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Abstract

Silicon technologies provide an excellent platform in order to realize microsystems 
where photonic and microelectronic functionalities are monolithically integrated on 
the same substrate. In recent years, a lot of passive and active silicon photonic devices 
have been optimized to work at telecom wavelengths where, unfortunately, silicon has 
a neglectable optical absorption due to its bandgap of 1.12 eV. Although silicon can-
not detect wavelengths above 1.1 μm, in recent years, tremendous advances have been 
made in order to make it suitable for operation in the near-infrared spectrum. One of the 
approaches is to take advantage of the internal photoemission effect through a Schottky 
junction where a metal absorbs the incoming radiation and emits hot carriers into silicon 
making sub-bandgap detection possible. The present chapter describes the more recent 
advances in the field of the silicon photodetectors based on the internal photoemission 
effect showing as devices based on new emerging materials and complex nanostruc-
ture are leading this family of device to compare favorably with the well-established 
technologies commonly used for telecom wavelengths based on germanium and III–V 
semiconductors.

Keywords: silicon, internal photoemission effect, photodetectors, near-infrared, 
graphene

1. Introduction

Silicon (Si) photonics is a discipline of paramount importance in the field of integrated 
optics, and, nowadays, new Si-based commercial products are already available on the 
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market [1, 2]. Although Si photodiodes are commonly realized to operate at visible wave-

lengths, their development at wavelengths of interest for telecommunications is not a 

trivial task to reach because Si is transparent at wavelengths above 1.1 μm. Conventional 

near-infrared Si-based PDs are based on the integration with III–V compound semicon-

ductors as: InGaAs [3, 4], Ge [5], and SiGe [6]. Concerning InGaAs, a hybrid approach [7] 

is commonly followed because of the high lattice mismatch between InGaAs and Si (8.1%) 
making the monolithic integration with Si very difficult [8]. On the other hand, the growth 

of Ge on a Si substrate can be traditionally obtained with a two-step epitaxial growth 

technique [8, 9] in order to realize a buffer layer where a pure crystalline Ge can be epitaxi-
ally grown on Si substrates [10]. However, the requirement for a buffer layer that causes 
problems in both thermal budget and planarity [11, 12] prevents its monolithic integra-

tion on Si. Indeed, even if Si four-channel optical receivers based on GePDs have been 

successfully realized by both Intel [13] and Luxtera [14], it is worth noting that they are 

only flip-chip mounted to a Si electronic circuitry. In alternative, there has been progress 
in fabricating SiGe-based PDs. SiGe has been considered as semiconductor because it is 

still implemented in the CMOS process flow [6], but, unfortunately, the Ge content of the 

available layer is estimated to be 25–35% [15], and consequently, the detection wavelength 

is lower than 1200 nm [16]. In order to circumvent all these drawbacks, many approaches 

have been followed to realize silicon compatible PDs [17]. In particular, very promising is 

the approach based on the internal photoemission effect (IPE), that is, the exploitation of 

photon-assisted transmission of hot carriers across a potential barrier at metal-semicon-

ductor interfaces. In the last decade, much effort has been focused on this field, and both 
impressive results and new structures have been reported. Indeed, IPE has been combined 
with nanoscale metallic structures, including metal stripes supporting surface plasmon 

polaritons (SPPs) [18, 19], Si nanoparticles (NPs) [20], metallic gratings [21], and antennas 

[22]. In addition, IPE has been combined with new structures based on two-dimensional 
materials (like graphene) able to replace metal in the Schottky junction [23]. After these 

research processes, IPE-based Si PDs show the potentialities to compare favorably with 
Ge-based devices, while also offering new advantageous characteristics. Indeed, IPE-
based PDs are very fast thanks to the unipolar nature of the Schottky junction, and they 
have already shown the capability to be monolithically integrated with Si-based charge 

coupled devices for infrared applications [24]. IPE-based Si PDs were  already  summarized 

in a previous work of some years ago [25].

In the present chapter, the huge advances made in this field, are reported. In the first sec-

tion, IPE theory will be elucidated in detail taking advantage of the new recent develop-

ments. Then, the main structures reported in the literature, and the most significant results 
obtained in recent years will be reviewed and discussed, comparing the performance of 

devices based on the different approaches. In particular, the second section will illustrate 
the state-of-the-art of the main both surface-illuminated and waveguide IPE-based Si PDs 
reported in literature, while the third section will be dedicated on devices able to combine 

IPE with plasmonic effects. Finally, in the fourth section, the potential of new devices tak-

ing advantage of both newly emerging materials and smart structures will be addressed.
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2. Internal photoemission theory

IPE is the optical excitation of electrons in the metal to energy levels above the Schottky bar-

rier and then the transport of these electrons to the energy bands of the semiconductor. A 

band diagram for a metal/p-Si junction is sketched Figure 1.

It is well-known that IPE is typically a very weak effect due to many factors: (1) the low 
absorption due to high reflectivity of the metal layer, (2) the conservation of momentum dur-

ing carrier emission over the potential barrier which lowers the carriers emission probability 

into semiconductor, (3) the excitation of carriers lying in states far below the Fermi energy, 
which get very low probability to overcome the Schottky barrier. The result is that IPE-based 
devices are characterized by low responsivity R (i.e., the ratio between the photogenerated 

current I
ph

 and the incoming optical power P
inc

):

  R =   
 I  

ph
  
 ___ 

 P  
inc

  
   =   

λ [ nm ]
 _____ 

1242
   ⋅  η  

e
    (1)

where λ is the wavelength of the incident photon expressed in nm, and η
e
 is the external 

quantum efficiency of the device, that is, the number of charge carriers collected per incident 
photon. Alternatively, the number of carriers collected per absorbed photons is called the 

internal quantum efficiency η
i
.

Figure 1. Energy band diagram for a metal/p-type Si junction (EFM and EFSi are the metal and Si Fermi level. E
C
 and E

V
 are 

the conduction and valence band energy of Si and φ
B
 is the Schottky barrier of the metal/p-Si junction.
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Fowler described the first electron model concerning electron photoemission from metal into 
vacuum in the 1931 [26]. Subsequently, in the 1960s, Cohen et al. [27] modified the Fowler’s 
model in order to take into account the carrier photoemission from a metal into a semiconduc-

tor, elaborating the commonly used formula:

   η  
i
   = C ⋅   

  (  hν −  ϕ  
B
   )     

2

 
 _______ 

hν    (2)

where φ
B
 is the Schottky barrier, hν is the energy photon, C = 1/8(EF + φ

B
) is named the quan-

tum efficiency coefficient, and EF is the metal Fermi level. In this context, it is worth noting 
that Eq. (2) was obtained under the zero temperature approximation and for thick metal films.

Subsequently Elabd and Kosonocky reviewed the IPE model in order to obtain better agree-

ment with the experimental data [28] and, always under the zero temperature approximation, 

they obtained approximately the same Eq. (2) but characterized by a different quantum effi-

ciency coefficient that results C = 1/8φ
B
. In addition, the authors extended the photoemission 

model to the case of thin metal films by introducing a multiplicative gain factor arising from 
the increased escape probability of the hot carriers into the metal due to the scattering with 
metal surfaces [28]. In the last years, many other authors have investigated IPE theory and 
new physical models more and more complex have been proposed [29–31]. Recently, Scales 

and Berini extended the Elabd and Kosonocky’s theory in order to take into account of the 
escape probability through a double Schottky barrier [32]. A very intriguing approach was 

proposed by Vickers, who derived a theoretical model in which the estimation of the internal 

quantum efficiency η
i 
 is given by the product of two factors [33]:

   η  
i
   = F  (   ϕ  

B
   )    ⋅ P  (  d )     (3)

where the Fowler factor F is the fraction of the excited carriers having appropriate momentum 

and energy to overcome the potential barrier, P is a scattering term taking into account the 
probability that one of these excited (hot) carriers will be emitted over the potential barrier 
after scattering by cold carriers and the metal boundary surfaces, d is the metal thickness, and 

φ
B
 is the junction potential barrier. The main advantage of the Vickers model is that the zero 

temperature approximation is removed making it valid at any temperature. Indeed, the factor 

F incorporating the temperature dependence is shown in the following formula:

  F =   1 _____ 
4  E  

F
   hν    (    

  (  hν −  ϕ  
B
   )     

2

 
 _ 

2
   +  ( k  

B
   T)   2   {     π   2  _ 

6
   +  ∑ 

i=1
  

∞

     1 _ 
 i   2 

     (  −  e   −  
hν− ϕ  

B
  

 _ 
 k  

B
  T

    )     
i

  }    )     (4)

where k
B
 ant T are the Boltzmann constant and the absolute temperature, respectively. It is 

worth noting that, in the limit T → 0, Eq. (4) reduces to the well-known Eq. (2). Recently, 
Casalino [34] showed that by making a change of variables m = (hν − ϕ

B
)/k

B
T and putting in 

evidence the factor (k
B
T)2 in (4), it is possible to define a F* factor as:
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Three terms of Eq. (5): m2/2, π2/6 and the polylogarithm function   ∑ 
i=1

  
∞

     1 
__

  i   2      (  −  e   −m  )     i   have been plotted 
in Figure 2 by varying m between 10−6 and 2 × 105 in order to understand the weight that any 

term plays into (5). It is possible to estimate that F* approaches m2/2 within 10% for m ≥ 5.43, 
within 5% for m ≥ 7.91 and within 1% for m ≥ 18.
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Most important, Casalino found that F* approaches m2/2 + π2/6, that is, it is possible to neglect 

the polylogarithm term and to reduce Eq. (4) to the following Eq. (6) [34]:

  F =   1 _____ 8  E  F   hν
    (   (hν −  ϕ  

B
  )   2  +   

  (   k  
B
   Tπ )     

2

 
 _ 

3
   )     (6)

within 10% when h ν − ϕ
B 

≥ 0.035 eV, within 5% when h ν − ϕ
B 

≥ 0.046 eV, and within 1% when 
h ν − ϕ

B 
≥ 0.074 eV. It is worth noting that Eq. (6) is a slight modification of Eq. (2) but can be 

used also at room temperature in the limit of the aforementioned errors.

On the other hand with reference to Eq. (3), the scattering term P allows extending IPE the-

ory to a thin film where the escape probability of carriers excited in the metal is increased. 
Because the P term derived by Vickers is further complex, he proposed the following analyti-

cal approximation, very simple but with no physical meaning [33]:

  P =    L   *  __ 
d
   ⋅  √ 

______

 1 −  e   −  d __ 
 L   * 

       (7)

where L* is the mean free path in the metal, and d is the metal thickness. Eq. (7) is valid for 
thin films but in the limit d/L* > 0.2. By following the same line of reasoning, more recently 

Casalino introduced the following Eq. (8) able to extend the operating range in the limit 
d/L* > 0.002 [34]:

Figure 2. Plot of the F* factor as a function of m. Three terms forming F*: m2/2, π2/6 and the polylogarithm function are 

reported, too. X-axis is plotted on log scale.
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Because the lower the metal thickness the higher the scattering term P, there is always an advan-

tage to work with very thin metal thickness to the point that it was recently to proposed to 

replace metal with two-dimensional material such as graphene able to form Schottky junction 
with Si [23]. Finally, it should be mentioned that device efficiency can also be increased by 
applying a reverse bias to the Schottky junction, and this increase is due to the lowering of the 
Schottky barrier φ

B 
when a reverse bias is applied to the junction (image-force effect [35]).

It is worth noting that in this section we have focused only on the device efficiency of the PDs 
because it is the Achilles’ heel of all IPE-based devices. However, many others figures of merit 
are useful in order to compare different PDs: bandwidth, noise equivalent power (NEP), and 
voltage operation are the main specifications of any commercial PD datasheet, and their defi-

nitions can be found everywhere [36].

3. Surface-illuminated and waveguide Schottky PDs

Schottky surface-illuminated PDs are typically less responsive than Schottky waveguide 
PDs where the optical power is confined close to the metal-semiconductor interface and 
can be absorbed along its propagation. However, in some cases, the surface-illuminated 

structures are the only option: for instance, in imaging applications where the vision can be 

improved in critical conditions (such as smoke and fog) thanks to reduced scattering at NIR 
wavelengths [37] or in reflectography applications where the transparency of most pig-

ments to NIR wavelengths has been used to investigate ancient paintings [38]. Historically, 

surface-illuminated Schottky PDs have been used in the field of Schottky-barrier infrared 
focal-plane array (FPA) technology [24]. PtSi/pSi PD is the most popular surface-illumi-

nated Schottky-barrier device, commonly used for detection in the 3–5 μm spectral range 
[39]. However, this device is characterized by two main drawbacks: low quantum effi-

ciency (about 1%) and low operating temperature requirements (77 K or below). In order to 
overcome these drawbacks, in 2006, Casalino et al. proposed to incorporate a Schottky junc-

tion inside a Fabry-Perot optical microcavity in order to enhance the device efficiency at 
both near-infrared wavelengths and room temperature [40, 41]. Subsequently, in 2012, after 

a first experimental proof-of-concept demonstration [42, 43], the same authors fabricated 

and characterized a new surface-illuminated Schottky device based on a resonant cavity 
Fabry-Perot structure. The device was formed by a dielectric bottom mirror, a metallic top 
mirror and, in the middle, a silicon cavity [44]. The dielectric bottom mirror was a distrib-

uted Bragg reflector (DBR) formed by alternating λ/4-layers of amorphous hydrogenated 

silicon (a–Si:H) and silicon nitride (Si
3
N

4
), while the top mirror was realized by means of 

a copper (Cu) layer able to work as both an absorber and an optical mirror at the same 

time. It was demonstrated that, when the DBR mirror reflectivity approaches the reflectiv-

ity of the metallic top mirror, that is, when critical coupling conditions are fulfilled, the 
maximum responsivity can be obtained at the cavity resonance wavelengths. The critically 

coupled Cu/pSi Fabry-Perot PD exhibited a maximum responsivity of 0.063 mA/W around 
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1550 nm and measurements of junction capacitance in the pF range encouraged the pur-

suit of greater bandwidth making possible to operate at several GHz. On the other hand, 

the dark current density is reported to be as high as 28 mA/cm2 at −1 V. More recently, 
Desiatov et al [45]. have demonstrated surface-illuminated Aluminum(Al)/Si Schottky PDs 
at near-IR wavelengths based on pyramidally shaped devices created in Si by potassium 

hydroxide (KOH) anisotropic etching. The advantage of KOH etching is that it is possible 
to fabricate plasmonic devices with a nanometric active area, without requiring sophisti-

cated equipments such as electron beam lithography (EBL) or focused ion-beam (FIB). SEM 
micrographs of the fabricated device are shown in Figure 3(a) and (b). The Si pyramids 

arranged in an array structure work as efficient and broadband light concentrators able to 
collect the light from a large area and to confine it into a small active pixel area, thereby 
providing high responsivity and low dark current at the same time. The responsivity of the 

device at −0.1 V was found to be 5, 12, and 30 mA/W for incident optical wavelengths of 
1550 nm, 1300 nm, and 1064 nm, respectively. Moreover, the device showed a dark current 

of 80 nA at −0.1 V. The authors claim in this work that the efficiency is enhanced, not only 
by the increased absorption, but also by the nanoscale apex of the pyramid able to increase 

the escape probability from Al into Si.

Concerning waveguide Schottky PDs, in 2008, Zhu et al. [46] described the first nickel silicide 
(NiSi) Schottky PD integrated into a silicon-on-insulator (SOI) waveguide working at both 
NIR wavelengths and at room temperature. In this case, the author reports a responsivity, 

bandwidth, and dark current of 4.6 mA/W, 2 GHz and 3 nA at −1 V of reverse bias applied, 

Figure 3. SEM micrograph of the device reported in [45]: (a) formation of the nanoapex in the Si pyramid and (b) final 
fabricated device. (c) I–V measurements of the pyramid Schottky device at constant optical power for three different 
wavelengths. The inset shows the photocurrent versus optical power for 1550 nm wavelength.
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respectively. A similar device from the same research group, but based on a metal-semicon-

ductor-metal (MSM) configuration, shows both higher responsivity and larger dark current 
[47]. It is worth noting that in the aforementioned guiding structures, the absorbing metal is 

always deposited along the direction of the propagating light, but another possibility is that 

the active metal layer is placed on the vertical exit surface of the output waveguide, that is, 

normal to the propagating beam.

This proposed PD design is reported in [48], and it is based on an asymmetric MSM junction 

integrated onto a SOI substrate. The active metal is copper (Cu) that results in contact with Si 

only on the vertical exit wall of the optical waveguide. In practice, Cu works as a mirror (as 

well as an active absorbing layer), enabling the possibility of fabricating an integrated cavity if 

a second mirror is realized on the waveguide (for instance by means of deep trenches) in order 

to get a substantial shrinkage of the footprint together with an increase in the device perfor-

mance. The integrated PD was characterized by a responsivity value at 1550 nm of 0.08 mA/W 
and a dark current of 10 nA at −1 V. In 2013, Casalino et al. proposed an optimized version of 
this device showing the possibility of tackling the typical responsivity/dark current trade-off 
[49, 50]. Indeed, in [50], it was shown that, by taking advantage of a small contact area of about 

3 μm2, it was possible to increase the reverse bias applied even up to 21 V while maintaining 

a limited dark current value of only 2.2 nA. The increase in reverse voltage allows reducing 

the Schottky barrier height (due to the image force effect [35] mentioned in Section 2), increas-

ing the responsivity up to 4.5 mA/W. In addition, an experimental bandwidth of 1 GHz was 
demonstrated. Finally, the Schottky PD proposed shows the potentialities to work at longer 
wavelengths than NIR (i.e., wavelengths in the range 2–3 μm) [50].

Figure 4. (a) A schematic illustration showing the fabrication process for making the Si-cored fiber and (b) the Schottky 
PD directly integrated on the Si-cored fiber described in [53]. (c) Measured photocurrent versus optical power from a 

1550 nm laser.
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In this section, we believe that other two structures proposed in the current literature deserve 

to be mentioned. The first concerns the possibility to combine Schottky PDs with microring 
resonators, and these structures have been investigated theoretically in the current literature 

[51, 52] providing encouraging results; however, no experimental validation has been car-

ried out to so far. The second is reported in [53] where a very intriguing in-line IPE-based Si 
PD was fabricated directly on an optical fiber. In particular, an Au Schottky layer was placed 
directly on the Si core of a non-conventional optical fiber fabricated by starting from polycrys-

talline n-type Si powder, firstly packed in a fused silica tube, and then melted at an appropri-
ate temperature as shown in Figure 4(a) and (b) [53]. The authors report a responsivity and 

dark current combination of 0.226 mA/W and 0.3 μA, respectively, at −0.45 V for a wavelength 
of 1550 nm as shown in Figure 4(c). This device could become very interesting in the field of 
Lab-on-Fiber technology.

4. Surface-plasmon Schottky PDs

Surface-plasmon Schottky PDs allow combining IPE with the excitation of surface plasmon 
polaritons (SPPs) in a waveguide provided of a proper metal layer [54]. In other words, when 

the SPP is excited, it will be absorbed during its propagation along the metal stripe deposited 

on the Si waveguide. Absorbed photons will generate photoexcited carriers able to be emitted 
through the Schottky junction into Si making the sub-bandgap detection possible also at NIR 
wavelengths in agreement with the internal photoemission mechanism. The P. Berini’s group 
has theoretically [55] and experimentally [18] investigated the performance of Schottky PDs 
integrated with Si-based waveguides supporting SPPs.

A first proposed structure is based on an Au stripe deposited on p-Si to form a Schottky 
contact [18, 19]. The authors demonstrate that the plasmonic mode excitation, localized at 

the Au/p-Si interface, occurs at NIR wavelengths under both end-facet and top illumination. 

In particular, under end-facet illumination, the measured responsivities in an asymmetric 

1.5-μm-wide, 40-μm-long, and 40-nm-thick Au stripe waveguide were 0.942 and 0.941 mA/W 
at 1310 nm and 1550 nm, respectively, and at −0.1 V of reverse bias applied. On the con-

trary, under top illumination, the measured responsivity in an asymmetric 6.5-μm-wide, 

40-μm-long, and 40-nm-thick Au stripe waveguide was 0.559 mA/W at the wavelength of 
both 1550 nm and −0.1 V of reverse bias applied. Moreover, the device dark current was in the 
μA range. Previously, the same authors reported on a similar device working under a strong 

reverse bias of −210 V close to the breakdown condition. The 2.5-μm-wide, 75-μm-long, and 
135-nm-thick Au stripe on n-Si shows a responsivity of 2.35 mA/W at 1550 nm [56].

It is worth mentioning that the aforementioned devices are all based on asymmetric cladding 

configurations, and on the other hand, a symmetric cladding configuration, where the Au 
stripe is buried in Si [57, 58], gives the advantage of increased efficiency thanks to the emission 
through two Schottky junctions [32]. Even if no experimental validation has been performed 
in symmetric cladding SPP Si PDs so far, Knight et al. [59] proved increased responsivity for 

plasmonic nanostructures embedded in Si. Indeed, Ti (2 nm)/Au (35 nm) planar nanowires 
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arranged into a 10 μm × 10 μm array were embedded in Si to a depth of 5 nm, 15 nm, and 

25 nm in such a way that not only the flat surfaces but also the lateral surfaces of the planar 
nanowires are able to emit photoexcited carriers through the Schottky junctions (Figure 5).

Figure 5. (a−c) Three representative SEM images of devices with widths of 120 ± 10 nm embedded about: 5 nm (blue), 
15 nm (green), and 25 nm (red) into the silicon substrate. Scale bars are 100 nm. (d) Measured photocurrent spectra for 

increasing widths, where each spectrum is the photocurrent from (e) a nanowire array normalized to the response from a 

solid Au pad. The dotted white circle indicates the laser spot FWHM of 3 μm. Scale bar is 2 μm. (f) Calculated absorption 
peak wavelengths (black line) agree closely with experimentally observed enhancement peaks.

New Research on Silicon - Structure, Properties, Technology254



The authors prove that an increased photocurrent can be achieved with respect to nonem-

bedded plasmonic elements, in other words the higher the embedding depth, the higher 

the responsivity, and this trend was most clearly observable for the nanowires with the 

widest transverse dimensions. Indeed, devices based on the highest width to thickness ratio 

exhibited a photocurrent of about 25 times greater than the non-embedded structures. For 
incident light polarized transverse to the length of the nanowire, the maximum reported 

 responsivity was 65 μA/W at 1550 nm. The authors attribute the responsivity enhancements 
to the increased carrier probability emission occurring through the three metal/Si inter-

faces. The embedded Schottky junctions and the main results reported in [59] are reported 

in Figure 5. In the 2012, Goykhman et al. demonstrated a NIR Al/Si Schottky PD integrated 
with a submicrometer Si waveguide fabricated taking advantage of the standard microelec-

tronic LOCOS (Local Oxidation of Silicon) technique [60]. The 320 nm × 1000 nm Al active 

area in contact with the Si forms a Schottky PD with responsivity of about 12.5 mA/W at 
1550 nm and −0.1 V bias, while the leakage current is only 30nA. The measured responsivity 
is about two orders of magnitude higher than that published two years earlier by the same 

authors for a similar device [61], and they attribute the enhanced responsivity to the pres-

ence of plasmonic effects due to the surface roughness at the boundary between the Al and 
the Si. In the same year, Zhu et al. demonstrated PDs based on nickel silicide nanoparticles 
embedded in the space charge region of a waveguide p-n Si junction [20]. While the idea of 
enhancing the IPE by using nanoparticles (NPs) was already explored in the past [62, 63], it is 

worth noting that the previously reported structures were able to operate only at cryogenic 

temperatures (77 K) and at wavelengths shorter than those required for telecommunications 
[64, 65]. The enhanced responsivity of PDs based on NPs is ascribed both to the increased 

light absorption due to the excitation of localized surface plasmon resonance (LPSR) and 

to the increased emission probability of the excited carriers due to the spherical shape of 

the NPs [66]. On the other hand, the device proposed in [20] is able to work at both room 

temperature and 1550 nm and its fabrication is very interesting: the junction was realized 

by depositing a ~1-nm-thick titanium (Ti) film and a ~3-nm-thick nickel (Ni) film on p-Si, 
and a subsequent rapid thermal annealing process at 200°C for 30 s produces the nickel sili-

cide (NiSi). After removing the un-reacted metal using a proper etching solution (Piranha at 

90°C), a 200-nm-thick film of amorphous Si was deposited, followed by phosphorus implan-

tation and a rapid thermal annealing at 700°C for 5 min in order to get the dopant activation. 

It is worth noting that during this rapid thermal process, the Ni-silicide agglomerated to 

form NPs. At the same time, the amorphous Si crystallizes to form polycrystalline Si. The 

measured responsivity at room temperature depends on both wavelength and polarization, 

and the maximum value is 30 mA/W for −5 V and TE polarization. Finally, a dark current 
density and bandwidth of 2.84 A/cm2 and 6 GHz at −5 V were reported, respectively. In [67] 

are reported Schottky PDs based on Au nanorods randomly distributed on a 30-nm-thick Au 
film deposited on Si. Various nanorods lengths ranging from 50 to 100 nm were considered, 
while their diameter was 10 nm. The authors claimed that the Au nanorods are capable 

of inducing SPR excitation under illumination at 1300 nm and 1550 nm and an enhanced 

photocurrent with respect to the same devices without nanorods was demonstrated at zero 

bias. In 2011, Knight et al. [22] reported on strong optical absorption in a small active metal 

region due to the excitation of resonant plasmons in metallic nanoantenna. The PD consisted 
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of three hundred nanoantennas arranged in a 15 × 20 array. Each nanoantenna used 30-nm-
high and 50-nm-wide rectangular Au nanorods with lengths ranged from 110 to 158 nm. 
Unfortunately, the PD responsivity depends on the complex optimization of several factors 

(the properties of the materials involved, the geometry, and the efficiency of the uppermost 
indium-tin-oxide electrical contact layer) and a very low responsivity of 10 μA/W and 3 
μA/W at 1250 nm and 1550 nm were reported without reverse bias applied, respectively.

Another approach in order to obtain hot electron generation induced by plasmon modes was 

proposed by A. Sobhani et al. [21] who investigated the phenomenon of extraordinary optical 

transmission (EOT) in metallic gratings. The same plasmon modes that give rise to EOT also 
give rise to the excitation of electrons that can be emitted above the Schottky barrier into a 
semiconductor substrate as shown in Figure 6.

Gratings based on Au with different geometries were fabricated on n-type Si by using an 
interfacial layer of titanium in order to promote adhesion with Au. A measured maximum 

responsivity of 0.6 mA/W and 0.47 mA/W at 1300 nm and 1500 nm, for zero bias voltage, was 
demonstrated, respectively. Device measurements showed a drastic increase in  responsivity 

Figure 6. (a) Schematic of a gold grating on an n-type silicon substrate with a 2-nm Ti adhesion layer, oriented transverse 

to the laser polarization. Polarization of the incident laser and its k vector are represented with horizontal (yellow) and 

vertical (green) arrows, respectively. (b) Scanning electron microscopy image of gold grating structure with grating 

thickness (T)=200 nm, interslit distance (D)=950nm and slit width (W)=250 nm. For all structures the array measured 
12 x 12 mm. The scale bar is 1 mm. (c) Photocurrent responsivities of grating-based photodetectors for three different 
gold layer thicknesses, T=93 nm (lower black curve), 170nm (grey curve in the middle) and 200nm (higher green curve), 

showing a strong intensity dependence on grating thickness.
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with respect to structures based on nanoantennas previously mentioned. This increase 

mainly arises from the possibility to design the grating geometry in such a way to generate 

hot electrons primarily near the Schottky interface. Finally, this approach allows tuning the 
responsivity peak over a broad wavelength regime ranging from 1295 to 1635 nm, simply by 

changing the grating geometry.

Concerning the possibility to detect in a wide range of NIR wavelengths, in 2014 Nazirzadeh 

et al. [68] demonstrated Si Schottky PDs, operating in the 1200–1600 nm spectrum, based 
on Au nanoislands able to plasmonically enhance the sub-bandgap photon generation and 

collection. In this work, randomly distributed Au nanoislands on Si surface were realized by 

annealing a continuous thin Au layer at temperatures of 300°C, 450°C, and 600°C, respec-

tively. The structure annealed at 450°C showed the highest responsivity of 2 mA/W at 1300 
nm, while a dark current of about 30 μA at −1 V was reported. On the contrary, a device 
annealed at 300°C showed a responsivity of 0.6 mA/W at 1550 nm, while a dark current of 
about 100 μA at −1 V was demonstrated. The main advantage of the proposed PD is that 
all nanostructures were realized without requiring high-resolution electron beam lithogra-

phy (EBL). Very recently, in 2016, Muehlbrandt et al. reported a novel plasmonic internal 
photoemission detector (that authors name with the PIPED acronym) characterized by a Si 
waveguide where the two sidewalls are metallized by two different metals: gold (Au) and 
titanium (Ti) [69]. The Au-Si-Ti waveguide is able to guide SPPs dissipating their energy 

mainly at Ti/Si interface because Ti is characterized by a larger imaginary part of the com-

plex refractive index with respect to Au. In this work, authors demonstrate that when an 

external positive DC-bias voltage is applied (positive polarity from gold to titanium), the 

band diagram of the Au-Si-Ti structure changes in such a way that IPE at 1550 nm can occur 
over the Ti/Si Schottky barrier. The structure based on asymmetric Au-Si-Ti waveguides with 
a width of 75 nm and a length of 5 μm shows a responsivity at 1550 nm and dark current of 

0.126 A/W and ~10 μA, respectively, at a bias voltage of 3.25 V. Finally, the detector exhibits 
optoelectronic bandwidths of at least 40 GHz.

5. Graphene/Si Schottky PDs

Deep investigations have been realized on graphene since its discovery in 2004 [70]. This 

is because electrons in graphene behave as massless two-dimensional particles leading to a 

wide absorption over wavelengths from the ultraviolet to the infrared thanks to both inter-

band and intra-band transitions [71, 72]. In the field of the photodetection, this property is of 
fundamental importance because the semiconductors used for realizing PDs are character-

ized by a limited absorption range. This is because graphene-based PDs are nowadays one 

of the most studied photonic devices over a broadband range of wavelengths, in particular 

at NIR. It is well-known that graphene forms a Schottky junction with Si [73], and it results 

a good candidate for the realization of IPE-based devices due to its very low thickness that 
promises to increase the emission probability of the photoexcited carriers over the Schottky 
junction. In 2013, Amirmazlaghani et al. reported on an exfoliated graphene/Si Schottky PD 
operating at 1550 nm [23] showing a maximum experimental responsivity of 9.9 mA/W at 
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both 1550 nm and −16 V. On the other hand, the measured dark current was 2.4 μA. A key 
point of the work is that the proposed device shows an experimental responsivity higher than 

that predicted by the traditional IPE theory. The authors explain the discrepancy by claiming 
that IPE theory should be totally revised when two-dimensional materials are considered, 
and they propose an alternative model in a good agreement with the experimental results. 

It has been shown that the insertion of a graphene monolayer in between the metal and the 

semiconductor provides an IPE enhancement [74] and very recently Levy et al. have proposed 

a phenomenological model able to explain physics behind this enhancement [75].

Recently Goykhman et al. demonstrated a NIR Schottky PD integrated with a SOI waveguide 
based on silicon-graphene junctions where graphene is grown by chemical vapor deposition 

CVD system [74]. Device is shown in Figure 7.

In particular, the rib waveguide was coupled to a single layer graphene (SLG)/Au contact 

able both to form a Schottky junction with Si and to support surface plasmonic modes that 
confined the optical beam to the SLG/Si interface. The PD length was ~5 μm, while the Si 
waveguide width was 310 nm. A responsivity of 0.085 A/W, at both, 1 V and 1550 nm, with 
respect to a dark current of 20 nA, was reported. Finally, the authors show that responsivity 
increases up to 0.37 A/W at a higher voltage of—3 V thanks to the combined effect of two pro-

cesses: tunneling through the graphene/Si Schottky junction (thermionic-field emission, TFE 
[76]) and avalanche multiplication of within the Si depletion region.

Finally, Vabbina et al. have fabricated and characterized a very interesting two-dimen-

sional Schottky PD working at 1440 nm [77]. The Schottky junction is realized by putting 
in contact the p-type molybdenum disulfide (MoS

2
) with graphene, and the absorption 

mechanism is based on IPE: under illumination, photo-generated holes travel from the 
graphene into MoS

2
 over the Schottky barrier. MoS

2
 is a two-dimensional material attract-

ing much interest due to its direct bandgap of 1.80 eV giving to the material semiconduc-

Figure 7. (a) Schematic metal-SLG-Si Schottky PD proposed in [74]. (b) Responsivity of metal-SLG-Si and reference 

metal-Si PDs for a reverse bias ranging from 0 to –3 V (reference metal-Si device is used to demonstrate the key role of 

graphene). Solid lines show a fit of the bias dependent responsivity based on combined TFE and avalanche multiplication 
processes.
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tor characteristic. The thin film graphene/MoS
2
 junction was deposited on an oxidized 

silicon substrate. Few layers of MoS
2
 were deposited by a combined sputtering-CVD tech-

nique, while graphene was synthesized by a CVD process. The authors show a Schottky 
barrier of 0.139 eV, and the spectral responsivity when the energy photon is higher (hν > 

EgMoS2) and lower (hν < EgMoS2) than MoS
2
 bandgap (EgMoS2) was experimentally measured at 

−2 V of reverse bias applied. In particular, author shows that when hν > EgMoS2 a maximum 

responsivity of 0.52 A/W is observed at 590 nm, on the other hand, beyond 670 nm where 
hν < EgMoS2, the photo-current is due to IPE from the graphene to the MoS

2
. In this last case, 

a maximum responsivity and noise equivalent power (NEP) of 1.26 A/W and 7.8 × 10−12 

W/√Hz were respectively reported at 1440 nm and −2 V. Measured dark current is about 
300 μA at −2 V.

6. Conclusions

In this work, an overview of recent advances in the field of the near-infrared silicon pho-

todetectors based on the internal photoemission effect has been presented. Firstly, we 
have described the detection mechanisms of the devices especially in light of the models 

proposed in the recent literature. Thereafter, a quantitative comparison of the state-of-

the-art IPE-based silicon PDs including Si nanoparticles, metal stripes supporting SPPs, 
antennas, metallic gratings, and two-dimensional materials has been given and summa-

rized in Table 1.

Device Device type Size Responsivity Bandwidth Dark current/dark 
current density

Casalino et al. [44] Surface-illuminated

Fabry-Perot 
microcavity

100-μm-thick 

silicon cavity

0.063 mA/W 
@1550 nm

(−0.1 V)

GHz range 

estimated

3.5 mA

(−1 V)

Desiatov et al. [45] Surface-illuminated

Si pyramids

Pyramid apex 

~50 nm

5 mA/W @ 1550 
nm

12 mA/W @ 1300 
nm

30 mA/W @ 1064 
nm (−0.1 V)

– 80 nA
(−0.1 V)

Casalino et al [50] Waveguide Active area ~3 

μm2

4.5 mA/W @ 
1550 nm (−21 V)

1 GHz 2.2 nA

(−21 V)

Berini et al. [18] Au strip supporting 

SPPs

Asymmetric 

1.5-μm-wide 

40-μm-long 

40-nm-thick strip

0.942 mA/W @ 
1310 nm

0.941 mA/W @ 
1550 nm

(−0.1 V)

– 0.3 μA

(−0.45 V)

Goykhman et al. 

[60]

Nanoscale bus 

waveguide

Al active area 

0.32 μm × 1 μm

12.5 mA W @ 
1550 nm

(−0.1 V)

– 30 nA

(−0.1 V)
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The most part of IPE-based PDs have been realized for operation at telecom wavelengths, in 
particular at 1550 nm, and are characterized by a large GHz bandwidth thanks to the  unipolar 

nature of the Schottky junction. In addition, a low dark current to the nA range has been 
obtained thanks to the use of plasmonic structures allowing strong absorption in a small 

metal layer in contact with silicon.

Historically, the main drawback of the IPE-based PDs is their external responsivity limited 
to the mA/W range at room temperature; this work put in evidence that taking advantage 
of both the integration of two-dimensional materials with silicon and plasmonic struc-

tures, a responsivity in the A/W range can be obtained. These values are comparable with 

the well-established near-infrared technologies based on germanium and III–V semicon-

ductors and open the path to the investigation of more complex structures that can make 

the IPE-based Si Schottky PDs very promising to play a key role for telecommunications.

Device Device type Size Responsivity Bandwidth Dark current/dark 
current density

Zhu et al. [20] NPs supporting 

LPSR

Few nm NPs 30 mA/W @ 1550 
nm

(−5 V for TE 
polarization)

6 GHz 2.84 A/cm2

(−5 V)

Knight et al. [22] 15 × 20 matrix of 

Au nanoantennas

30-nm-height 

50-nm-width 

nanoantenna

10 μA/W @ 1250 
nm 3 μA/W @ 
1550 nm

(No bias)

– –

Sobhani et al. [21] Au grating based 

on EOT
Different grating 
geometries (few 

hundreds of 

nanometers)

0.6 mA/W @ 
1300 nm 0.47 

mA/W @ 1500
(No bias)

– –

Nazirzadeh et al. 

[68]

Au nanoisland – 2 mA/W @ 1300 
nm (450°C)

0.6 mA/W @ 
1500 nm (300°C)

– 30 μA

(450°C) 100 μA 

(−300°C)
both –1 V

Muehlbr et al. [69] Si waveguide with 

metallizedsidewalls 

(PIPED)

Asymmetric 

Au-Si-Ti

75-nm-wide

5-μm-long

300-nm-thick

0.126 A/W @ 
1550 nm

(3.25 V)

40 GHz (200 

nm–wide 20 

μm-long)

Amirmaz et al. [23] Surface-illuminated 

graphene/Si

– 9.9 mA/W @ 
1550 nm

(−16 V)

– 2.4 μA

(−16 V)

Goykhman et al. 

[74]

Graphene 

integrated with a 

rib SOI waveguide

PD length ~5 μm 

Si waveguide 

width ~310nm

0.37 A/W @ 1550 
nm

(−3 V)

– 20 nA

(−1 V)

Vabbina et al. [77] Graphene/MoS
2
 

Schottky PD on 
oxidized Si

– 1.26 A/W @ 
~1550 nm

(−2 V)

– 300 μA

(−2 V)

Table 1. Summary of selected IPE-based Si PDs at NIR wavelengths published since 2010.
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