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Abstract

Industrial wastewater contaminated with toxic heavy metals is a big ecological and envi-
ronmental problem. Applying biological materials to effectively remove and recover
heavy metals from contaminated wastewaters has gained importance as promising alter-
native to conventional treatment techniques. Thus, the objective of the presented paper is
the investigation of the capability of microorganisms, isolated from polluted (metal-laden)
soil, to biosorb toxic metals from aqueous solutions. Biosorption process for heavy metal
removal was conducted in a new pilot scale horizontal rotating tubular bioreactor (HRTB).
This bioreactor provides conditions for microorganism’s growth in a form of suspended
cells and biofilm. Biofilm is capable to protect microorganisms from interaction with toxic
metals in the surrounding environment. Three metals were selected as model examples:
cations of manganese and cobalt and hexavalent chromium (an oxyanion). Optimized
bioreactor conditions, namely, medium inflow rate (F) and bioreactor rotation speed (n)
for biofilm formation and metal removal were monitored, and under optimized bioreactor
conditions, promising results were obtained.

Keywords: heavy metals, mixed microbial culture, biosorption, biofilm, horizontal
rotating tubular bioreactor

1. Introduction

Heavy metal’s wastewater pollution has always been a very serious problem because these

elements are not biodegradable and can accumulate in living tissues causing serious health

effects [1]. Heavy metals are introduced into the natural environment through many industrial

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



processes including leather tanning, wood preservation, metal plating, mining operations,

chloralkali, radiator manufacturing, smelting, alloy industries, storage batteries, and automo-

bile manufacturing [2]. Since the early 1970s, there has been growing concern over the effect of

heavy metals on humans and aquatic ecosystems [3]. The Agency for Toxic Substances and

Disease Registry (ATSDR) classifies nickel as a human carcinogen based on its chronic and

subchronic effects [4]. Iron and copper can cause stomach and intestinal distress, liver and

kidney damage, and anemia. Zinc may cause anemia, damage the pancreas, and decrease

levels of high-density lipoprotein (HDL) cholesterol [5].

There are many conventional methods (physical and chemical) for heavy metal removal, but in

general, they result with much waste which is hard to treat. In addition, several widely applied

processes such as ion exchange, membrane technologies, and adsorption are very expensive

processes when used for large quantities of wastewater which contain low concentrations of

heavy metals [6]. Heavy metals may be removed from water as an insoluble soil by the

chemical process of precipitation, respectively. However, chemical treatment of heavy metals

generates environmentally hazardous chemical byproducts. Additionally, chemical treatment

requires constant adjustment of pH value to a narrow range for optimal heavy metal removal,

thereby increasing the labor input and cost [7].

As an alternative, different biochemical methods can be applied because they do not destroy

metals, but concentrate and immobilize them [8]. Biosorption is removal of metals and their

complexes from samples by biological materials [9]. Bioadsorbens can efficiently remove heavy

metals from solutions with low concentration; therefore, they are ideal adsorptive media for

wastewaters with low concentrations of metal ions. Microbial metal accumulation has received

much attention during recent years, due to the potential use of microorganisms for treatment of

metal-polluted water or wastewater streams. Recently, several bacterial species have been identi-

fied to remove toxic heavy metals [10, 11]. Biosorption can be performed on live or dead

microorganisms, as well as on their parts or extracellular products and microorganism aggrega-

tions on the surfaces in the structures called biofilm. Biofilm application in the biosorption

showed great potential in the wastewater treatment systems. Different types of bioreactor sys-

tems such as trickling filters, fluidized or packed bed bioreactors, and thin layer or biodisc

reactors were implemented for biofilm formation and wastewater treatment [12–14]. Horizontal

rotating tubular bioreactor (HRTB) was designed as combination of a thin layer [15, 16] and

biodisc reactor [17] with construction abilities for successful biofilm formation. Consequently,

bioreactor interior is equipped with o-shaped partitional walls which provide area for biofilm

formation. Wide investigation of HRTB mixing properties was previously done [18–22], and

aerobic and anaerobic bioprocesses were successfully conducted. As a model of anaerobic

bioprocess, fermentative glucose conversion was chosen [23]. Acetate removal withmixedmicro-

bial culture was selected as a model bioprocess for study of HRTB performance in aerobic

condition [24]. As combination of aerobic and anaerobic bioprocesses, nitrification and denitrifi-

cation were done in two consecutive steps in the same bioreactor vessel [25].

In this investigation HRTB was used for native mixed microbial biofilm formation and investi-

gation of developed biofilm biosorption abilities. In the biosorption experiments, artificial waste-

water with heavy metal ions Co(II), Cr(VI), and Mn(II) was applied as representative example of
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textile industry wastewaters. Observed results showed significant potential of developed mixed

microbial culture biofilm to successfully remove toxic heavy metals in applied bioreactor.

2. Material and methods

2.1. Microorganism, medium, and growth conditions

Mixed microbial culture was isolated from surface sediments sampled in the Kaštela bay—

industrial area located near town Split, at the Croatia Adriatic coast. Isolation was done from

5 g of soil samples. Samples were resuspended in Erlenmeyer flasks with different contents of

heavy metals in feeding medium (Table 1) and cultivated 48 h at 23 � 1�C. Rotation speed

during cultivation was 150 rpm. After 48 h flat plates were inoculated with 1 mL sample from

each flask. Medium content used for flat plate cultivation was the same as shown in Table 1

with 20 g/L of agar. Viable cells were determined as colony-forming units (CFU 1/mL). The

number of colonies was counted after 48 h at 23 � 1�C. Only medium 1 provided satisfied

condition for microorganism colony forming. Therefore, this medium was used for cultivation

in tank bioreactor and HRTB. In this research, the medium was sterilized at 121�C for 20 min.

2.2. Characteristics and experimental setup of the bioreactor

The HRTB is a stainless steel tube with 2.0 m length and 0.25 m diameter. O-ring–shaped

partition walls (inner diameter 0.19 m) divide its interior in a 0.02 m long section. The liquid

volume of the bioreactor was 15 L. In order to enable rotation of the entire reactor, the HRTB is

horizontally placed on appropriate bearings. The aeration was performed via the central tube

fixed in the bioreactor’s axis. Improvement of the aeration was obtained by submerging the

aeration tube on five positions along the HRTB. For all experimental works, the airflow rate was

152 L h�1. In Figure 1 the sampling systems for broth and biofilm are shown, being places at

Content (g L�1) Medium 1 Medium 2 Medium 3 Medium 4

Glucose 10.00 10.00 10.00 10.00

Yeast extract 3.00 3.00 3.00 3.00

Tripton 3.00 3.00 3.00 3.00

CuSO4�5H2O – 0.49 0.49 0.49

ZnSO4�7H2O – 0.55 – 0.55

CoCl2�6H2O 0.51 0.50 0.50 0.50

FeSO4�7H2O – 0.62 0.62 0.62

MnSO4�H2O 0.39 – 0.39 0.39

NiSO4�6H2O 0.56 – 0.56 0.56

K2Cr2O7 0.20 0.20 – 0.20

C4H6O4Pb�3H2O – – 0.23 0.23

Table 1. Contents of feeding medium used during microorganism isolation from soil samples.
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0.40 m intervals. On the cover of the sampling place, a flat plate (0.02 · 0.02 m) is fixed as device

for biofilm thickness measurement.

Batch cultivation in a stirred tank bioreactor is used to obtain the suspended bacterial biomass

(7.5 L) needed for inoculating the HRTB. The feeding process was started after 24 h at a rate

of 1 L h�1 and a rotation speed of the HRTB of 10 min�1. A stable biofilm in the bioreactor is

available after 15 days,which is considered as ready to start the experimentswithdifferent param-

eter variations, such as medium inflow rate (0.5, 1.0, and 2.0 L h�1) and bioreactor rotation speed

(5, 15, and 30min�1). The dynamics of the bioprocess inHRTBwasmonitoredbywithdrawing the

samples fromfivepositionsalongthebioreactor lengthafter five residencetimessince thenewsetof

processparameterswasestablished.Thebioreactorwasoperatedundera constant influentglucose

concentration 10 g L�1 and metal ion concentration Co2+ = 0.125 g L�1, Mn2+ = 0.125 g L�1, and

Cr6+=0.125gL�1.

Since it was known in previous studies that bioreactor rotation speed higher than 30 min�1

leads to intensive biofilm detachment [23, 25], no higher speed are tested in the current

investigation. Experiments with varying bioreactor rotation speed are carried out prior to

changes of medium inflow rate, since the latter have exhibited higher effects on the bioprocess

dynamics and the biofilm stability [23, 24, 26, 27].

Figure 1. Schematic diagram of HRTB and the inner structure of HRTB with O-ring-shaped partition walls.
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2.3. Analytical methods

Biomass concentration in suspension was determined by centrifuging the culture medium of

35 mL for 20 min at 4500 rpm (3629 g), washing twice with demineralized water and then

drying at 105�C/48 h. Supernatants were used for determination of Co2+, Mn2+, and Cr6+ (UV-

Vis spectrophotometrical method by Fries and Getrost) [28]. All determinations were done in

triplicates.

Inductively coupled plasma-mass spectrometry (ICP-MS) was used to quantify the metals in

biofilm and suspended biomass after acidic digestion. The spectrometer used had a GemCone

nebulizer, a cyclone spray chamber, and a standard one-piece extended torch with a quartz

injector tube. Each metal was quantified by measurements in triplicates at three different

wavelengths. The biofilm samples were mineralized using a closed microwave digestion

system. Each sample was digested with a mixture of 5 mL nitric acid, 1 mL hydrogen peroxide,

and 1 mL double-distilled water. The digestion was performed in five steps—3 min at 250 W,

1 min without power, 4.5 min at 250 W, 6 min at 650 W, and 5 min at 400 W—followed by a

ventilation time of 25 min.

The biofilm thickness was measured applying a modified Venkataraman and Ramanujam

method [29]: graphite powder was used instead of chalk powder. The projector was replaced

by a microscope with micrometric scale. In order to determine the mass of the biofilm, samples

were collected from the inner surface of HRTB, suspended in demineralized water, and twice

washed after centrifugation. Finally the biofilm samples were dried for 48 h at 105�C.

Suspended biomass sorption capacity (qx,L) was calculated as follows:

qx,L ¼

mM

mx,L
(1)

where mM mass of metal ion (mg) and mx.L is the dry weight of suspended biomass (g).

2.4. Mathematical model development

2.4.1. Diffusion process

The diffusivity of metal ion in water was estimated using the Wilke-Chang equation [30]:

Daq ¼ 7:4 � 10�8 ξaqMaq

� �1=2
T

VM
0:6ηaq

(2)

where Daq is the diffusion coefficient of metal ion in water (m2 s�1), ξ is the metal ion connecting

factor, VM is the metal ion molar volume (m3 mol�1), η is the water dynamic viscosity

(kg m�1 s�1), T is the temperature (K), andMaq is the water molecular mass (kg mol�1).

Metal ion relative diffusivity (fD) was computed from Horn-Morgenroth equation [31]:
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fD ¼ 1�
0:43cx, f

0:92

11:19þ 0:27cx, f
0:99

(3)

where cx,f is the biofilm density (kg m�3).

Effective diffusion coefficient of metal ion in biofilm was calculated using this correlation [32]:

Def ,M ¼ fDDaq (4)

where Def,M is the effective diffusion coefficient of metal ion in biofilm (m2 s�1).

Mass transport of all dissolved metal ions in biofilm follows Fick’s second law of molecular

diffusion:

Def ,M
∂
2cM, f

∂z2
¼

∂cM, f

∂t
(5)

where cM,f is the concentration of metal ion in biofilm phase (kg m�3), t is time (s), and z is

biofilm depth (m).

2.4.2. One-dimensional diffusion-bioadsorption model

In the dynamic equilibrium conditions, metal ion concentration in the biofilm is represented

conceptually as functions of biofilm depth z as shown in Figure 2C. Concentrations of metal

ion (cM,f) in biofilm phase are given by the second-order polynomial correlation:

cM, f zð Þ ¼ a0 þ a1zþ a2z
2 (6)

where a0, a1, and a2 are the second-order polynomial correlation coefficient and z is biofilm

depth coordinate (m).

Metal ion concentrations in the bulk liquid phase (cM,L) represent as constant values for each

ideal mixing segment (Figure 2B, C).

The biofilm zone is surrounded by the stagnant liquid layer of thickness Lg (Figure 2C). The

mass transfer coefficient (km) in the stagnant liquid layer was estimated by the correlation

[18, 19]:

km ¼ 0:664 Dtb=Lkð ÞReN
1=2Sc1=3 (7)

where LK is the wetted perimeter of bioreactor (0.254 m), Dtb = Daq is the diffusion coefficients

of metal ions in water (m2 h�1), Sc is Schmidt number, and ReN is Reynolds rotation number.

Schmidt number (Sc) was calculated from [33]

Sc ¼ ν=Dtb (8)

where ν is kinematic viscosity (m2 s�1).

Reynolds rotation number (ReN) of HRTB was calculated by following equation [18]:
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ReN ¼
DUPπnLKρ

2η
þ
DTΠnLKρ

2η
(9)

where DUP is the inner diameter of partition wall in HRTB (m), LK is wetted perimeter of

bioreactor (0.254 m), Π is the Ludolph’s number (3.14159), DT is the bioreactor diameter (m), n

is the bioreactor rotation speed (s�1), ρ is the broth density (kg m�3), and η is the dynamic

viscosity of broth (kg m�1 s�1).

Regarding to “spiral flow” mixing model [18, 19], based on the physical model which divided

the bioreactor into ideally mixed compartments (Figure 2A), mass balances of the heavy metal

ion for the first ideal mixing segment across the bulk liquid (Figure 2A, B) were

V1,1
L

dc1,1M,L

dt
¼ Fuc

0
M,L þ Fcrc

1,Ni
M,L þ Fpc

2,1
M,L � Fu þ Fp

� �

c1,1M,L � Fcrc
1,1
M,L � V1,1

L
r1,1M,L (10)

where c1,1M,L is liquid section metal ion concentrations in the first segment (Ni = 1) of the first

kaskade (Nl = 1) (kg m�3), c0M,L is inflow metal ion concentration (kg m�3), Fu is inflow

(m3 h�1), Fp is back flow (m3 h�1), Fcr is circulation flow (m3 h�1), rM,L
1,1 is liquid section

reaction rate in the first segment (Ni = 1) of first kaskade (Nl = 1) (kg m�3 h�1), VL
1,1 is liquid

section volume in the first segment (Ni = 1) of the first kaskade (Nl = 1) (m3), and c1,Ni
M,L is liquid

section metal ion concentrations in the Ni-segment of the first kaskade (kg m�3).

First ideal mixing segments of all cascades were represented in the model without biofilm zone

(Figure 2B). All other ideal mixing segments include biofilm zone (Figure 2C). Therefore, mass

Figure 2. Conceptual representation of metal biosorption in HRTB: (A) “spiral flow” mixing, (B) metal ion diffusion, and

(C) biosorption reaction.
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balances of the heavy metal ion were computed across the bulk liquid for the second ideal

mixing segment (Figure 2A, C) as follows:

V1,2
L

dc1,2M,L

dt
¼ Fcrc

1,1
M,L � Fcrc

1,2
M,L � S1,2km c1,2M,L � c1,2M, f Z¼0ð Þ

� �

� V1,2
L r1,2M,L (11)

where c1,2M,L is liquid section metal ion concentrations in the second segment (Ni = 2) of the first

kaskade (Nl = 1) (kg m�3), c1,2M, f Z¼0ð Þ is metal ion concentration in the second segment (Ni = 2) of

the first kaskade (Nl = 1) on the biofilm surface (kg m�3), VL
1,2 is liquid section volume in the

second segment (Ni = 2) of the first kaskade (Nl = 1) (m3), S1,2 is mass transfer surface in second

ideal mixing segment (Ni = 2) of the first kaskade (Nl = 1) (m2), and rM,L
1,2 is liquid section

reaction rate in the second segment (Ni = 2) of the first kaskade (Nl = 1) (kg m�3 h�1).

Liquid section volume in the ideal mixing segment (VL
Nl,Ni) was computed from the bioreactor

liquid volume using the following equation:

VNl,Ni
L ¼

VL

Nl �Ni
(12)

where VL
Nl,Ni is liquid section volume in the ideal mixing segment (m3), VL is liquid volume in

the HRTB (m3), Nl is the number of kaskades, and Ni is the number of ideal mixing segments.

Mass transfer surface in the ideal mixing segment (SNl,Ni) was computed from the inside

bioreactor surface using the following equation:

SNl,Ni ¼
S

Nl �Ni
(13)

where SNl,Ni is mass transfer surface in the ideal mixing segment (m2) and S is inside bioreactor

surface (m2).

Mass transport of all dissolved metal ions in biofilm is derived from Eq. (5) and equal to

reaction rate (r1,2M, f ):

Def ,M

∂2c1,2M, f

∂z2
¼ r1,2M, f (14)

The inner boundary conditions (at z = 0) at biofilm-liquid interface are given as

S1,2km c1,2M,L � c1,2M, f z¼0ð Þ

� �

¼ S1,2Def ,M

dc1,2M, f zð Þ

dz
z¼0j (15)

The outer boundary conditions (at z = Lf
1,2) at biofilm-bioreactor interface are given as

0 ¼
dc1,2M, f zð Þ

dz z¼L1,2
f

�

�

�

�

(16)

As mentioned before, concentrations of the metal ion in the biofilm are represented with
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second-order polynomial correlation [Eq. (6)]. Assuming dynamic equilibrium conditions at

time (t) model were derived from mass balances equation [Eqs. (11), (14), (15)] and second-

order polynomial correlation for metal ion concentration [Eq. (6)], taken across biofilm zone

vertical to the biofilm surface [Eqs. (17)–(20) below]:

Bulk liquid section:

0 ¼ Fcrc
1,1
M,L � Fcrc

1,2
M,L � S1,2km c1,2M,L � a1,20

� �

� V1,2
L

r1,2M,L (17)

Biofilm zone:

Def ,M2a
1,2
2 ¼ r1,2M, f (18)

The inner boundary conditions (at z = 0):

�
km

Def ,M
c1,2M,L � a1,20

� �

¼ a1,21 (19)

The outer boundary conditions (at z = Lf
1,2):

a1,21 ¼ �2a1,22 L1,2f (20)

where a1,20 , a1,21 , and a1,22 are the second-order polynomial correlation coefficient in the second

segment (Ni = 2) of the first kaskade (Nl = 1); Lf
1,2 biofilm thickness in the second segment

(Ni = 2) of the first kaskade (Nl = 1) (m); VL
1,2 is liquid section volume in the second segment

(Ni = 2) of the first kaskade (Nl = 1) (m3); and rM,L
1,2 is liquid section reaction rate in the second

segment (Ni = 2) of the first kaskade (Nl = 1) (kg m�3 h�1).

Adjusting mass balances and reaction rates for all ideal mixing segments according to Figure 2,

system of the differential equations was developed for heavy metal ion concentration changes

along HRTB.

2.4.3. Bioadsorption kinetic model

Mass balance equations were coupled to the reaction rate terms in the liquid section (rM,L) and

in the biofilm zone (rM,f) based on the Freundlich adsorption isotherm. Instead kinetic terms

heavy metal removal was changed with bioadsorption model [34] [Eqs. (21), (22)]:

qx,L ¼ KF cM,Lð Þ1=h (21)

qx, f ¼ KF cM, f

� �1=h
(22)

were qx,L is suspended biomass adsorption capacity (mg g�1), qx,f is biofilm adsorption capac-

ity (mg g�1), and KF and h are Freundlich isotherm constant.

Bioadsorption model for biofilm zone was derived from Freundlich equation [Eq. (22)] and

second-order polynomial correlation for metal ion biofilm concentration [Eq. (6)]:
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qx, f ¼ KF a0 þ a1zi þ a2 zið Þ2
h i1=h

(23)

where zi is collocation point across biofilm zone parallel to the substratum surface.

Assuming the collocation point zi = Lf/b where b ∈ N(+) bioadsorption model are defined as

follows:

qx, f ¼ KF a0 þ a1
Lf

b
þ a2

Lf

b

� �2
" #1=h

(24)

The kinetic model assumes that reaction rate is the function of biomass concentration in the

liquid section (cx,L) and in the biofilm zone (cx,f) [Eqs. (25), (26) below]:

rM,L ¼
cx,Lqx,L

τ

(25)

rM, f ¼
cx, f qx, f

τ

(26)

where rM,f is biofilm section reaction rate (kg m�3 h�1), rM,L is liquid section reaction rate

(kg m�3 h�1), and τ is retention time (h).

2.4.4. Numerical methods

The model equations were solved by personal computer using the “Wolfram Mathematica”

program routine “NDSolve, FindRoot, FindMinimum, Fit,” and orthogonal collocation methods

[35–37] were applied for the inner biofilm concentration profiles representing.

2.4.5. Initial parameter values

The model was initially simulated using kinetic parameters (KF and h) from previous studies [38]

and mixing parameters (Nl, Ni, Fcr, and Fp) computed in this study (Table 1). Transport param-

eters include the mass transfer coefficient rate of metal ions (km), and the effective diffusion

coefficient of metal ion in biofilm (Def,M) was estimated by Eqs. (7) and (2)–(4).

2.4.6. Parameter optimization

The empirical equations developed from HRTB mixing modeling were used as a fitness function

during mixing parameter optimization (Nl, Ni, Fcr, and Fp). Kinetic parameters (KF and h) were

optimized computing variance between observed variables and simulated variables as

En ¼
1

nu

Xi¼nu

i¼1

cin,exp � cin, sim

� �2

cin,exp
(27)

where cin,exp is observed variables (kg m�3), cin, sim is simulated variables (kg m�3), and nu is

number of observations.
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To determine dependence of parameter change on variance between observed variables and

simulated variables (En), calculation were performed by polynomial regression with the “Wol-

fram Mathematica” routine “Fit.” After this plug, optimization was preformed calculating

global minimum variance between observed variables and simulated variables using routine

“FindMinimum.”

3. Results and discussion

3.1. Biofilm formation studies in HRTB

In this work the effect of process parameters (n and F) on the mixed microbial culture biofilm

formation in HRTB was studied as a continuation of comprehensive research of mixing [18–20]

and conduction of model bioprocesses in HRTB [23–27]. This investigation started with mixed

microbial culture isolation from surface sediments highly contaminated with heavy metals

[39–41].

Isolated mixed microbial culture was developed in HRTB as described in Section 2.2, whereby

the culture first grew in suspension and then a biofilm was gradually established on the O-

shaped rings and inner surface of bioreactor. Figure 3 represents O-shaped rings before and

after biofilm formation.

The biofilm obtained was used for the investigation of suspended biomass adsorption abilities

and biofilm properties (thickness, density) by different combinations of process parameters.

Changes of process parameters (n and F) during this investigation are presented in Figure 4.

A significant disturbance was observed at F = 2.0 L h�1 and n = 30 min�1 when biofilm

detachment took place. Influence of biofilm detachment on suspended biomass concentration

changes will be discussed in the next section.

3.2. Suspended biomass concentration and biosorption capacity in HRTB

In the present study, biomass grew as suspended single cells, suspended cell clusters, and

biofilm attached to the bioreactor inner surface. Table 2 shows the results of suspended

biomass concentration in dependency of parameter variation: inflow rate (F = 0.5–2.0 L h�1)

and bioreactor rotation speed (n = 5–30 min�1). The suspended biomass concentrations (cx.L)

range from 0.95 to 1.07 g L�1 at inflow rate 0.5 L h�1. The increase of the inflow rate to 1.0 and

Figure 3. O-shaped rings before (A) and after (B) biofilm formation in HRTB.
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2.0 L h�1 was related to the increase of suspended biomass concentrations (1.59–5.11 g L�1) as

a consequence of biofilm detachment and erosion. Highest suspended biomass concentration

was 5.11 g L�1 registrated as a consequence of more intensive biofilm detachment (release of

larger biofilm parts) due to high inflow rate (F = 2.0 L h�1) and bioreactor rotation speed

(n = 30 min�1). In this situation, considerable increase of metal ion concentrations was

observed as a consequence of biomass washout from HRTB. Biofilm detachment (erosion and

sloughing) is a complex process affected by hydrodynamic conditions together with morpho-

logical and physiological characteristics of the biofilm [8, 42]. Suspended biomass changes

were also observed at inflow rates (1.0–2.0 L h�1) for all bioreactor rotation speed (5–30 min�1)

as a consequence of biofilm erosion (continuous release of smaller biofilm parts) [43].

The suspended biomass biosorption capacity (qx.L) during heavy metal removal is presented in

Table 3. The inflow rate had a more pronounced effect on the biosorption capacity than the

bioreactor rotation speed. Nevertheless, highest bioreactor rotation speed (30 min�1) decreased

thickness of stagnant liquid layer at the biomass surface and provided facilitate condition for

metal ion adsorption. The increase of the inflow rate to 1.0 and 2.0 L h�1 was related to the

increase of biomass biosorption capacity. Microbial biomass concentration and content have a

significant effect on the biosorption capacity. Therefore, higher biomass biosorption capacity

was observed for inflow rates 1.0 and 2.0 L h�1 where higher microbial biomass concentration

and biofilm erosion were observed (Table 2). Biofilm structure and extracellular polysaccharide

content increase possibility for metal ion accumulation. Molecule of extracellular polysaccha-

ride has high molecular mass and enhanced capability for metal ion bonding [13, 42, 44–47].

Due to the biofilm detachment observed for F = 2.0 L h�1 and n = 30 min�1 and release of

microbial biomass with high amount of biofilm, biosorption capacity reached highest value of

83.27 mg g�1, respectively.

Biological and hydrodynamic factors (content of extracellular polymers and cell physiological

and morphological state of same microbial species) have influence on the suspended biomass

Figure 4. Dynamics of process parameter changes [bioreactor rotation speed (n) and medium inflow rate (F)] during

investigation in the HRTB.
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biosorption capacity. Situation is more complex in mixed culture where different microbiolog-

ical content and cell distribution also influence biosorption capacity. In addition, hydrody-

namic conditions have also influence on all previous denominate biological factors [8].

Therefore, on the basis of these results, it is clear that biological hydrodynamic conditions in

HRTB have a significant effect on the suspended biomass concentration and biosorption

capacity (Tables 2 and 3).

3.3. Biofilm volumetric density and thickness along HRTB

Since the sampling point at 75% of reactor length was also used for introducing the tempera-

ture sensor, the biofilm thickness could be measured only at four sampling sites. The differ-

ences in biofilm thickness given by changing medium inflow rate (F = 0.5–2.0 L h�1) and

bioreactor rotation speed (n = 5–30 min�1) are presented in Table 4. The biofilm thickness was

in the range of 0.23–1.43 mm that is thinner than the literature data for mixed culture biofilm

but thicker than monomicrobial culture biofilm thickness measured in previous research [25].

The biofilm thickness in the bioreactor Lf was mainly stabile for inflow rates 0.5 and 1 L h�1,

and only smaller biofilm parts were observed in the liquid phase as a consequence of the

biofilm erosion process. This tendency was maintained until the inflow rate became 2 L h�1.

Afterward, hydrodynamic conditions and high metal load inhibited biofilm growth and

decreased biofilm thickness. The resultant accumulation of metal ions had an impact on the

biofilm, its strength, and its density. In these conditions intensive detachment of the biofilm

was observed. The increase of the inflow rate produces thinner biofilm with higher density.

Therefore, the outer biofilm layers are more sensitive to the shear stress and abrasion than the

F (L h�1) n (min�1)

5 15 30

0.5 28.45 18.51 33.75

1.0 33.59 48.79 71.62

2.0 58.73 58.01 83.27

Table 3. Metal ion sorption capacity (qx.L) changes at different combinations of bioreactor process parameters (n and F)

during heavy metal removal process.

F (L h�1) n (min�1)

5 15 30

0.5 1.08 0.95 1.02

1.0 1.59 1.74 2.48

2.0 2.67 2.89 5.11

Table 2. The suspended biomass concentration (cx.L) changes at different combinations of bioreactor process parameters

(n and F) during heavy metal removal process.
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inner biofilm layers. Moreover, outer biofilm layers can be released even at relatively small

shear stress. After this, the detachment rate is considerably reduced [12, 47]. Thinner biofilms

are less sensitive to process condition changes, which has positive influence on the process

stability [44]. The impact of the biofilm detachment on the bioprocess was less pronounced

from bioreactor inflow rate (Table 4).

Biofilm volumetric density (cx.f) for F = 2.0 L h�1 and n = 30 min�1 was measured at the inlet

and the outlet of the HRTB. The HRTB is characterized by concentration gradient along

bioreactor, so consequently higher volumetric biofilm density was observed at the inlet of

HRTB (59.7 � 5.2 g L�1) than at the outlet of HRTB (39.3 � 4.4 g L�1). Similar results were

observed during previous investigation of metal ion removal in HRTB [38].

The reason for this finding might be that the substrate concentrations for microorganism

growth decrease with bioreactor length. Higher volumetric biofilm density was related to

increase the biofilm sorption capacity. Both properties are influenced by structure and content

of biofilm. Differences in extracellular polysaccharide content affect the gradient of the linkage

strength between cell clusters inside the biofilm. While cells on the surface of the biofilm grow

relatively fast and do not accumulate, cells inside the biofilm have lower growth rates and

produce more extracellular polysaccharides [13, 42, 44–46]. The extracellular polysaccharides

affect the microbial sorption capacity by their content and molecular size. The outer biofilm

layer exhibits higher porosity, resulting in easier metal ion access to deeper layers. Addition-

ally, high-volumetric-density biofilms have higher sorption capacity than the low-density

biofilms that are characterized by the low content of extracellular polysaccharides [48].

3.4. Biofilm application in removal of Co(II), Cr(IV), and Mn(II) from wastewater

After biofilm formation and characterization, investigation of biofilm sorption abilities in

removal of Co(II), Cr(IV), and Mn(II) was done at different combinations of medium inflow

rates and constant HRTB rotation speed. Results are presented as equilibrium metal ion

F (L h�1) n (min�1) Lf (mm)

(0% LHRTB) (50% LHRTB) (100% LHRTB)

0.5 5 0.75 1.08 0.89

15 0.89 0.73 0.81

30 0.93 1.29 0.85

1.0 5 0.85 1.34 0.95

15 0.92 1.43 0.84

30 0.86 1.21 0.91

2.0 5 0.23 0.37 0.28

15 0.35 0.28 0.25

30 0.38 0.37 0.35

Table 4. Biofilm thickness changes (Lf) along HRTB at different medium inflow rates (F = 0.5–2.0 L h�1) and bioreactor

rotation speed (n = 5–30 min�1) during heavy metal removal bioprocess.
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concentration along HRTB in the liquid phase. Equilibrium metal ion concentration was

reached after five residence time changes.

The metal ion concentrations along HRTB at different medium inflow rates (F = 0.5–2.0 L h�1)

and constant bioreactor rotation speed (n = 15 min�1) are presented in Figure 5 (Co(II) concen-

tration Figure 5A, Cr(VI) concentration Figure 5B, Mn(II) concentration Figure 5C). Points

represent measured values, while simulated values are represented with curves. Metal ion

concentration changes along HRTB were simulated using one-dimensional diffusion-

biosorption model and optimized parameter values [38]. The inflow of all metal ion (Co(II),

Cr(VI), and Mn(II)) concentration was 0.125 g L�1, respectively. Lower metal ion concentra-

tions were detected at a first measuring point in the bioreactor (located at the place of medium

inflow, 0% LHRTB) because of medium dilution at this location in the HRTB.

Generally, increase in the inflow rate (F) caused increase of metal ion concentration along

bioreactor. Higher inflow rate increased metal ion load in HRTB and concentration of metal

ions in liquid phase. Metal ion concentration in biomass was in a dynamic equilibrium with

metal ion concentration in the liquid phase. Biomass (solid phase) in bioreactor becomes

saturated with metal ions and reaches maximum removal capacity. Consequence of biomass

saturation is the decrease of metal ion concentration in the liquid phase (Figure 5).

As shown in previously performed hydrodynamic experiments in HRTB, medium flow in

the bioreactor can be determined by plug-flow conditions [21]. These are attributed to the

formation of temperature and/or concentration gradients along the reactor length [16].

Decrease in the metal ion concentration gradient along the bioreactor length in the second

part of the HRTB (measurements points on 50% and 100% LHRTB) confirmed assumption of

the plug-flow condition in HRTB (Figure 5). The highest metal ion concentration measured

near the place of medium inflow (measurement points 0% and 25% LHRTB) inhibited biomass

Figure 5. Concentration of Co (A), Cr (B), and Mn (C) ion along the HRTB at different medium inflow rates F = 0.5 L h�1

(black dots, solid line), F = 1.0 L h�1 (dark gray dots, dashed line), F = 2.0 L h�1 (light gray dots, dot line), and constant

bioreactor rotation speed (n = 15 min�1).
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activity and produced a considerable deviations from plug-flow conditions. As was previ-

ously mentioned (in the Section 3.2), the biofilm biosorption is a complex process that is

affected by hydrodynamic conditions as well as morphological and physiological character-

istics of the biofilm [49, 50].

4. Conclusion

Microbial strains were isolated from heavy metal-contaminated surface sediments and

selected due to their ability to grow in the presence of metal ions. The results obtained in this

study proved technical feasibility of isolated strains to form biofilm in HRTB and to remove

metal ions from contaminated water with concentrations up to 500 mg L�1. The microbial

removal ability was higher at lowest medium inflow rates of 0.5. When the inflow rate was in

the range of 1.0–2.0 L h�1, microbial removal ability was reduced.

Generally, the medium inflow rate had more pronounced effect on the bioprocess dynamics

than bioreactor rotation speed. The biofilm biosorption capacity was reduced with decreased

biofilm density. Similar trend shows suspended biomass biosorption capacity and suspended

biomass concentration. The obtained results prove that HRTB can be successfully used for

conducting the removal of heavy metals with isolated microbial strains.
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