγ‐dependent mechanism [78].

2.4. NETosis

The neutrophils are the first immune cells to achieve the site of injury or infection and are 
key players in microbial killing, because they are equipped with three main anti‐bacterial 
weapons: phagocytosis, release of ROS, and granule release. Aside from these traditional 
mechanisms, neutrophils are also able, upon activation, to release DNA fibres decorated with 
anti‐microbial proteins or neutrophil extracellular traps (NETs) to immobilize and to kill bac-
teria. NETs are composed of chromatin fibres coated with anti‐microbial proteins, such as 
histones, NE, MPO, and α‐defensins [79–82]. Moreover, NETs and their associated molecules 
are able to directly induce epithelial death, and massive NET formation has been reported 
in several pulmonary diseases including CF [83]. NETs are present in excess in CF sputum 
and the normal host defence functions become pathological [84]. CF patients with poor pul-
monary functions presented higher levels of NETs compared to patients with mild lung dis-
ease, and the G protein‐coupled receptor (GPCR) CXCR2 mediates NOX2‐independent NET 
formation [85]. Histones and protease‐coated DNA structures are released by neutrophils 
in response to respiratory bacteria (whole cells or virulence factors such as LPS, pilus, pyo-
cyanin) or to inflammatory mediators (IL‐8, interferon type I [IFN I], C5a) [86]. The exotoxin 
pyocyanin, a virulence factor of P. aeruginosa, enhances NET formation and requires NOX2 
for its action [87]. Another pro‐inflammatory cytokine, macrophage migration inhibitory fac-
tor (MIF), is able to stimulate NET release by promoting mitogen‐activated protein kinase 
and thus exacerbating the inflammation [88]. Finally, P. aeruginosa triggers the release by 
lung epithelial cells of the eicosanoid hepoxilin A3, a neutrophil chemoattractant that induces 
NETosis [89]. Besides, MPO and NE expressed on NET fibres may induce the degradation 
of proteins of the connective tissue and of endothelial heparan sulphate proteoglycan at the 
site of inflammation [90, 91], contributing to lung pathology of CF patients. Furthermore, 
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there is growing evidence of NET escape by pathogens. NET release might be inhibited by 
down‐regulation of inflammatory responses, or NET degradation might be induced by bac-
teria, including H. influenzae, by deoxyribonuclease [92]. Also P. aeruginosa, a very mutable 
bacterium, is able to acquire resistance to NET‐mediated killing [93].

2.5. Cytokine production and immune regulation

As already pointed out above, there are many synergistic mediators which prime, activate, 
and attract neutrophils in the CF airways. Neutrophils also contribute to the CF airway envi-
ronment by producing mediators that are pro‐inflammatory and modify the function of other 
immune cells. CF airway neutrophils were found to increase TLR‐4 expression on their surface 
and produce excessive IL‐8 at the baseline, while failing to increase secretion in response to 
LPS or repress it in response to IL‐10 [94]. Neutrophils in the sputum and blood of F508del CF 
subjects at the time of pulmonary exacerbation were found to express IL‐17 RNA and protein 
as well as IL‐23 receptor [95]. These investigators also showed a positive correlation between 
percent‐IL‐17‐producing neutrophils and the total sputum activity of NE and MMP‐9 and 
that IL‐17 was absent following antibiotic treatment. IL‐17 production by neutrophils may 
therefore contribute to tissue damage in the lungs of patients with CF.

Neutrophilic myeloid‐derived suppressor cells (MDSC) are innate immune cells that are func-
tionally characterized by their potential to suppress T‐ and natural killer (NK)‐cell responses. 
Circulating neutrophilic MDSC have been found to be increased in patients with CF infected 
with P. aeruginosa as compared with age‐matched healthy control subjects, their percentages 
correlating with lung function in those patients [96]. Further studies have revealed in an in 
vivo animal model of respiratory infection that P. aeruginosa triggers the recruitment of neu-
trophilic MDSC into the pulmonary compartment and enhances their suppressive capacity 
towards T cells [97]. Interestingly, they also showed that MDSC obtained from Cftr−/− mice 
were generated and recruited as in wild‐type mice but were impaired in suppressing T‐cell 
proliferation compared to their Cftr+/+ counterpart cells. Thus, neutrophils contribute to the 
escape of P. aeruginosa from the adaptive immune response, and CFTR mutations may con-
tribute to the bacterial infection.

3. Neutrophils and the effect of CFTR mutations

While bacteria and their products, cytokines and chemokines, are important triggers of neu-
trophil activation in CF airways, it is an emerging picture that a primary CFTR defect in cells of 
the innate immune system, including neutrophils, monocytes, and lymphocytes, contributes 
significantly to CF lung pathology [24]. Pharmacologic inhibition of CFTR and genetic muta-
tion (F508del) in murine neutrophils activated the nuclear factor kappa‐light‐chain enhancer 
of activated B cells (NF‐κB) and increased macrophage inflammatory protein‐2 (MIP‐2) and 
TNF‐α production, as compared to non‐inhibited and control neutrophils. Interestingly, 
under LPS challenge, neutrophil‐depleted wild‐type mice reconstituted with F508del neu-
trophils displayed a more severe lung inflammation in comparison with neutrophil‐depleted 
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wild‐type mice reconstituted with wild‐type neutrophils [98]. Altogether, these data strongly 
indicate that the lack of functional CFTR could result in excessive NF‐κB activation in neutro-
phils and therefore propagate a hyper‐inflammatory response.

CF neutrophils have a reduced phagocytic activity [19, 99] and defects in the respiratory 
burst, attributed to disrupted chloride transport to the phagolysosome [65, 100–102]. While 
wild‐type CFTR is transported to neutrophil phagosomes, the F508del protein is not targeted 
efficiently to these organelles [64], explaining why a correct chlorination of phagosomes in 
CF does not occur and hence the bactericidal defect. A still debated question is, however, 
the CFTR expression in neutrophils. Morris and colleagues, although found a defect in iC3b‐
mediated phagocytosis, did not detect CFTR in circulating and airway neutrophils by either 
immuno‐labelling or a Western blot [99]. Others found that CFTR expression was limited or 
undetectable in neutrophils by flow cytometry and also that no role for CFTR in neutrophil‐
mediated phagocytosis was observed [103]. On the other hand, Zhou and colleagues found 
CFTR at the phagosome level, although a lentiviral‐expressing system was used to achieve 
high protein levels. It might be that CFTR, expressed in hematopoietic stem/progenitor cells 
[104, 105], is down‐regulated to low levels during neutrophil maturation, which is neverthe-
less sufficient for neutrophil phagocytic and killing activities. The lack/dysfunction of CFTR 
in the bone marrow may lead to an irreversible functional defect. In this context, it is worth 
mentioning that knocking out CFTR in the myeloid compartment of mice resulted in poor 
survival, increased inflammation with recruitment of neutrophils, elevated cytokine produc-
tion, and inability to resolve infection upon challenge with P. aeruginosa‐loaded agarose beads 
to mimic a chronic pulmonary infection [106].

4. Disabling neutrophils and other immune cells in CF airways

Excess neutrophil recruitment to the lungs results in the discharge of their destructive weap-
ons not only directed to kill pathogens (see Section 2) but also to damage the lung and airway 
tissue. A large number of mediators produced by neutrophils, mainly oxidants and proteases, 
escape from neutrophils during cell death and phagocytosis. NE, a serine protease capable 
of digesting several substrates including structural proteins, is a direct mediator degrading 
elastin, which drives towards bronchiectasis and bronchomalacia [18]. Importantly, NE is 
associated with lung function decline [107]. In the lung, the main protease inhibitors, the pro-
totypical α1‐antitrypsin (α1‐AT) secreted by hepatocytes and secretory leukoprotease inhibi-
tor (SLPI) produced by the respiratory epithelium in bronchi and bronchioles, are designed 
to oppose free proteases and prevent their deleterious effects. These protease inhibitors are 
eventually overwhelmed by the protease burden in the lung and degraded by bacterial and 
human NE. It has been documented that despite normal antigenic concentrations of α1‐
AT and SLPI in children with CF, the majority of α1‐AT and SLPI were complexed and/or 
degraded [108]. In addition, CF airways are exposed to ROS (O2, H2O2, HOCl), derived mainly 
from the host's immune response. This oxidative stress exacerbates pulmonary deterioration 
and advances bronchiectasis in patients with CF [109]. Similar to the protease/antiprotease 
balance, antioxidants produced by airway epithelial cells (reduced glutathione [GSH] and 
thiocyanate [SCN−]) are overwhelmed by the burden of oxidants in the CF airways. Activated 
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neutrophils are also capable of oxidizing glutathione by HOCl [110], contributing to GSH 
deficiency in CF airways. Hypochlorous acid is also able to oxidize calprotectin thereby inhib-

iting its ability to sequester manganese and zinc ions and consequently to limiting the growth 
of S. aureus and P. aeruginosa [111]. Moreover, it has been documented that ROS suppresses 
CFTR function [112] and that NE degrades CFTR [113], further worsening the CF pathophysi-
ologic vicious cycle.

An important role in the degradation of structural proteins in CF airways is played synergisti-
cally by serine proteases, such as NE, proteinase 3, and cathepsin G [114]. In cystic fibrosis, 
neutrophil activation and degranulation result in the excessive release of proteinase 3, cathep-

sin G, and NE into the extracellular medium as active enzymes. Part of these serine proteases 
are exposed at the cell surface of immune cells and are important as modulators of the inflam-

matory response. Proteinase 3 has been shown to convert IL‐8 to more potent, amino‐termi-
nally truncated forms [115], indicating that neutrophil proteases released in the inflamed lung 
convert IL‐8 to enhance its chemotactic activity. Besides serine proteases, neutrophil‐derived 
metalloproteinases, including MMP‐8 and MMP‐9, have also been involved in CF lung disease 
and chronic neutrophilic inflammation [116]. NE contributes to MMP‐9 activation early in CF 
disease as the ratio of active/pro‐enzyme MMP‐9 was found to be higher in the presence of free 
neutrophil elastase activity, but not infection, and active MMP‐9 was associated with progres-

sion of bronchiectasis [117]. In the context of CF, it is important to recall that neutrophil prote-

ases increase mucin secretion in the airways and reduce ciliary beat frequency, contributing to 
the impairment in mucociliary clearance [118, 119], induce airway epithelial cells to produce 
neutrophil chemoattractants [120], and activate the apical epithelial sodium channel ENaC [121].

Unopposed serine proteases and metalloproteinases are responsible for degradation of solu-

ble pattern recognition receptors (PRRs). NE proteolytic activity present in the CF sputum has 
been shown to degrade the prototypic long pentraxin PTX3, explaining the low levels of this 
PRR in CF airway secretions [122]. Released cathepsin G upon neutrophil activation degrades 
both components of the extracellular matrix and the surfactant protein A, a peptide that 
facilitates bacterial clearance by alveolar macrophages [123]. MMP‐9 cleaves the  pulmonary 
 collectin surfactant protein D (SP‐D) more efficiently than NE; this cleavage causes SP‐D to no 
longer be able to agglutinate bacteria and affects SP‐D's innate immune functions, as bacteria 
are no longer efficiently phagocytosed by alveolar macrophages in vitro [124].

High levels of neutrophil proteases further worsen the immune response by disabling immune 
cell functions. NE has several potential roles in disabling neutrophils including cleavage of 
opsonophagocytosis proteins, such as iC3b, complement receptor 1 (CR1) and C5a receptor 
[125–127], the chemokine receptor CXR1 [128], and TIM3 receptor leading to decreased galec-

tin‐9/TIM3 interactions [129]. Overall, the loss of these proteins is responsible for suboptimal 
local neutrophil priming and bacterial clearance. PMN‐derived cathepsin G also thwarts effi-

cient phagocytosis by macrophages, resulting in the cleavage of receptors and causing ineffi-

cient opsonization and impaired bacterial killing [18]. Cathepsin G cleavage of serum amyloid 
P component (SAP) renders it anti‐opsonic, as evidenced by the increased binding of SAP 
to P. aeruginosa LPS and inhibition of phagocytosis in vitro [130], thus sequestering bacteria 

within the lung and potentially contributing to persistent infections in CF. Cathepsin G also 
interferes with removal of neutrophilic apoptotic bodies, since it mediates the degradation of 
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the macrophage phosphatidylserine receptors with failure to resolve inflammation because of 
the lack of efferocytosis [62, 131]. Also, NK cells and lymphocytes are disabled by neutrophil 
serine proteases. Cathepsin G determines a proteolytic cleavage of NKp46, a crucial activating 
receptor expressed on NK cells, an effect also determined by the CF sputum [132]. NE cleaves 
T‐cell receptors CD2, CD4, CD8, and CD14, impairing monocyte activation and also blocking 
dendritic cell maturation and antigen presentation [133, 134].

5. Neutrophils as biomarkers of CF lung disease

The mainstays of CF lung disease management are commenced early in infancy and pres-
ently include chest physiotherapy to remove mucus plugs from the airways and antibi-
otic therapy to control infections [12]. Other therapeutic approaches such as hypertonic 
saline, finalized to increase mucociliary clearance, should be corroborated by efficacy 
data [135]. Recombinant human DNAse (Dornase alpha) is a strong mucolytic which 
improves lung function [136] but is given to CF infants only on indication due to its cost 
[137]. The recent breakthrough in CF, represented by the use of CFTR‐correcting thera-
pies, is a milestone in the clinical management of these patients. Ivacaftor (Kalydeco®, 
Vertex Pharmaceuticals, USA) is a CFTR potentiator given successfully to patients with 
class III gating mutations. This drug not only improves lung function and normalizes 
sweat chloride in children above 6 years of age [138], but its efficacy has also been proven 
in preschoolers [139].

At whatever age, the control of therapeutic efficacy of medications is granted by functional 
respiratory tests. However, more specific and sensitive assays are urgently needed to monitor 
the halt in the progression of lung disease, especially now that we entered the era of personal-
ized medicine in CF [140]. Neutrophils, the main cell type involved in the onset and progres-
sion of CF lung disease, are clearly an interesting target in this context and are being evaluated 
for such a purpose. The best indication that neutrophils and their products are sensitive bio-
markers of CF lung disease comes from the clinical data about NE. Sputum NE levels have 
been validated as the most predictive biomarker of lung decline and reduced survival [107, 
141], being, however, of no utility in non‐expectorating young children. Being easy to isolate 
from the peripheral blood, circulating neutrophils are more at hand to being studied. Conese 
et al. [142] analysed blood neutrophils by microarray gene expression in 10 CF patients, homo-
zygous for the F508del mutation, given a course of parenteral antibiotics for an acute exac-
erbation, before and after therapy. mRNAs of three genes were found downregulated in CF 
patients before therapy and returned to ‘healthy’ levels after therapy: phorbol‐12‐myristate‐13‐
acetate‐induced protein 1 (PMAIP1), hydrogen voltage‐gated channel 1 (HVCN1), and β‐arres-
tin 1 (ARRB1). Recently, we validated neutrophil HVCN1 mRNA as a biomarker following the 
treatment of seven CF patients, homozygous or heterozygous for class III mutations, with iva-
caftor, confirming that its expression levels are lower as compared with healthy controls before 
therapy, while they are increased after CF patients were treated for 6 months (Guerra et al., 
submitted). Overall, these data strongly indicate that HVCN1 mRNA level is a neutrophil bio-
marker sensitive to therapy. In another study [77], ivacaftor treatment resulted in normalized 
ion homeostasis and corrected Rab27a activation as well as degranulation in blood neutrophils 
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obtained from six CF patients with the genotype F508del/G551D. In line with these findings, 
extracellular Pseudomonas killing by CF neutrophils obtained from CF patients during treat-
ment was significantly increased. Activated CD11b was investigated as a marker of neutro-

phil activation and whether it was downregulated by ivacaftor treatment in five patients with 
F508del/G551D and G551D/N1303K genotypes [143]. A cytofluorimetric assay showed that 
activated CD11b on PMNs was significantly higher at baseline in the CF patients compared 
to controls. However, after treatment, this marker was not significantly different from healthy 
controls, suggesting that ivacaftor treatment results in a decrease, towards normalization, of 
the activation status of blood neutrophils in vivo.

6. Conclusion

CF neutrophils display a number of abnormalities including increased survival, hyperacti-
vation with increased protease and ROS production, defects in phagocytosis, and increased 
NET formation. Altogether, these neutrophil anomalies are derived from an intrinsic CFTR 
defect and are compounded by bacterial products. The unbalanced protease/antiprotease 
ratio in favour of proteases is responsible, together with excess oxidative stress, for the struc-

tural damage of CF airways and for secondary defects in an innate immune response as well 
as a skewed adaptive immune response. The neutrophil protease production is thus one of 
the main targets for therapy today to be explored. CF neutrophils can be also envisaged as 
a biomarker of therapies. The sensitivity to therapy of neutrophil genes is worthy of fur-

ther investigation in the clinical setting. A higher number of patients are needed for studies 
aimed to consider neutrophils and their products as predictors of acute exacerbation and 
follow up.
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