
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4

Carbohydrate Analysis by NIRS-Chemometrics

Mercedes G. López,

Ana Sarahí García-González and

Elena Franco-Robles

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67208

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Mercedes G. López, 
Ana Sarahí García-González and 
Elena Franco-Robles

Additional information is available at the end of the chapter

Abstract

Near-infrared spectroscopy (NIRS) is a high-throughput, low-cost, solvent-free, and 
nondestructive analytical tool. Chemometrics is the science that employs statistical and 
mathematical methods to explain near-infrared spectra; it has been proven that when 
they are coupled, their effectiveness highly improved in-depth carbohydrate charac-
terization. This chapter focuses on the fundamentals of near-infrared spectroscopy in 
the study of carbohydrates, as well as the application of partial least squares regression 
(PLSR) and principal component analysis (PCA), as the most useful chemometric tech-
niques involved in carbohydrate analysis. The theoretical aspects and practical applica-
tions starting from simple to complex carbohydrates mixtures are covered. Indeed, the 
contributions from different fields extend the implementation of near-infrared spectros-
copy from industrial quality control to scientific research.

Keywords: near-infrared spectroscopy, chemometrics, carbohydrates, polysaccharides, 

partial least squares regression, principal component analysis

1. Introduction

In a vibrational spectroscopy, near-infrared spectroscopy (NIRS) covers the transition from 

the visible spectral range to the mid-infrared region. The NIR spectral region ranges from 

800 to 2500 nm (12,500–4000 cm−1) with absorptions representing overtones and combina-

tions mainly associated with –CH, –OH, –NH, and –SH functional groups [1]. NIR spectros-

copy in combination with chemometric analyses can provide unique information in a wide 

field of applications from life sciences to environmental issues. It is more frequently used in 
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the agricultural field [2–5], in particular, on the elucidation of nonstructural carbohydrates 

(NSCs) of plants. NSCs are products of the photosynthesis, providing substrates for growth 

and metabolism and can be stored by the plant playing a central role in the plant response to 

the environment [6, 7]. This type of carbohydrates is classified into monosaccharides (glucose 
and fructose), disaccharides (sucrose), polysaccharides (starch and fructans), oligosaccha-

rides (raffinose), and sugar alcohols (inositol, sorbitol, and mannitol) [8, 9].

NIR spectroscopy is widely used to follow the chemical, physical, technological, or physi-

ological processes that affect the structure and composition of carbohydrates found in many 
different organisms [10]. The success of this technique relies on the rapid and nondestructive 

analysis of the sample without the use of chemicals [11]. In addition, the data can be analyzed 

with chemometric methods. In this regard, partial least squares regression (PLSR) and princi-

pal component analysis (PCA) are two of the most recognized statistical methods that can be 

used to build NIR-chemometric models. PLSR is a well-established method for multivariate 

modeling and calibration [12]. Meanwhile, PCA analyzes data tables representing observa-

tions described by several dependent variables, which are, in general, intercorrelated [13].

The objective of this chapter is to give a comprehensive overview of NIR spectroscopy for 

analyzing carbohydrates, such as glucose, fructose, sucrose, and fructans. In addition, we 

describe NIR spectroscopy and multivariate methods used to identify, classify, and quan-

tify carbohydrates in plant tissues. Furthermore, we present the main applications of NIR-

chemometrics on carbohydrate analyses.

2. NIR spectra: characteristic bands of oligosaccharide and polysaccharide

The term “near” in NIR relies on the position of the electromagnetic energy lying next to or 

near the visible energy range. Molecular vibrations in the middle infrared (MIR) range cover 

absorptions bands between 2500 and 25,000 nm (4000 and 400 cm−1) representing the most 

intense and simplest bands in the whole infrared range, whereas NIR bands arise in the inter-

val between 800 and 2500 nm (12,500 and 4000 cm−1) covering absorptions corresponding to 

overtones and combinations of fundamental vibrations [14]. NIR spectroscopy is concerned 

with both  electronic and vibrational transitions [1]. Bands due to electronic transitions are 

observed in the NIR region and in general are presented as weak bands. Moreover, bands 

arising from overtones and combination modes are so-called forbidden transitions. Starting 

from the diatomic molecule as the simplest vibrating system, described by the harmonic and 

anharmonic oscillator, the study of more complex substances is referred to as polyatomic 

molecules [14].

The NIR region can be divided into three regions. Region I spans from 800 to 1200 nm (12,500–

8500 cm−1), also known as the “the short-wave NIR region (SWNIR),” “near-NIR region 

(NNIR),” or “the Herschel region,” represents bands resulting from electronic transitions, 

overtones, and combinations modes. Region II ranges from 1200 to 1800 nm (8500–5500 cm−1) 

and covers first overtones of XH (X = C, O, N), stretching vibrations and various types of com-

bination modes. Finally, Region III (1800–2500 nm or 5500–4000 cm−1) is a combination mode 

region. Many applications utilize Regions II and III [1].
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Absorptions due to different functional groups, especially –CH, –OH, and –NH, are displayed 
as molecular overtones and combination vibrations at specific wavebands [15, 16]. NIR spectral 

data are influenced by a particle size (e.g., ground or powder) and need to be properly cali-
brated [17]. In Table 1, the characteristic bands of oligosaccharide and polysaccharide are listed.

NIRS has been used as a fingerprint technique for all kinds of samples (liquids, solids, and 
semisolids), independently of their nature, relatively simple substances or pure compounds, 

most times they show broad and overlapping bands, it is impossible to correctly assign the 

specifically vibrations, and cannot be used for structural determination of a sample [18].

3. Multivariate data analysis by NIRS

NIR spectra are characterized for their complexity and difficulty to be interpreted. For these 
reasons, multivariate methods from chemometrics are required to understand NIR spectra.

Chemometrics comprise the development and use of mathematical and statistical methods 

for applications in chemistry. As a discipline, the aim of chemometrics is to provide methods 

to extract relevant chemical information out of measured chemical data in order to represent 

and display this information.

Carbohydrate type Waveband Wavenumber Reference

nm cm−1

Glucose OH stretch 1st overtone 2340, 2255, 2150, 2085, 

1902, 1730, 1590, 1520, 

1385, 1195

4274, 4435, 4651, 4796, 

5258, 5780, 6289, 6579, 

7220, 8368

[19]

Glucose OH stretch/OH bend 1688 5924 [20]

Sucrose OH stretch 1st overtone 1433 6978 [20]

Sucrose/glucose/fructose OH combination 1928 5186 [21]

Sucrose/glucose/fructose OH stretch/CO stretch 

combination

2123–2200 4710–4717 [22]

Crystalline sucrose OH stretch 1st overtone 1443–1440 6930–6944 [23, 24]

Polysaccharides CH stretch/CH 

deformation combination

2328 4295 [25]

Polysaccharides OH stretch/CO stretch 

combination

2274, 2271–2270 4398, 4403–4405 [22, 25]

Polysaccharides OH combination 2090 4785 [25]

Polysaccharides OH stretch/OH bend 1920 5208 [25]

Polysaccharides CH combination/CH 1st 

overtone

2328, 2270, 2078, 1920, 

1587–1583

4295, 4405, 4813, 5208, 

6300–6317

[19, 22]

Polysaccharides OH stretch 1st overtone 1437–1389 6960–7200 [26–29]

Table 1. Characteristic bands of oligosaccharide and polysaccharide.
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Figure 1 shows a general scheme for multivariate techniques, including the two different 
chemometric groups that are frequently employed in the NIR spectra analysis: the qualita-

tive (classification) methods and the quantitative (regression) methods. As a first step, before 
choosing any method, usually NIR spectra are preprocessed with mathematical treatments, 

such as baseline correction, normalizations, derivatives, and smoothing, in order to enhance 

the relevant information and reduce the influence of side information contained in the spectra. 
The classification methods are used to group or separate the samples according to their spec-

tra. The regression methods correlate the spectrum to quantifiable properties of the samples.

3.1. Quantitative analysis

The basic principles used for quantitative analysis are fundamentally invariable for all optical 

and spectral measurement methods. The principle behind any quantitative analysis is that 

the desired quantity, property, parameter, or compound can be determined from the sig-

nal obtained by an instrument, and this signal differs in a predictable manner for a given 
experimental system. The magnitude of the signal obtained can be correlated, directly or 

by mathematical algorithms, to the target characteristic properties of a sample. A common 

implementation of quantitative analysis is the determination of the concentration of a given 

analyte. For most applications, an attempt is made to linearize the relationship between the 
analyte and the instrument response, although this is not essential if a well-defined math-

ematical relationship can be established. This leads to the generation of a calibration from a 

characterized standard set (references) with the objective to construct a prediction model for 

a group of samples (Figure 2) [30].

Many successful NIRS analysis have been performed using PLSR as a quantitative chemomet-

ric technique. Its usefulness derives from its potential to analyze data with numerous, noisy, 

collinear, and even incomplete variables. By establishing a linear relationship between two 

Figure 1. General scheme showing the commonly multivariate techniques employed by NIR spectroscopy.
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data matrices, the spectral data X and the reference values Y, through a linear multivariate 
model, the PLSR technique finds out the variables in the X matrix that will best define the Y 
matrix. In other words, it represents the NIR spectra in the space of wavelengths in order to 

display directions that will be linear combinations of wavelengths called factors that describe 

the studied property [31, 32].

3.2. Qualitative analysis

Qualitative analyses are used for the classification of samples in accordance with their NIR 
spectra. Two general approaches can be used for qualitative classification: the unsupervised 
and the supervised methods. In the first approach, samples are classified lacking preceding 
knowledge, except the spectra. On the other hand, supervised methods require a prior knowl-

edge of the sample, for instance, a category membership, generating a classification model 
with a training set of samples with well-established categories. The obtained model perfor-

mance is evaluated by relating the classification predictions to the well-known categories of 
the validation samples [33].

Principal component analysis (PCA) is one of the most popular classification methods utilized 
in life sciences. PCA is used to visualize the most important information from a given data. 

One of the most significant advantages of PCA application is the reduction of the number of 
variables (scores), allowing the representation of a multivariate data table in a small dimen-

sional area. Its purpose is to obtain significant information from the NIR spectra to express 
it as a set of new orthogonal variables called principal components (PC). The first principal 
component (PC1) defines the maximum variability scattered within the samples. A second 
principal component (PC2), uncorrelated and orthogonal to the first principal component, 

Figure 2. Scheme for the construction of a quantitative model.
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explains the maximum variability not described by the first component, this behavior con-

tinues with the next principal component (PC3), and so on [12]. Thereby, a display pattern of 
similarity of the variables as points in maps is created.

4. Applications of carbohydrates analysis by NIRS

The near-infrared spectroscopy (NIRS) is a technique that allows the measurement of car-

bohydrates in a wide variety of samples. Nowadays, NIRS-chemometrics have proven their 

effectiveness for both qualitative and quantitative carbohydrate analysis. NIRS has several 
advantages such as allowing the sample remains intact after analysis and giving access to 

multiple chemical as well as physical properties at the same time [34].

NIR spectroscopy is generally chosen for its high-throughput screening, reduced sample prep-

aration, low cost, and the nondestructive nature toward the analyzed sample [14]. However, 

establishing a suitable calibration demands a big effort and requires reference values for each 
sample, which makes it time-consuming and costly at the beginning [35].

In the agrifood sector, the potential of NIRS have been widely investigated, this is a very 

powerful tool that provides meaningful information about internal and external properties of 

fruits, such as sugar content, total acidity, pH, soluble solid content, dry matter, firmness, and 
bruises, to mention some [36]. Moreover, NIRS can be applied to a wide variety of problems 

such as determination of particle size [38], determination of the best harvesting time [37], and 

investigation of geographical origin of foods such as apples, meat, and cheese [39].

However, and particularly to specific sugar content, NIRS in combination with PLSR models 
has been used in sorghum stalks [40] and sweet sorghum (cellulose, lignin, and hemicellu-

lose) [41], fruit juices [42, 43], rice (amylose) [44], whey (lactose) [45], grasses (fructans) [46, 

47], maize (nonstructural and water soluble carbohydrates) [48], intact apple fruit to determi-

nate fructose, glucose, and sucrose [49], orange [50], apricot [51], sugar beet [52], cherries [53], 

and other fruits (Table 2). All these studies accorded that the performance of NIR spectros-

copy is comparable to the reference chromatographic method, but the former is much faster 

and easier to carry out.

On the other hand, NIRS has been applied on food quality evaluation; it is often used to check 

if fruits or vegetables are green or rotten to detect surface defects. NIRS is also employed 
to check sugar concentrations, for instance, not only in apples [64], oranges [55, 56], mango 

[65], kiwifruits [57], sugar beet [54], peaches [66], jujube [67], onion [68], potato tubers [58], 

Nules Clementine [62], passion fruit [69], but also in fruit juices [43], wine [59], or cakes [60] 

(Table 2). Additionally, it has been used in breadstuff, dairy products, meat, vegetables, and 
fish products and in processed food to provide information about overtones and their combi-
nations [70]. Moreover, studies have been performed to demonstrate that NIRS-chemometric 

analyses are of greater predictive value than mid-infrared data. In Chinese yams, Zhuang 

et al. [63] analyzed with NIR and MIR spectroscopy, the authors concluded that reasonable 

results were obtained using both spectral data sets and methods, but that NIR-chemometric 

data derived better prediction models.
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In respect to specific absorption peaks, sugar analyses have been carried out in fruit juices 
establishing that NIRS can deal with the distortions due to water clusters [20–22, 42].

NIR techniques have also been applied to measure biomass composition, especially on the 

presence of structural carbohydrates. The National Renewable Energy Laboratory (NREL) 

reported sorghum composition prediction models for glycan, xylan, lignin, starch, extrac-

tives, and ash [71].

NIR spectroscopy is not only useful in laboratory measurements sites but also applicable to 

online and field studies. The study of 116 syrup samples to compare a portable spectrometer 
and a benchtop device showed that the reduced wavelength range and reduced resolution 

of the portable device is sufficient to receive calibrations with R2 ≥ 0.96 for standard syrups 
with comparable standard error of prediction (SEP) values of 1.30 g/100 g versus 1.19 g/100 

g, 0.94 g/100 g versus 0.99 g/100 g, and 2.04 g/100 g versus 2.46 g/100 g for glucose, fructose, 

and sucrose, respectively, to the handheld device [61]. The developed method is suitable to be 

implemented for quality control in the producing industry as well as in grocery stores.

A relevant novel application of the predictive models, particularly of the direct NIR predic-

tion on diverse parameters on fruit quality was demonstrated. In Ref. [50], the authors com-

Sample Carbohydrate Analysis Reference

Grain sorghum stalks Sucrose, glucose PLSR [41]

Fruit juices Glucose, fructose, sucrose PLSR, PCA [43, 44]

Rice Amylose mPLSs [45]

Whey Lactose PLS [46]

Grasses Fructan PLSR [47, 48]

Apple fruit Glucose, fructose, sucrose PLS [50]

Sugar beet Sucrose SEPs [53, 55]

Cherries Total carbohydrates PLSR [54]

Oranges Glucose, fructose, sucrose PLSR [56, 57]

Kiwifruit Glucose, fructose, sucrose PLS [58]

Potato Glucose, fructose PLSR [59]

Wine Glucose PLSR, PCR [60]

Cakes Sucrose MLR [61]

Syrup Glucose, fructose, sucrose PLSR [62]

Nules Clementine Glucose, fructose, sucrose 

total carbohydrates

PLS, PCR [63]

Chinese yams Total carbohydrates PLS, PCA, LS-SVM [64]

mPLSs, various modified partial least square; PLS, partial least square; SEPs, standard errors of prediction; MLR, 
multiple linear regressions; and LS-SVM, least squares-support vector machine.

Table 2. Samples analyzed by NIR in a carbohydrate study.

Carbohydrate Analysis by NIRS-Chemometrics
http://dx.doi.org/10.5772/67208

87



pared two commercial portable spectrometers (Vis/NIR spectrometer versus OTF-NIR) for 

four orange varieties quality: soluble solids content, acidity, titratable acidity, maturity index, 

flesh firmness, juice volume, fruit weight, rind weight, juice volume to fruit weight ratio, 
fruit color index, and juice color index, and they found relevant the prediction of maturity 

index. The Lab spec spectrometer showed better predictive performance than the laminar 
instrument.

In another study, a Lab spec Pro portable spectrophotometer to conduct an online classifica-

tion of beef tenderness was also successful [72].

In sugar-flour mixtures, NIR spectroscopy displayed proper results on the characteristic 
absorption bands of sugars, which are 1200 nm (8333 cm−1), 1437 nm (6959 cm−1), 2074 nm 

(4822 cm−1), and 2320 nm (4310 cm−1). However, it was not possible to distinguish various sorts 

of sugars, for instance, make a difference between the sucrose of the powdered sugar and the 
numerous carbohydrates present in the flour. Nevertheless, the identification of specific sig-

natures of sugars can be very useful for rapid detection in the industrial sector [73].

Honey represents another class of samples that have proven the effectiveness of a NIR analysis 
[74]. In a study on Galicia honeys with protected geographical indication (PGI), the samples 

were processed by different chemometric methods to develop an authentication system spe-

cific to this type of honey. In this work, fifteen Galicia certificated PGI honeys were differenti-
ated from other fifteen commercial available honeys by PCA, demonstrating that a single and 
fast chemometric method could be used to indicate the genuineness of Galicia PGI samples. 

Figure 3A shows the NIR spectra of all the analyzed samples and Figure 3B, illustrates the 

discrimination of Galicia PGI honeys from the other samples by the PCA plot.

Similarity, the potential use of NIR-PCA analysis to monitor sugar adulteration in onion 

powders was assessed through a detailed examination of the feasibility of quantification 
of cornstarch as an adulterating ingredient in onion powders [75]. Spectral analysis of 18 

concentrations of starch in 180 onion powders, ranging from 0 to 35%, was conducted. The 

NIR spectra of the pure and adulterated onion powders (Figure 4A) reveal differences in 

Figure 3. (A) NIR spectra of honey samples. (B) Score plot of the honey samples in the space defined by the first two 
principal components. Adapted from Ref. [74].
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the absorption intensities between 1920 (5208 cm−1) and 1980 nm (5051 cm−1). The absorp-

tion bands in these regions correspond to the O–H stretch and O–H band combination and 

the H–O–H deformation combination, which represents the starch content. The spectral fluc-

tuations from 1400 (7143 cm−1) to 1600 nm (6250 cm−1) correspond to the first overtone of the 
hydroxyl group. The precise position of these bands is very sensitive to hydrogen bonding 

in the starch molecule, causing a difference between genuine and adulterated samples. The 
application of PCA (Figure 4B) resulted in a data grouping of each of the different concentra-

tions used, working as a discriminative screening tool of authentic and adulated samples.

Applications of NIRS have been developed also in the nutrition and health fields. NIR and 
MIR spectroscopy measurements and multivariate calibration methods based on partial least 

square regression have been used in a determination of fat, proteins, carbohydrates, and 

energy values in baby food, infant fast food, and canteen menus, with a simple, fast, and good 

predictive capabilities [70]. Another great diagnostic application is the measurement of blood 

glucose [1].

Finally, another notable capacity of NIRS was the prediction of carbohydrates concentrations, 

and distribution, leading to high ratio of performance to deviation (RPD) values, reducing 

the use of chemicals and working time, confirming that this makes a suitable technique of 
industry applications [61].

5. Conclusions

The potential of NIR spectroscopy in combination with chemometrics on carbohydrate analy-

sis has been fully demonstrated. NIR is a powerful technique to study carbohydrates com-

position, type, and levels. This method can be used qualitatively and quantitative to detect, 

identify, and qualify carbohydrates. These unique capabilities enable the employment of NIR-

chemometric in numerous applications: from state-of-the-art scientific experiments to on-line 
industrial processing control.

Figure 4. (A) Original NIR spectra of pure onion and starch onion mixtures at different concentrations. (B) Principal 
component score plot for the first three PCs for discrimination among different adulteration concentrations in onion 
powder. Adapted from Ref. [75].
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