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Abstract

The conventional method for spectrum analysis is the discrete Fourier transform (DFT),
usually implemented using a fast Fourier transform (FFT) algorithm. However, certain
applications require an online spectrum analysis only on a subset ofM frequencies of an
N-point DFT ðM < NÞ. In such cases, the use of single-bin sliding DFT (Sb-SDFT) is
preferred over the direct application of FFT. The purpose of this chapter is to provide a
concise overview of the Sb-SDFT algorithms, analyze their performance, and highlight
advantages and limitations. Finally, a technique to mitigate the spectral leakage effect,
which arises when using the Sb-SDFT in nonstationary conditions, is presented.

Keywords: discrete Fourier transform, spectral leakage, digital signal processing,
Cramér-Rao lower bound, total vector error

1. Introduction

The estimation of frequency, amplitude and phase of single-frequency and multifrequency

signals has applications in many fields of engineering. In general, estimation methods are

based on Fourier analysis or parametric modeling. The advantage of Fourier-based methods

is their computational efficiency, compared with the mathematical complexity of the parame-

ters-based algorithms, which demand a high amount of computational resources. The stan-

dard method for Fourier analysis in digital signal processing is the discrete Fourier transform

(DFT). For some real-time applications, the direct application of the conventional DFT may

result in an excessive computational cost. However, certain applications require an online

spectrum analysis only over a subset of M frequencies of an N-point DFT ðM < NÞ. For this

scenario, the common practice is to utilize a single-bin sliding DFT (Sb-SDFT) technique. These

recursive algorithms efficiently calculate a unique spectral component of an N-point DFT.

Nevertheless, the direct application of DFT-based methods for spectral analysis may lead to

inaccuracies due to the spectral leakage phenomenon. These unwanted effects are related to

the frequency variation and improperly selected sampling time window. This problem can be
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solved using an adaptive coherent sampling mechanism. One of these mechanisms is known

as variable sampling period technique (VSPT) and is characterized for the dynamic adjustment

of the sampling period to exactly N times the fundamental frequency, thereby avoiding the

above-mentioned problems.

The chapter is organized as follows: Section 2 presents a brief review of Sb-SDFT. Section 3

evaluates and compares the four selected Sb-SDFT algorithms in diverse operational condi-

tions, identifying the similarities between them. In order to mitigate the inaccuracies resulting

from the spectral leakage effect, a scheme for coherent sampling based on VSPT is introduced

in Section 4. Altogether a unified model is also presented to generalize this scheme to all Sb-

SDFT along with simulation results. Finally, the conclusions of this chapter are drawn in

Section 5.

2. Single-bin sliding discrete Fourier transform

The discrete Fourier transform (DFT) is a numerical approximation of the theoretical Fourier

transform (FT) of a continuous and infinite duration signal. It represents the most common tool

for engineers to extract the frequency content of a finite and discrete signal sequence, obtained

from the periodic sampling of a continuous wave form in time domain.

Let us consider a continuous time signal xðtÞ that is sampled at the rate f s ¼ N · f o (where f o is

the fundamental frequency of xðtÞ) to produce the time sequence x½n�. Then the DFT of the

sequence x½n� is defined as:

XðkÞ ¼ ∑
N−1

n¼0
x½n�W−k n

N (1)

where XðkÞ is the DFT output coefficient,WN ¼ ej2π=N is the complex twiddle factor, N is the

sequence length, k is the frequency domain index ð0 ≤ k ≤ N−1Þ, and n is the time domain

index [1].

If Eq. (1) is not properly designed and implemented, the DFT calculation in real-time might

represent a considerable bottleneck when developing a DFT-based estimation algorithm, in

terms of both measurement reporting latencies and achievable reporting rates. In this respect,

in order to improve both latencies and throughput, several efficient techniques to compute the

DFT spectrum have been proposed in literature, which can be classified as nonrecursive and

recursive algorithms. Among the nonrecursive class, the fast Fourier transform (FFT) algo-

rithm is extensively used for harmonic analysis over an extended portion of the spectrum.

When, on the other hand, only a subset of the overall DFT spectrum is necessary to accomplish

the desired estimate, the so-called single-bin sliding DFT (Sb-SDFT) turns out to be very

effective.

The DFT can also be computed by recursive algorithms which are characterized by a minor

number of operations to calculate a single DFT bin. Regardless of this advantage with respect

to the class of nonrecursive algorithms, the performances of the two categories usually are not
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the same. Especially, most of the algorithms in the recursive category suffers of errors due to

either the approximations made to perform the recursive update or the accumulation of the

quantization errors related to a finite word-length precision [2, 3].

In what follows, four of the most efficient techniques to compute a portion of the DFT

spectrum, namely the sliding discrete Fourier transform (SDFT), the sliding Goertzel transform

(SGT), the Douglas and Soh algorithm (D&S), and the modulated sliding discrete Fourier

transform (mSDFT) will be presented and described.

2.1. Sliding discrete Fourier transform

A very effective Sb-SDFT method for sample-by-sample DFT bin computation is the so-called

sliding discrete Fourier transform (SDFT) technique [4]. Starting from Eq. (1), the DFT can be

potentially updated every time-step n, based on the most recent set of samples within a sliding

window {x½n�N þ 1�, x½n�N þ 2�,…;x½n�}. The time window is advanced one sample at a time,

and a new N-point DFT is calculated. Figure 1(a) illustrates the time domain indexing within

the sliding window by showing the input samples used to compute k-bin of an N-points DFT

when n ¼ no. The principle used for SDFT is known as the DFT shifting theorem, or the

circular shift property [1].

Based on this property, the SDFT can be recursively implemented to calculate Eq. (1) for a

desired k-bin, as:

Xk ½n� ¼ Wk
NXk ½n�1�−x½n�N� þ x½n� (2)

where Xk½n� is calculated by phase shifting the sum of the previous Xk½n�1�with the difference

between the current and delayed input sample, x½n� and x½n�N�, respectively [4, 5]. The

complex output of the SDFT could be rewritten as:

Xk ½n� ¼ Xrk ½n� þ jXik ½n� (3)

where Xrk ½n� and Xik ½n� are real and imaginary components of the DFT output coefficient,

respectively. The SDFT provides an accurate estimation for the kth component as its amplitude

(Ak ½n�) and phase (ϕk ½n�) can be determined by computing the modulus and the argument of

the complex result Xk ½n�, as stated by

Figure 1. (a) Samples used to compute Xk½n� within a sliding window, when n ¼ no. (b) Guaranteed-stable SDFT

implementation as IIR filter as given by (5).
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Ak½n� ¼
2

N
abs ðXk ½n�Þ (4a)

ϕ
k
½n� ¼ arg ðXk ½n�Þ (4b)

SDFT is computationally efficient, as it only requires one (complex) multiplication and two

additions per time instant. Nevertheless, the implementation of Eq. (2) as an infinite impulse

response (IIR) filter in a system with finite word-length precision brings about a rounding

error in the implementation of theWk

N
coefficient, which may turn the algorithm unstable and/

or increment the estimation error. The first one is a direct consequence of wrong cancellations

between singularities and by poles displacement outside the unit circle [2, 3]. Commonly, a

damping factor (r, with 0 < r < 1) is used to ensure that all singularities are placed inside the

unit circle, hence instability is no longer an issue. Then, the intrinsically stable version of the

SDFT is

~Xk ½n� ¼ rW
k

N
~Xk ½n�1�−rNx½n�N� þ x½n� (5)

where ~Xk ½n� is the estimated DFT output coefficient. While Eq. (5) is numerically stable, it no

longer computes the exact value of XðkÞ in Eq. (1), since a small error is induced by the

damping factor. The z domain transfer function for the estimated kth bin of the SDFT is

HS DFTðzÞ ¼
1−rNz−N

1−rWk

N
z−1

(6)

The stable SDFT algorithm given by Eq. (5) leads to the filter structure shown in Figure 1(b).

This structure is basically an IIR filter that comprises a comb filter followed by a complex

resonator. The comb filter makes the transient response N−1 samples in length; therefore, the

output will reach steady state when the stored waveform equals the input signal.

2.2. Sliding Goertzel transform

The number of multiplications required in the SDFT can be reduced by creating a new pole/

zero pair in its HSDFTðzÞ system function. This is achieved by multiplying the numerator and

denominator of HSDFTðzÞ in Eq. (6) by the factor ð1−rW−k

N
z−1Þ yielding:

HSGTðzÞ ¼
ð1−rW−k

N
z−1Þð1−rNz−NÞ

1−2r cos ð2πk=NÞz−1 þ r2z−2
(7)

The transfer function represented by Eq. (7) is commonly known as the sliding Goertzel

transform (SGT). Because the poles are placed on the z domain unit circle, the SGT implemen-

tation is also potentially unstable. Once more a damping factor r can be used in Eq. (7), to move

the singularities inside the unit circle and to ensure the system stability.

This method can be implemented by the following pair of finite difference equations:
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v ½n� ¼ C1 v ½n�1�−C2 v ½n�2� þ x½n�−rNx½n�N� (8a)

~Xk ½n� ¼ v ½n�−rW−k

N
v ½n�1� (8b)

where C1 ¼ 2r cos ð2πk=NÞ and C2 ¼ r2, with 0 < r < 1. The SGT is implemented as an IIR

filter that consists of a comb filter followed by the standard Goertzel filter, as depicted in

Figure 2(a). The resulting system only has real coefficients so its computational complexity is

decreased in relation to that of the SDFT [6, 7].

2.3. Douglas and Soh algorithm

The implementation of a SDFT or SGT requires a damping factor to guarantee the algorithm

stability. The trade-off for the system stability is that the calculated value is no longer exactly

equal to the kth-bin of an N-point DFT in Eq. (1). In Ref. [8], a technique that significantly

reduces this error, without compromising the stability, is developed. This method is a period-

ically time-varying system designed to generate an ~Xk ½n� output that is mathematically equal

to XðkÞ in Eq. (1) at every Nth time instant.

This technique is implemented by the following pair of finite difference equations:

~Xk ½n� ¼

(

rW
k

N
~Xk½n�1�−rx½n�N� þ x½n�, ðnmodNÞ ¼ 0 ðaÞ

W
k

N
~Xk½n�1�−rx½n�N� þ x½n�, else ðbÞ (9)

The algorithm described by Eq. (9) will be referred to as the Douglas and Soh algorithm (D&S).

The filter implementation of Eq. (9), shown in Figure 2(b), requires two multiplications and

two additions as well as the control logics to determine when n mod N ¼ 0. In the figure, the

Figure 2. (a) Guaranteed-stable SGT implementation as IIR filter as given by (8). (b) Guaranteed-stable D&S algorithm

implemented as IIR filter as given by (9).
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change between Eqs. (9a) and (9b) is performed by switch S1 Therefore, the switching period of

S1 in Figure 2(b) is equal toN ·Ts, where Ts is the sampling period, and its duty cycle is equal to

one sample. It is worth mentioning that the effect of the nonlinear operation of D&S algorithm in

the dynamic response is negligible as it only changes its structure every N samples.

2.4. Modulated sliding discrete Fourier transform

There is an alternative way of avoiding the reduction in accuracy generated by the damping

factor, without compromising stability. SDFT implementation in Eq. (2) is marginally stable,

however, for the particular case of k ¼ 0 (DC component estimation). It takes the following

form:

X0½n� ¼ X0½n�1�−x½n�N� þ x½n� (10)

The absence of the W
k

N
coefficient, which typically leads to stability issues when it is

represented with finite precision, allows to implement the recursive expression without the

damping factor r. Therefore, the recurrence in Eq. (10) is unconditionally stable and does not

accumulate errors. The modulated sliding discrete Fourier transform (mSDFT) algorithm uses

the Fourier modulation property to effectively shift the DFT bin of interest to the position k ¼ 0

and then use Eq. (10) for computing that DFT bin output. This is accomplished by the multi-

plication of the input signal x½n� by the modulation sequence W
−k n
N

. This approach allows to

exclude the complex twiddle factor from the resonator and avoids accumulated errors and

potential instabilities [9]. The recursive realization of the mSDFT is:

X
0
k
½n� ¼ X

0
k
½n�1�−x½n�N�W

−kðn�NÞ
N

þ x½n�W−k n

N
(11a)

Xk ½n� ¼ W
k n

N
X

0
k
½n� (11b)

where X0
k
½n� is a complex constant related to the phase of the complex twiddle factor, since the

modulation moves the desired kth-bin to k ¼ 0 (0 Hz). The relation between the desired Xk ½n�

and the computed X
0
k
½n� is given by Eq. (11b). It is worth noticing that if the application only

requires DFT magnitude estimation, the complex multiplication in Eq. (11b) is unnecessary

because jX0
k
j is equal to jXðkÞj. The filter structure of the mSDFT algorithm in Eq. (11) is

depicted in Figure 3(a). In contrast of traditional recursive DFTalgorithms, the mSDFTmethod

Figure 3. (a) Guaranteed-stable mSDFT implementation as IIR filter as given by (11). (b) Guaranteed-stable mSDFT

implementation as IIR filter as given by (12).
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is unconditionally stable and does not accumulate errors because its singularities are exactly

placed on the unit circle, regardless of the finite precision used. These advantages are possible

due to the removal of the complex twiddle factor from the resonator loop.

If multiple DFT frequency bins are to be computed, the mSDFT in Eq. (11) requires a comb

filter for each frequency bin. On the other hand, given the periodicity ofW−k n
N , as shown in Ref.

[9], Eq. (11) can be rewritten as

X0
k ½n� ¼ X0

k ½n�1� þW−k n
N ð−x½n�N� þ x½n�Þ (12a)

Xk ½n� ¼ Wk n
N X0

k ½n� (12b)

Whenever multiple DFT frequency bins are to be computed, Eq. (12) becomes a more efficient

approach as only one comb filter is needed (Figure 3(b)).

3. Performance comparison

This section discusses the key features of each of the Sb-SDFT that were presented in Section 2.

The aim of this analysis is to find underlying similarities and differences between these

methods. To this end, a study on statistical efficiency and accuracy is presented in the follow-

ing subsections. Finally, the section ends with a discussion over the limitations and inaccura-

cies of the Sb-SDFT inherited by every DFT-based method.

3.1. Statistical efficiency

It is common knowledge that the statistical efficiency and noise performance of estimators is

determined by comparison with the Cramer-Rao lower bound (CRLB). The CRLB deals with

the estimation of the quantities of interest from a given finite set of measurements that are

noise corrupted. It assumes that the parameters are unknown but deterministic, and provides

a lower bound on the variance of any unbiased estimation. The CRLB is useful because it

provides a way to compare the performance of unbiased estimators. Furthermore, if the

performance of a given estimator is equal to the CRLB, the estimator is a minimum variance

unbiased (MVU) estimator [10].

Computer simulations have been performed to evaluate the performance of the SDFT, the

SGT, the mSDFT and D&S algorithm for a single real sinusoid polluted with white Gaussian

noise:

x½n� ¼ A cos ðω nþ φÞ þwgn ½n� (13)

where A and φ are the amplitude and initial phase, respectively, n is the time domain index, ω

denotes the normalized angular frequency (ω ¼ 2πf o=f s) and wgn[n] is a zero-mean white

Gaussian noise of variance σ2n. For this case the CRLB for amplitude estimation is approxi-

mated by Kay [10]:
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CRLBA ¼
2σ2n
N

(14)

Parameters were assigned to A ¼ 1, f o ¼ 50Hz, f s ¼ 6:4 KHz N ¼ 128 and φ is a constant

uniformly distributed between ½0, 2πÞ. The signal-to-noise ratio (SNR) is equal to A2=ð2σ2nÞ,

whereas different SNR levels were obtained by properly scaling the noise variance σ2n. All

simulation results provided are the averages of 1000 independent runs.

Figure 4(a) and (b) shows the variance in the estimate of A ðσ
Â
Þ versus SNR for two different

damping factors. In Figure 4(a), the damping factor was fixed at r ¼ 0:999 for SDFT, SGT and

D&S algorithm. In this figure, for SNR levels below −10 dB can be observed that the σ
Â

values

are beneath the CRLB limit. Therefore, beyond this threshold level, the estimations made by

the Sb-SDFT techniques cease to be consistent with those of an unbiased estimator. From this

threshold level and up to 15 dB, the Sb-SDFT algorithms are efficient MVU estimators, because

their σ
Â

values reach the CRLB. For higher levels of SNR, the σ
Â

for SDFT and SGT remains

Figure 4. (a) Variance of Â versus SNR levels for the analyzed estimators with N ¼ 128 and r ¼ 0:999. (b) Variance of Â
versus SNR levels for the analyzed estimators with N ¼ 128 and r ¼ 0:9999. (c) Variance of Â versus r for the four

estimators at SNR=80 dB. (d) Variance of Â versus N for the four estimators, with r ¼ 0:9999 and SNR=30 dB.
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above the CRLB and asymptotically approximate the −43.5 dB bound. This is mainly due to the

fact that the inaccuracy caused by the damping factor in Eqs. (5) and (8) is more relevant than

the consequence of SNR level. The D&S algorithm exhibits the same behavior, but beginning at

SNR = 60 dB and with σ

Â
asymptotically approaching the −91 dB bound for higher levels.

When compared to the performances of the SDFT and the SGT, the D&S algorithm behaves as

an MVU estimator for a wider range of SNR, at the cost of a slightly increased computational

complexity and a nonlinear functioning. For the range of SNR levels shown in Figure 4(a)

beyond the threshold, the variance in Â computed by the mSDFT remains on CRLB curve, so

its performance corresponds to an MVU estimator.

This test was repeated for r ¼ 0:9999, and the results are shown in Figure 4(b). It is seen that

the performances of the SDFT, SGT and D&S algorithm are better than exhibited in the

previous case. This improvement is reflected through an increase in the range of SNR values

for which the estimations correspond to an MVU estimator. The results obtained for mSDFT

are consistent with those obtained previously, because this estimator does not require a

damping factor to ensure stability.

The effect of the damping factor on the σ

Â
is shown in Figure 4(c). The simulation is

performed for SNR = 80 dB because at this level, SDFT, SGT and D&S algorithms do not lie on

CRLB curve and have converged to their final values listed in Figure 4(b). For this scenario, the

σ

Â
of the mSDFT is constant and equal to the CRLB, because it does not required a damping

factor to achieve stability. Instead, for r ! 1 and SNR beyond threshold level, the σ
Â

for SDFT,

SGT and D&S algorithm approximates the CRLB as it is reflected by Figure 4(c). From the

analysis of this figure, it is possible to conclude that for the ideal situation (r ¼ 1) and SNR

levels beyond the threshold, all reviewed algorithms reach the CRLB and therefore their

statistical efficiency is identical.

Finally, the σ
Â

versus N at SNR = 30 dB are illustrated in Figure 4(d). As expected, N increase,

that is, the length of the sliding window reduces the variance of Â in the four methods. This is

mainly because the estimations are computed in a larger sliding time window, that is, more

samples are used for the estimation.

3.2. Accuracy analysis

In this section, the accuracy of the Sb-SDFT methods on the estimation of a single-frequency

signal, both in steady-state and dynamics conditions, is analyzed through simulations. The

adopted accuracy index is the so-called total vector error (TVE) that combines the effect of

magnitude, angle and time synchronization errors on the desired component estimation accu-

racy. The TVE is defined in the Standard IEEE C37.118.1-2011 [11] as

TVE ¼ 100·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX̂r ½n�−Xr ½n�Þ
2 þ ðX̂i ½n�−Xi ½n�Þ

2

Xr ½n�
2 þ Xi ½n�

2

s

(15)

where X̂r ½n� and X̂i ½n� are the sequences of estimations given by the Sb-SDFT method under

test, Xr ½n� and Xi ½n� are the sequences of theoretical values of the input signal at the instants of
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time (n), and the subscripts r and i identify the real and imaginary parts of the desired

component, respectively. The TVE is a real number that expresses the Euclidean distance

between the true frequency domain complex bin and estimated one.

3.2.1. Steady-state condition

At first, the analysis is assessed in steady-state conditions assuming an input signal equal to

Eq. (13). Parameters were assigned to A ¼ 1, f o ¼ 50Hz, f s ¼ 6:4 KHz N ¼ 128 and φ ¼ 0 rad

and thedamping factor is set to r ¼ 0:9999. The curves plotted inFigure 5(a–d) show the estimated

amplitude of the test signal for all Sb-SDFTalgorithms in steady state, where the reference value is

displayedwith a black solid line. Figure 5(e) shows theTVEvalues as a function of time. SDFTand

SGT have the same steady-state TVE values; this error has a mean value with an overlaid ripple

that is a direct consequence of the use of a damping factor in Eqs. (5) and (8). For both algorithms,

the maximum TVE value is 0.7335%. The D&S algorithm significantly reduces the TVE and

maintains the same damping factor than the two previous cases, resulting in improved system

performance,with amaximumTVEvalue of 0.01%. InFigure 5(c), it is shown thatwhen (nmodN)

=0, the estimation is accurate,which is consistentwith theperiodof the fundamental componentof

the test signal. On the other hand,mSDFTprovides precise estimationwith a 0%TVE, since it does

not require a damping factor to ensure stability.

3.2.2. Dynamic condition

The accuracy under dynamic condition of the SDFT, the SGT, the mSDFT and D&S algorithm

are evaluated through multiple simulations under the effect of various transient disturbances.

The comparison is performed by means of the following test signal:

Figure 5. (a)–(d) Amplitude estimation of the test signal (13) in steady-state condition using the selected Sb-SDFT

algorithms with N ¼ 128, r ¼ 0:9999 and f s ¼ 6:4 kHz. (e) TVE exhibited by the Sb-SDFT algorithms in steady-state.
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x½n� ¼ Ao f1þ δsu½n�no� þ δrðn�noÞu½n�no� þ

δam cos ½ωamðn�noÞ�u½n�no�g cos ðω nþ ωg n u½n�no� þ φÞ (16)

where Ao is the nominal amplitude, δs is the amplitude step depth factor, δr is the amplitude

ramp slope factor, δam is the modulation depth factor, ωam is the normalized modulating

angular frequency ðωam ¼ 2πf am=f sÞ, ω denotes the normalized nominal angular frequency

(ω ¼ 2πf o=f s), ωg is the normalized off-nominal angular frequency offset (ωg ¼ 2πf g=f s) and φ

is the initial phase. In the following, the performance of the Sb-SDFT is evaluated under the

effect of amplitude step, amplitude ramp, amplitude modulation and static frequency offsets.

The accuracy is assessed exhaustively, by varying the test signal parameters over a suitable

range, in order to determine the maximum TVE values. This approach leads to a fair perfor-

mance comparison between the considered techniques. Unless otherwise stated, parameters

were assigned to Ao ¼ 1, f o ¼ 50 Hz, f s ¼ 6:4 KHz, N ¼ 128, φ ¼ 0 rad, r ¼ 0:9999, δs ¼ 0,

δr ¼ 0, δam ¼ 0, ωam ¼ 0, ωg ¼ 0 and no ¼ 0.

First, the step response of the Sb-SDFT estimators is evaluated. For this purpose, the parame-

ters of Eq. (16) are set to: δs ¼ 0:1 and no ¼ 640. Figure 6(a) shows the estimated amplitude (Â)

Figure 6. Transients for the estimation of the amplitude of (16) and the evolution of the TVE for the selected Sb-SDFT

algorithms, under different test conditions. (a) A step change in amplitude with δs ¼ 0:1, δr ¼ 0, δam ¼ 0 and ωg ¼ 0. (b) A

ramp-change in amplitude with δs ¼ 0, δr ¼ 0:1, δam ¼ 0 and ωg ¼ 0. (c) A sudden amplitude modulation with δs ¼ 0,

δr ¼ 0, δam ¼ 0:1, ωam ¼ 2π=f s and ωg ¼ 0.
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and TVE values as a function of time when the amplitude step occurs in x[n]. Ignoring small

differences, related to the damping factor effect, the dynamic response during the transient is

the same for all the algorithms. This transient has a duration that is equal to the length of the

sliding window for all the Sb-SDFT. After the transient, the TVE values provided by the Sb-

SDFT estimators are equal to the steady-state values shown in Figure 5(e). Further, simulation

results (not reported here for the sake of brevity) confirm that the TVE value in steady state,

due to an amplitude step, is the same regardless of the value of δs.

The accuracy of the considered estimators is analyzed in Figure 6(b), assuming that the

waveform x[n] is subjected to linear variation of its amplitude. Therefore, the parameters of

Eq. (16) were adjusted as follows: δr ¼ 0:1 and no ¼ 640, to create ramp change in the ampli-

tude of the test signal. Once more, the Sb-SDFT exhibit similar dynamics in their amplitude

estimation performance. Figure 7(a) shows the worst-case TVE values, after the transient

response, returned by the four considered estimators as a function of δr in the range [0,0.1] p.

u.. As can be seen, the maximum TVE value achieved by the Sb-SDFT worsens linearly with

this parameter. In addition, a gap of 0.78% is observed, between the SDFT, SGT and the other

two algorithms, which remains constant for the analyzed range.

The effect of a modulating signal on the estimation accuracy is analyzed in Figure 6(c). Hence,

the parameters of Eq. (16) were adjusted as follows: δam ¼ 0:1, ωam ¼ 2π=f s and no ¼ 640. The

figure shows the estimated amplitude (Â) and TVE values as a function of time when the

amplitude modulation of 10% with a frequency of 1 Hz occurs in x[n]. As expected, the

dynamic behavior displayed by the Sb-SDFT estimators is similar, with the mSDFT the most

accurate of the reviewed algorithms. The curves in Figure 7(b) show the worst case TVE values

Figure 7. (a) Maximum TVE curves versus amplitude ramp slope factor δr. (b) Maximum TVE curves versus amplitude

modulation depth factor δam for a modulating frequency f am of 1 Hz. (c) Maximum TVE curves versus amplitude

modulating frequency f am with δam ¼ 0:1 p.u. (d). Maximum TVE curves versus static frequency offset f g.
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returned by the four considered estimators as a function of δam in the range ½0; 0:1�p: u: with

f am ¼ 1 Hz. Figure 7(c) shows the worst case TVE values given by the Sb-SDFTas a function of

f am in the range ½0, 5� Hz with δam ¼ 0:1p: u: Note that the TVE increment linearly with δam or

f am, and that the behavior of the Sb-SDFT estimators is very similar.

Finally, the influence of a simple static off-nominal frequency offset on the Sb-SDFT estimators’

performance is analyzed in Figure 7(d). The figure shows the maximum TVE values, in steady

state, when the signal (Eq. 16) phase varies as a function of the off-nominal frequency offset f g

in the range [−1,1] Hz. As expected, the accuracy of all the considered estimators degrades

monotonically as the frequency offset increases due to the spectral leakage effect.

The similarities between the Sb-SDFTalgorithms found through Figures 6 and 7 are explained

by the fact that all implementations of this type of algorithms result from applying Fourier

properties and mathematical operations to standard DFT definition (Eq. 1).

3.3. Sb-SDFT limitations

The direct application of Sb-SDFT may lead to inaccuracies due to aliasing and spectral

leakage, common pitfalls inherited by every DFT-based method. Aliasing is generally

corrected by employing anti-aliasing filters or increasing the sampling frequency to a value

that satisfies the Nyquist sampling criterion. Instead, when the sampling is not synchronized

with the signal under analysis, the DFT is computed over a noninteger number of cycles of the

input signal which leads to the spectral leakage phenomenon [1]. Spectral leakage is typically

reduced (not eliminated) by selection of the proper nonrectangular time domain windowing

functions, to weigh the sequence data at a fixed sampling frequency [12]. This process

increases the computational complexity and does not take advantage of the recursive nature

of Sb-SDFT methods. Otherwise, spectral leakage can be avoided entirely by ensuring that

sequence of samples is equal to an integer number of periods of the input signal [13].

4. Coherent sampling approach

In order to avoid the spectral leakage phenomenon, the sequence of samples within a sliding

window of a Sb-SDFTmust be equal to an integer number of fundamental periods of the input

signal. An integer number of periods will be sampled if and only if the coherence criterion

holds:

f o
f s

¼
m

N
(17)

where f o is the signal frequency, f s is the sampling frequency,N is the sampled sequence length

and m is an integer number. This is equivalent to ensuring that an integer number m of sine

periods is present in the data sample of lengthN, and in that case there is no spectral leakage. If

Eq. (17) holds, f s is referred to as coherent or synchronous sampling frequency.
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Avariable sampling period approach, named variable sampling period technique (VSPT), was

developed by the authors to design synchronization methods that maintain a coherent sam-

pling with the input signal fundamental frequency [14]. This technique has recently been

adapted to dynamically adjust the sampling frequency in a harmonic measurement method

based on mSDFT [15]. In Ref. [16], the VSPT is generalized so as to be used with any Sb-SDFT

algorithm.

In this section, the technique of variable sampling period is briefly described, and a unified

small-signal model, which allows to use the VSPTwith any Sb-SDFT, is also presented.

4.1. Variable sampling period technique

VSPT allows to adapt the sampling frequency to be N times the fundamental frequency of a

given input signal. This technique has proven to be efficient both in three-phase and in single-

phase applications yielding a robust synchronization mechanism, whose effectiveness has

been tested under different conditions and scenarios [14, 17].

Figure 8(a) illustrates the basic VSPT scheme for single-phase implementation, where the input

signal is sampled and the input phase ϕ
u
½n� is extracted by the phase detector. Concomitantly

with the input sampling, the reference generator provides a signal called reference phase:

ϕref ½n� ¼
2πn

N
(18)

The method achieves a null phase error (eϕ½n�) between ϕref ½n� and ϕu ½n�, by varying the

sampling period TS ½n� as a function of eϕ ½n�. The controller GcðzÞ provides the value of the

sampling period and then the sampling generator produces a clock signal (CLK) that starts the

conversion and increments the reference phase. The implementation of the phase detector and

phase error calculation is key for the proper functioning of this technique. The operating

principle is based on the dynamic adjustment of the sampling frequency. An exhaustive

explanation of the key elements of this technique can be found in Refs. [14, 17].

4.2. Unified small-signal model

VSPT allows to adapt the sampling rate to a multiple of the fundamental frequency of a given

input signal, so the coherence criterion holds, thereby preventing the DFT’s shortcomings

when is used to analyze nonstationary signals. An error signal, related to the phase difference

between the fundamental component of the input signal and the reference phase, is needed to

adapt the sampling period. Based on this, phase error is feasible to develop a closed-loop

control to synchronize the sampling period.

As mentioned in Section 3, when r ! 1 and for a real input signal, the Sb-SDFT algorithms

become equivalent. Therefore, for this scenario and for small-signal conditions, these methods

supply the same estimation of the kth-bin of an N-points DFT. Based on this concept, Figure 8(b)

shows a phase error estimation scheme that employs an Sb-SDFT algorithm, which allows to

estimate the phase difference between the fundamental component of the input signal and the

reference phase. This scheme obtains the phase error signal from three basic operations, first an
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Sb-SDFT algorithm with k ¼ 1 is used to estimate the fundamental component (X1½n�) of an N-

points DFT, from a given input sequence of samples (x[n]). Then the phase of the input signal

(ϕu½n�) is estimated by computing the argument of the complex result X1½n�, as stated by Eq

(4b). Finally, a simple subtraction operation is used to estimate the phase error (eϕ½n�) between

the incoming signal and the reference.

Since all the Sb-SDFT methods are derived from Eq. (1), for small-signal condition, they are

mathematically equivalent, and the system phase error (eϕ½n�) for small deviation is approxi-

mately equal. Therefore, a mathematical model can be extrapolated for implement the VSPT

scheme shown in Figure 8(a) with the phase error estimation scheme shown in Figure 8(b).

Figure 8(c) presents the small signal model of a coherent sampling scheme for the Sb-SDFT

algorithms based on the VSPT, which allows to avoid the spectral leakage phenomenon. The

complete mathematical derivation of this model is available in Ref. [16].

4.3. Validation

The specifications and requirements to be met by the controller (Gc(z)) are determined by the

application. Several applications require zero phase error and frequency synchronization for

normal operation. In these cases, the controller must be proportional integral to achieve zero

phase error in steady state; the resulting system being a type II system.

Then the transfer function for the controller in the z domain is

GcðzÞ ¼ K
z−a

z−1

� �

(19)

As an example of design, ω ¼ 2π· 50 rad=s and N ¼ 128 are adopted. Concerning dynamics, a

phase margin of 45° and maximum bandwidth are adopted as design criteria for GcðzÞ. Based

on this, and using the design methodology proposed in Ref. [15], the parameters of the

controller are K ¼ 1:7304 � 10−5 and a ¼ 0:9974, with a bandwidth of 5.905 Hz.

The estimations obtained by the Sb-SDFT algorithms with coherent sampling supplied by the

VSPT, in situations where the input signal frequency deviates from its nominal value, are

evaluated in two possible scenarios. The first simulation analyzes the effect of a frequency step

Figure 8. (a) General scheme of the variable sampling period technique, (b) phase error estimation scheme based on Sb-

SDFT and (c) system model for Sb-SDFTwith coherent sampling adjustment based on VSPT.

Single Bin Sliding Discrete Fourier Transform
http://dx.doi.org/10.5772/66337

39



of −0.5 Hz on the performance of the proposed method. Hence, the parameters of Eq. (16) were

adjusted as follows: Ao ¼ 1, f o ¼ 50 Hz, φ ¼ 0 rad, δs ¼ 0, δr ¼ 0, δam ¼ 0, ωam ¼ 0,

f g ¼ −0:5 Hz and no ¼ 640. The Sb-SDFT algorithms are set with f s ¼ 6:4 KHz, N ¼ 128,

r ¼ 0:9999 and k ¼ 1. The parameters used in the controller GcðzÞ, for the VSPT close loop, are

those presented in the previous example of design. Figure 9(a) depicts the effect of the fre-

quency step change on the TVE values given by the estimated X½n� component. During the

transient, an oscillatory behavior is noticed, which may be attributed to spectral leakage given

by the noncompliance of the coherence criterion (Eq. 17) at the step change. Variations in the

estimated values are extinguished once the sampling frequency is properly adjusted by the

VSPT method to f s ¼ N · ðf o−f gÞ. Then, under a steady-state condition, the TVE values given

by the four Sb-SDFT are equal to those previous to the frequency step.

To complete the evaluation of the accuracy of coherent sampling achieved by the VSPT, the

influence of a simple static off-nominal frequency offset on the Sb-SDFT estimators perfor-

mance is analyzed in Figure 9(b). The figure shows the maximum TVE values, in steady state,

when fundamental frequency of Eq. (16) varies as a function of the off-nominal frequency

offset f g in the range [−1,1] Hz. Due to the VSPT, in steady-state sampling, frequency is

coherent with the fundamental frequency of the test signal, ensuring that exactly one period

is present in the data sample of length N, and in that case, the Sb-SDFT avoids the spectral

leakage phenomenon. Therefore, compared with the results shown in Figure 7(d), the TVE

values do not worsen with f g, instead remain constant and equal to those shown in Figure 5(e).

5. Conclusions

In this work, a comparative study of four Sb-SDFT algorithms is conducted. The comparison

includes filter structure, stability, statistical efficiency, accuracy analysis, dynamic behavior and

implementation issues on finite word-length precision systems limitations. Based on theoreti-

cal studies as well as on simulations, it is deducted that all reviewed Sb-SDFT techniques are

equivalent, primarily due to the fact that they are derived from the traditional DFT, therefore in

various applications can be applied indistinctly.

It proves that SDFT and SGT have identical performances, in regard to disturbance rejection

and precision on spectral estimation. Both of these techniques are used extensively due to their

Figure 9. (a) Evolution of the TVE for the selected Sb-SDFTalgorithms when a sudden −0.5 Hz step change in the nominal

frequency occurs. (b) Maximum TVE curves versus static frequency offset f g .
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straightforward implementation, although the two have an error in accuracy due to the use of

a damping factor. For applications requiring greater precision, this error can be reduced by

using the D&S algorithm. On the other hand, it can be eliminated by using mSDFT due to the

absence of damping factor, resulting in better performance. The results of the study have

shown that mSDFT is the best option when it comes to precision and noise rejection.

The direct application of a Sb-SDFT may lead to inaccuracies due to the spectral leakage

phenomenon, common pitfall inherited by every DFT-based method. Spectral leakage arises

when the sampling process is not synchronized with the fundamental tone of the signal

under analysis and the DFT is computed over a noninteger number of cycles of the input

signal. In this sense, a unified small-signal system model is presented, which can be used to

design a generic adaptive frequency loop that is based on a variable sampling period tech-

nique. The VSPT allows to obtain a sampling frequency coherent with the fundamental

frequency of the analyzed signal, avoiding the error introduced by the spectral leakage

phenomenon.
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