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Abstract

The intrinsic properties of holograms make 3D holographic imaging the best candidate
for a 3D display. The holographic display is an autostereoscopic display which provides
highly realistic images with unique perspective for an arbitrary number of viewers,
motion parallax both vertically and horizontally, and focusing at different depths. The
3D content generation for this display is carried out by means of digital holography.
Digital holography implements the classic holographic principle as a two-step process of
wavefront capture in the form of a 2D interference pattern and wavefront reconstruction
by applying numerically or optically a reference wave. The chapter follows the twomain
tendencies in forming the 3D holographic content—direct feeding of optically recorded
digital holograms to a holographic display and computer generation of interference
fringes from directional, depth and colour information about the 3D objects. The focus
is set on important issues that comprise encoding of 3D information for holographic
imaging starting from conversion of optically captured holographic data to the display
data format, going through different approaches for forming the content for computer
generation of holograms from coherently or incoherently captured 3D data and
finishing with methods for the accelerated computing of these holograms.

Keywords: holographic display, computer-generated holograms, phase-added stereo-
gram, holographic printer, spatial light modulator

1. 3D capture and 3D content generation by digital holography

Three-dimensional (3D) displays are the next generation displays. The claim for 3D imaging is

indisputable in mass television, game industry, medical imaging, computer-aided design,

automated robotic systems, air traffic control, education and cultural heritage dissemination.

The ultimate goal of 3D visual communication is 3D capture of a real-life scene that is followed

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



by creating its scaled exact optical duplicate at a remote site instantaneously or at a later time

moment [1]. Tracking the development of 3D imaging devices from Wheatstone stereoscope

designed in 1830 to modern full HD 3D displays with glasses (Figure 1) reveals some memo-

rable periods of booming public interest to this area, e.g. the 3D theatres boom observed in

1950 as a counterpoint to the increasing popularity and commercialization of the television or

the last years reaction to the ‘Avatar’ movie. Multiple parallax 3D display technology has

evolved to full-parallax displays for a naked eye observation as integral imaging displays [2]

and super-multi-view displays [3]. However, since invention of holography by Dennis Gabor

in 1948 [4] and the first holographic 3D demonstration by Emmett Leith and Juris Upatnieks in

1964 [5], the consumer public has high expectations for a truly holographic display in view that

holographic imaging is the best candidate for 3D displays.

Holography is the only imaging technique which can provide all depth cues. High quality of

3D imaging from analogue white-light viewable holograms is well known [6]. They provide a

wide viewing angle due to the very fine grain size of the holographic emulsions. Realistic

images can be viewed by an arbitrary number of viewers with unique perspectives. Motion

parallax both vertically and horizontally and tilting of the head are possible. The viewer is

capable of focusing at different depths. There are no convergence-accommodation conflict and

discontinuities between different views as for multiple parallax displays. Holographic imaging

allows for building autostereoscopic displays. To realize a holographic display, the 3D scene

description should be encoded as two-dimensional (2D) holographic data. The 3D content

generation is carried out by means of digital holography [7] based on the classical holographic

principle. According to it, holography is a two-step process enabling storing and reconstruc-

tion of a wavefront diffracted by 3D objects. The hologram records as a 2D intensity pattern the

Figure 1. History of 3D displays with some of the major events depicted as a diagramwith years along the horizontal axis

and intensity of the public interest along the vertical axis.
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interference of this wavefront with a mutually coherent reference wave as depicted schemati-

cally in Figure 2. The wave field from the object is characterized by a complex amplitude,

Oðx, yÞ ¼ aOðx, yÞ exp ½jϕOðx, yÞ�, where aOðx, yÞ and ϕOðx, yÞ are the amplitude and phase of

the object beam, respectively. Interference of Oðx, yÞ and the mutually coherent reference beam

Rðx, yÞ ¼ aRðx, yÞ exp ½jϕRðx, yÞ� results in four terms superimposed in the hologram plane

(x, y):

IHðx, yÞ ¼ jOðx,yÞ þ Rðx,yÞj2

¼ Oðx, yÞO�ðx, yÞ þ Rðx, yÞR�ðx, yÞ þOðx, yÞR�ðx, yÞ þ Rðx, yÞO�ðx, yÞ
(1)

where the asterisk denotes a complex conjugation. The sum of intensities of the object and

reference beams gives the zero-order term. The last two terms are the +1 and –1 diffraction

orders and contain the object wavefront information. The object field OR
�
R ¼ O or

O
�
RR

� ¼ O
� brings into focus the virtual or the real image when IHðx, yÞ is multiplied by

Rðx, yÞ or its conjugate. These twin images are separated for the off-axis geometry where the

object and reference beams subtend an angle θ, and overlap in inline geometry at θ ¼ 0.

Digital holography grew from a purely academic idea into a powerful tool after the recent

progress in computers, digital photo-sensors (CCDs or CMOS sensors) and spatial light mod-

ulators (SLMs). The capability of digital holography for digital analysis and synthesis of a light

field forms two mutually related branches. The branch dedicated to analysis comprises

methods for optical recording of holograms using digital photo-sensors. The holograms are

sampled and digitized by the photo-sensor, stored in the computer and numerically

reconstructed using different approaches to describe diffraction of light from the hologram

and free space propagation to the plane of the reconstructed image [8]. Thus, capture of both

amplitude and phase becomes possible enabling numerical focusing at a variable depth and

observation of transparent micro-objects without labelling [9]. The holographic data are in the

Figure 2. Schematic representation of holographic recording.
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form of a real-valued 2D matrix of recorded intensity according to Eq. (1). In this branch,

different techniques have emerged for the two decades of existence of digital holography as

(i) digital holographic microscopy with a plane wave or a point-source illumination [10, 11];

(ii) optical diffraction tomography with multi-directional phase-shifting holographic capture

[12]; (iii) infrared holography in the long wavelength region for capture of large objects [13];

(iv) determination of sizes and locations and tracking of particles in a 3D volume [14]. Feature

recognition based on digital holography has been proposed [15]. A lot of efforts were dedi-

cated to instrumental or software solutions of the twin image problem [16].

The branch dedicated to synthesis of a light field comprises methods for computer generation

of holograms [17] which are fed to some kind of SLMs for optical reconstruction of the images

they encode. Computer-generated holograms (CGHs) are used for holographic displays [18],

holographic projection [19] and diffractive optical elements [20]. In principle, the CGHs pro-

vide the only means to generate light fields for virtual 3D objects. A CGH is a real-valued 2D

matrix of amplitude or phase data; it may have also binary representation.

Both branches are closely related to the task of direct transfer of optically captured digital

holograms to a holographic display. To realize the chain 3D capture—data transfer—holo-

graphic display digital holography requires coherent light and 2D optical sensors and SLMs

with high resolution and big apertures. The 4D imaging, when the time coordinate, is added to

the data further aggravates the task of building a holographic display because the latter needs

much higher resolution and much more information capacity than other types of 3D displays.

Generally speaking, there are two ways for 3D content generation for holographic displays:

(i) conversion of optically captured holographic data; (ii) computer generation of holograms.

Furthermore, we discuss these two main tendencies—direct feeding of optically recorded

digital holograms to a holographic display and computer generation of interference fringes

from directional, depth and colour information about the 3D objects—on the basis of our

experience in forming the holographic content.

2. 3D content generation from holographic data

The ultimate goal of digital holography is to build a system for 3D scene capture, transmission

of captured data and 3D optical display. Although based on clear theoretical grounds given by

Eq. (1), it is hard to fulfil this task because of limitations encountered at digital implementation

of the holographic principle due to the discrete nature of photo-sensors and display devices,

their small size and low spatial resolution. The modern devices are characterized with a pixel

periods from 1 to 20 μm and active areas from 1 up to 2–3 cm2. 3D content generation from

optically captured digital holograms should include three steps: (i) multi-view capture by a set

of cameras or by sequential recording from different perspectives (Figure 3); (ii) conversion of

the captured data to a display data format; (iii) feeding the data to a display from many SLMs

to enlarge the viewing angle (Figure 3).

A key problem of digital holographic capture and imaging is the very small value of the

maximum angle between the object and reference beams which satisfies sampling requirement
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for the spatial frequency at current low spatial resolution of electrically addressable devices. In

theory, the photo-sensor must resolve the fringe pattern formed by interference of the waves

scattered from all object points with the reference wave. The holographic display should

support some space-bandwidth product with regard to limitations of the human visual sys-

tem. The maximum angle, θmax, between the reference and the object beams that satisfies the

Whittaker-Shannon sampling requirement for a wavelength λc,d, and a pixel period Δc,d,

where ‘c’ and ‘d’ are attributed to capture and display devices, is found from

sin
θmax

2

� �

¼

λc,d

4Δc,d
(2)

The limitation set by Eq. (2) means capture of small objects at a large distance from the camera

and a small viewing angle at optical reconstruction. If the object lateral size D is much greater

than the sensor size, the minimum distance between the object and the photo-sensor is about

zmin ¼ DΔc=λc. Usage of coherent light seriously restricts the viewing angle of the holographic

display and the size of the reconstructed image [21]. A planar configuration of many SLMs

allows for visualization of larger objects [22] but the problem with the small viewing angle

remains. Enlarging the viewing angle for pixelated SLMs by using higher diffraction orders

and spatial filtering is proposed in Ref. [23]. Under coherent illumination, a circular arrange-

ment of SLMs puts less severe requirements to the space-bandwidth product of the display

and supports full-parallax binocular vision at an increased viewing angle. Different circular

configurations have been recently proposed [24–26].

Effective operation of the holographic imaging system requires maintaining the consistent

flow of data through capture, transmission and display blocks. So the other problem of 3D

content generation is non-trivial mapping of the data from 3D holographic capture with non-

overlapping camera apertures to arbitrary configuration of display devices (Figure 3). In the

general case, the wavelength, the pixel period and the pixel number differ at capture and

display sides, i.e. λc≠λd,Δc≠Δd,Nc≠Nd. This alters the reconstruction distance and the lateral

and longitudinal dimensions of the reconstructed volume [27]. Another difficulty arises from

the requirement the set of digital holograms captured for multiple views of the 3D object to be

consistent with the display configuration built from many SLMs. Although both the amplitude

and the phase can be retrieved from the captured holograms, the type of the SLM entails

Figure 3. Schematic diagram of multi-view holographic capture by many digital photo-sensors and multi-view optical

reconstruction after mapping the 3D contents to a display set of SLMs.
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encoding the holographic data only as amplitude or as phase information. To illustrate the

non-triviality of 3D content generation from optically recorded digital holograms, we consider

two characteristic examples from our experience with data mapping. The detailed description

of the capture and display systems is given in Refs. [25, 28]. Here, we focus only on data

transfer from the holograms to SLMs.

In the first example, the capture parameters substantially differed from the parameters on the

display side. The mapping was done for a circular holographic display under visible light

illumination when the input data were extracted from a set of holograms recorded at 10.6 μm

[29]. The interest in capturing holograms in the long wavelength infrared region is due to the

shorter recording distance, larger viewing angle and less stringent requirements to stability of

the system. The object was a bronze reproduction of the Benvenuto Cellini Perseus sculpture

with a height of 33 cm [28]—a large object for digital holography. Nine off-axis digital holo-

grams were captured by rotating the object with an angular step of 3° using an ASi (amor-

phous silicon) thermal camera with Nc ¼ nxc ·nyc ¼ 640· 480 pixels and Δc ¼ 25μm. The

object beam interfered with a spherical reference wave given in paraxial approximation in the

plane of the photo-sensor as Rcðxc, yc; rcÞ ¼ exp ½−jπðx2c þ y2c Þ=ðλcrcÞ�; the radius rc ¼ zo=2 was

equal to the half of the distance zo ¼ 0.88 m between the object and the photo-sensor. The nine

phase-only SLMs in the display set-up were characterized by Nxd ·Nyd ¼ 1920 x 1080 pixels, a

pixel period Δd ¼8 μm and phase modulation from 0 to 2π; the illuminating wavelength was

λd ¼ 0.532 μm. The SLMs, arranged in a circular configuration, were illuminated with a single

astigmatic expanding wave by means of a cone mirror whose apex was at a distance Ds from

the point light source positioned on the line of the cone mirror axis [25]:

Wðxd, ydÞ ¼ exp −j
2π

λd

x2d
Dh

� �

exp −j
π

λd

ðyþ hSLM=2Þ2

Dh þDs

" #

(3)

where Dh is the distance from the cone mirror axis to the SLM centres and hSLM is the SLM

height. The reconstructed images were combined above the cone mirror by a slight tilt of the

SLMs at a distance of 35 cm from each SLM. A linear stretching of images with a coefficient,

m ¼ Δd=Δc, occurs. A reference wave at a different wavelength, λd, and a different radius, rrec,

yields a new reconstruction distance zi [30]:

1

zi
¼

1

rrec
�

μ

m2

1

zo
−

1

rc

� �

(4)

and the reconstructed image undergoes longitudinal and lateral magnifications:

Mlong ¼
dzi
dzo

¼
zi
zo

� �2 μ

m2
, Mlat ¼

μ

m

zi
zo

(5)

where μ ¼ λc=λd. Generation of 3D contents for each SLM was based on Eq. (1) and included:

(i) retrieval of the phase ϕOðx, yÞ of the object field from the captured holograms; (ii) compen-

sation for the non-plane wave illumination of the SLMs; (iii) adjustment of the reconstruction
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position to the mandatory distance of 35 cm. The phase ϕOðx, yÞ was retrieved by filtering in

the spatial frequency domain to extract only the real image in Eq. (1) and to suppress the zero-

order term and by multiplying the filter output with the numerical reference wave

R
�
c ðxd, yd, rrecÞ taken with a new radius, rrec ¼ zi=2 ¼ zom

2=μ in the display coordinates

xd ¼ lΔd, yd ¼ nΔd; l ¼ 1, 2::Nxd, n ¼ 1, 2::Nyd. The amplitude was discarded in the object field

and it became Hðxd, ydÞ ¼ exp ½jϕOðxd, ydÞ�. To compensate for the non-symmetrical illumina-

tion, the phase of Hðxd, ydÞW
�ðxd, ydÞ was fed to each SLM. The holograms were placed at the

centres of the SLMs as depicted in Figure 4. Shining Wðxd, ydÞ on the SLMs with HW

represented as a phase creates reconstruction at the plane wave illumination when rrec ! ∞ in

Eq. (4). The reconstruction distance in this case is zi ¼ 1.78 m. The reconstruction is stretched

longitudinally and squeezed laterally at Mlong ¼ 2.04 and Mlat ¼0.32. A digital converging

lens, L1ðxd, ydÞ ¼ exp fjð2π=λdÞðx
2
d þ y2dÞ=ρ1g with a focal distance of ρ1 ¼ 43.5 cm was intro-

duced to adjust the reconstruction distance to 35 cm. The image was separated from the strong

non-diffracted beam caused by the pixelated nature of the SLMs by multiplying the array with

the holographic data with a tilted plane wave, PðydÞ ¼ exp ðj2πyd sinθt=λdÞ, where θt ¼ 2∘.

The phase of W�ðxd, ydÞ was attached to the pixels outside the hologram plus the phase of the

lens L2ðxd, ydÞ ¼ exp fjð2π=λdÞðx
2
d þ y2dÞ=ρ2g with ρ2 ¼ 35 cm to gather the light reflected from

these pixels below the reconstructed image. The arrangement of the wave fields on the surface

of each SLM is depicted in Figure 4 (actually, the phases of these fields were fed to each SLM).

The processing allowed for combining the images created by all SLMs into a single reconstruc-

tion which could be viewed smoothly within an increased viewing angle of 24°. The video

with the reconstruction can be found in reference [29]. The most remarkable fact of this data

mapping from far infrared capture to a circular display was that we achieved more or less

same longitudinal and lateral magnifications Mlong ¼ 0.078 and Mlat ¼0.062 of the reconstruc-

tion volume.

The second example of data mapping is related to visualization of transparent objects by a holo-

graphic display with phase encoding of the input data. The object beam Oðx, yÞ in this case was

provided by simulation of a noiseless diffraction tomography experiment in which transmission

Figure 4. Schematic diagram of the chain holographic capture—data transfer—holographic display for far-infrared

capture of a large object [29] and visible light visualization [25].
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holograms of weakly refracting transparent object with a size of 25 μm were recorded by a

phase-shifting technique [31]. The object had refractive index variation from 1 to 1.004 but due

to its small size it gave rise to a strong diffraction. The capture parameters were: λc ¼ 0.68 μm,

Δc ¼ 2.4043 μm, Nc ¼ 200· 200, zo ¼ 68 μm [31]; the display parameters were as above. Direct

optical reconstruction from the captured phase-only data failed. Usage of the full complex

amplitude Oðx, yÞ provided numerical reconstruction as a concise 3D shape resembling closely

the 3D refractive index distribution within the object (Figure 5). Omission of the amplitude,

aOðx, yÞ, destroyed entirely this 3D shape. The observed severe distortions showed the neces-

sity for phase modification in the hologram plane. This was done iteratively by applying the

Gerchberg-Saxton algorithm at known correct complex amplitude at the reconstruction plane.

Quality of the numerical reconstruction from the modified phase was satisfactory. Thus the

problem with optical reconstruction was solved. Introduction of a digital magnifying lens at

the SLM plane enlarged the reconstructed object to 6 mm [31]. This gives about 240 times

magnification in comparison with its original size.

3. Computer generation of 3D contents for holographic imaging

3.1. Methods for computer generation of holographic fringe patterns

A CGH is a fringe pattern that diffracts light into a wavefront with desired amplitude and

phase distributions and seems to be the most appropriate choice for 3D content generation.

This wavefront can be created both for real and virtual objects. The goal in developing the

CGHs input data for a 3D holographic display is to have real-time generation of large-scale

wide-viewing angle full-parallax colour holograms which provide photorealistic reconstruc-

tion that can be viewed with both eyes. These CGHs must support a motion parallax and the

coupled occlusion effect expressed in the visible surface change according to the viewer

position. For the purpose, a CGH must have a very large number of samples displayed on a

device with high spatial resolution. So the most important requirements to CGH synthesis are

computational efficiency and holographic image quality. The CGH computation involves

digital representation of the 3D object which includes not only its geometrical shape but also

texture and lighting conditions, simulation of light propagation from the object to the CGH

Figure 5. Numerical reconstructions of a virtual transparent object given in the left section of the figure as a 3D

distribution of the refractive index nO (green colour, nO =1.001; red, nO = 1.002; yellow, nO =1.003; blue, nO = 1.004 [31]).
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plane, and encoding of the fringe pattern formed by the interference of the object light

wavefront with a reference beam in the display data format.

There are two basic frameworks for CGH generation depending on the mathematical models

of 3D target objects: (i) point cloud algorithms and (ii) polygon-based algorithms. In the point-

cloud method [32], the 3D object is a collection of P self-luminous point sources. The method

traces the ray from a source ‘p' with spatial coordinates ðxp, yp, zpÞ to the point ðξ, ηÞ on the

hologram plane at z ¼ 0 and is sometimes referred to as a ray-tracing approach; the distance

between both points is rp ¼
h

ðξ−xpÞ
2 þ ðη−ypÞ

2 þ z2p

i1=2

(Figure 6). Each point source emits a

spherical wave with an amplitude, ap, and an initial phase, φp. The amplitude and phase

distributions in the point cloud can be controlled individually. The fringe patterns for all object

points are added up at the hologram plane to obtain the CGH. The method is highly flexible

due to ability to represent surfaces with arbitrary shapes and textures, but it is very time

consuming.

Polygon-based representation is a wave-oriented approach [33–35]. The object is a collection of

P planar segments of a polygonal shape (Figure 7). Each polygon is a tilted surface source of a

light field calculated by propagation of its angular spectrum of plane wave decomposition [27]

using a fast Fourier transform (FFT). An angular-dependent rotational transformation in the

spectral domain is applied to find the spectrum in a plane parallel to the hologram in the

global coordinate system from the spectrum in the tilted plane of the local coordinate system

ðxp, yp, zpÞ, p ¼ 1, 2:::P for each polygon [36, 37]. The z-axis in the local coordinate system is

along the vector to the polygon surface. The object field is found after FFT of the final angular

spectrum which is a sum of the transformed angular spectra of the polygon fields in the global

Figure 6. CGH synthesis from a point cloud model.

Figure 7. CGH synthesis from a polygon-based model.
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coordinate system. Computation of a polygon field is slower than that of a spherical wave

emitted by a point light source, but the number of polygons is much smaller than that of point

sources and the total computation time is shorter compared to the point cloud approach. The

traditional polygon-based method evolved to analytical implementation when the angular

spectrum of a triangle of arbitrary size, shape, orientation and location in space is analytically

calculated from the known spectrum of a reference triangle [38–40]. The analytical method

eliminates the need to apply FFT for each polygon.

The CGH synthesis of real objects can be carried out by 3D capture based on holographic

means or structured light methods under coherent or incoherent illumination [41]. The output

from, e.g. profilometric/tomographic reconstruction can be converted into a point cloud which

allows for CGHs synthesis. The substantial advantage is the option to adapt the captured data

to any holographic display. Incoherent capture of multiple projection images to generate

holographic data has a lot of advantages such as incoherent illumination, no need of interfer-

ometric equipment and display of large objects. The concept was advanced 40 years ago in [42]

by generating a holographic stereogram (HS). High quality of large format HSs as a ray-based

display, especially those printed by HS printers, are well known [43]. The input data for HS

imaging are composed from colour and directional information. This causes a decrease of

resolution for deep scenes and blurring. Introduction of a ray-sampling plane close to the

object and computation of the light wavefront from this plane to the hologram is proposed in

Ref. [44]. Synthesis of a full-parallax colour CGH from multiple 2D projection images captured

by a camera scanned along a 2D grid is proposed in Refs. [45, 46]. The approach given in Ref.

[46] relies on calculation of the 3D Fourier spectrum and was further improved [47] by

developing a parabolic sampling of the spectrum for data extraction and needing only 1D

camera scanning. Methods in which directional information from projection images is com-

bined with a depth map are under development [48–50].

Over the last decade, the efforts were focused on improving image quality by different render-

ing techniques and on accelerating the CGH computation. The holographic data—amplitude

and phase—should encode occlusions, materials and roughness of the object surface, reflec-

tions, surface glossiness and transparency. It is difficult to create an occlusion effect using 3D

object representation as a collection of primitives—points or polygons—due to the indepen-

dent contribution of all primitives to the light field. To decrease the computational cost of

occlusion synthesis, a silhouette mask approach has been proposed in the polygon-based

computation [35]. The mask produced by the orthographic projection of the foreground objects

blocks the wavefront of light coming from background objects. The method allows for synthe-

sis of a very large CGH [35] but is prone to errors at oblique incidence. Computation is

accelerated if occlusion is included in a light-ray rendering process from multiple 2D projec-

tion images during the synthesis of a CGH as an HS [51]. As the method suffers from decrease

of angular resolution in deep scenes, accuracy is improved by processing occlusion in the light-

ray domain along with sampling the angular information from the projection images. This is

done in a virtual ray-sampling plane [52, 53]. Furthermore, the sampled data are converted by

Fourier transform to the object beam complex amplitude. Considering occlusion as geometric

shadowing [54], effective CGH synthesis can be carried out by casting from each sample at the

hologram plane, a bundle of rays at uniform angular separation within the diffraction angle
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given in Eq. (2). Such approaches are described in Refs. [54–56] with representing the 3D

objects as composed from planar segments parallel to the hologram plane [55] or performing

a lateral shear of the 3D scene to use the z-buffer of the graphic processing unit (GPU) for the

rays with the same direction to accelerate computation [54]. Occlusion, texture and illumina-

tion issues can be handled by computer graphics techniques. Their effective use is possible

when the ray casting is applied by spatially dividing the CGH into a set of sub-holograms and

building different sets of points or polygons for them [57–59].

At specular reflection, the viewer is able to see only part of the object while the diffuse

reflection sends light rays in all directions. Both types of reflections must be encoded in a

CGH by adopting different reflection models to represent texture of the objects [60–62]. In the

CGH synthesis, the luminance is encoded in the amplitude while reflectance is incorporated as

a phase term. The task of representing reflection becomes rather complicated at non-plane

wave illumination or in the case of background illumination [60]. A perfect diffuse reflection is

achieved by adding a uniformly distributed random phase. Unfortunately, this causes speckle

noise at reconstruction [63]. A variety of methods have been proposed for fast synthesis of

CGHs as look-up table methods with pre-computed fringes [63, 64], recurrence relation

methods instead of directly calculating the optical path [65], introduction of wavefront record-

ing plane [66], HS methods and many others. Hardware solutions as special-purpose com-

puters like ‘Holographic ReconstructioN (HORN)’ [67] or GPU computing [32, 68–70] are very

effective for fast calculation because the pixels on a CGH can be calculated independently.

3.2. Phase-added holographic stereogram as a fast computation approach

Effective acceleration of computation is achieved in coherent stereogram (CS) algorithms when

the CGH is partitioned into segments and the directional data for each segment are sampled

(Figure 8). A similar idea has been advanced in the diffraction-specific fringe computation by

Lucente [71] with partitioning the hologram into holographic elements called hogels and each

hogel having a linear superposition of weighted basic fringes corresponding to the points in a

point cloud. Each segment in the CS emits a bundle of light rays that form a wavefront as a set

of patches of mismatched plane waves due to lack of depth information. This drawback was

overcome by adding a distance-related phase [72]. The phase-added stereogram (PAS) is

Figure 8. Synthesis of a CGH as a coherent stereogram with partitioning the hologram plane into square segments and

sampling the directional information.
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computationally effective if implemented by FFT. To clarify this point, we depict schematically

the PAS computation with FFT in Figure 9.

In CS and PAS algorithms, the hologram is partitioned into M·N equal square segments with

S ·S pixels. The object is described by a point cloud with P points. The segment size, ΔdS·ΔdS,

where Δd is the pixel period at the hologram plane, is chosen small enough to approximate the

spherical wave from a point as a plane wave given by a 2D complex harmonic function within

the segment. This approximation means that the contribution from a point source is constant

across the segment and is determined with respect only to its central pixel. In this way, the input

data and computation time are substantially reduced; for the segment ðm, nÞ,m ¼ 1::M, n ¼ 1::N

the contribution from the point ‘p' comprises spatial frequencies ðu
p
mn, v

p
mnÞ of the plane wave at a

wavelength λd, the distance between the point ‘p' and the central point, r
p
mn, the initial phase of

the sinusoid, Φp
mn. The spatial frequencies are determined by the illuminating angles,

ðΘp
mn,Ω

p
mnÞ, of the ray coming from the point ‘p' to the central point of the segment ðm, nÞ

and angles θRξ and θRη of the plane reference wave with respect to ξ and η axes at the

hologram plane as follows: u
p
mn ¼ ð sinΘp

mn− sinθRξÞ=λd, v
p
mn ¼ ð sinΩp

mn− sinθRηÞ=λd. The

phasesΦp
mn,m ¼ 1::M, n ¼ 1::N ensure matching of the wavefronts of the plane waves diffracted

from all segments and may contain the initial phase φp and also the distance-related phase

2πr
p
mn=λd. For all object points, the fringe pattern across the segment is approximated as a

superposition of 2D complex sinusoids. Computation of this pattern is carried out by placing

the amplitudes of the sinusoids to the corresponding frequency locations in the spatial fre-

quency domain and by applying an inverse Fourier transform to the spectrum. FFT implemen-

tation is the second step for acceleration of CGH computation (Figure 9). The FFT step moves

the spatial frequencies to the nearest allowed values in the discrete frequency domain. The

complex amplitudes remain the same. The two-step procedure is repeated for each segment to

compute the CGH.

The PAS approximation should yield a wavefront close to the wavefront provided by the

Rayleigh-Sommerfeld diffraction model that treats the propagating light from a point as a

spherical wave. The complex amplitude in the reference model is given by:

ORS
O ðξ, ηÞ ¼ ∑

P

p¼1

Ap

rp
exp j

2π

λd
rp

� �

,Ap ¼ ap exp ðjφpÞ (6)

Figure 9. Schematic representation of the synthesis of a CGH within a segment.

Holographic Materials and Optical Systems194



We applied PAS computation to generate digital input contents for a wavefront printer devel-

oped by us for printing a white-light viewable full-parallax reflection hologram [73, 74]. The

printed hologram was recorded as a 2D array of elemental holograms. The CGH for each

elemental hologram was fed to amplitude SLM with 1920 + 1080 pixels. The object beam

encoded in the CGH was extracted by spatial filtering and demagnified using a telecentric lens

system. Unlike the HS printers [43], the wavefront printer uses full holographic data. That is

why the synthesis of a large number of elemental holograms, e.g. 100 + 100, takes a very long

time. This requires a fast computation method that provides quality of imaging close to the

reference model. We solved this task by developing a fast PAS (FPAS) method [75] as a further

elaboration of the already existing PAS methods. Usage of the FFT is crucial for fast PAS

implementation, but this may affect negatively the quality of imaging due to spatial frequen-

cies mapping to a predetermined coarse set of discrete values. The sampling step, 1=SΔd, in the

frequency domain could not be made small due to necessity to approximate the reference

model. Thus, the fringe pattern generated by the PAS with FFT inaccurately steers the

diffracted light. The improvements developed to compensate the error caused by the fre-

quency mapping are based on the two possible ways for steering control—phase compensa-

tion and finer sampling of the spectrum attached to each segment. The functional form of the

developed approximations is shown in Table 1 which gives the fringe pattern at a single

spatial frequency in the segment ðm,nÞ; ðξcmn, η
c
mnÞ is the central point of the segment and the

following notation is introduced for the complex sinusoid:

Fðupmn, v
p
mnÞ ¼ ðAp=r

p
mnÞ exp

n

j2π½upmnðξ−ξ
c
mnÞ þ vpmnðη−η

c
mnÞ�

o

(7)

The first improvement CPAS (compensated PAS) [76] performed some steering correction by

adding the phase, which includes the difference between the spatial frequencies in the contin-

uous and the discrete domains. The CPAS provided a better reconstructed image than the PAS

with FFT at almost the same calculation time. Finer sampling was proposed in the accurate

PAS (APAS) [77] by computing the FFT in an area which exceeds the segment and by properly

truncating the larger-size IFFT output. Phase compensation and directional error reduction by

Fringe pattern of the method

CS: Fðu
p
mn, v

p
mnÞ

PAS (no FFT): Fðu
p
mn, v

p
mnÞ exp ðjkr

p
mnÞ

PAS (FFT): Fðû
p
mn, v̂

p
mnÞ exp ðjkr

p
mnÞ

CPAS:Fðû
p
mn, v̂

p
mnÞ exp ðjkr

p
mnÞ · exp fj2π½ðûp

mn−u
p
mnÞðξ

c
mn−xpÞ þ ðv̂

p
mn−v

p
mnÞðη

c
mn−ypÞ�g

APAS: Fðû ′p
mn, v̂

′p
mnÞ exp ðjkr

p
mnÞ

ACPAS: Fðû ′p
mn, v̂

′p
mnÞ exp ðjkr

p
mnÞ · exp fj2π½ðû ′p

mn−u
p
mnÞðξ

c
mn−xpÞ þ ðv̂ ′p

mn−v
p
mnÞðη

c
mn−ypÞ�g

FPAS: Fðû ′p
mn, v̂

′p
mnÞ exp ðjkr

p
mnÞ · exp fj2π½u

p
mnðξ

c
mn−xpÞ þ v

p
mnðη

c
mn−ypÞ�g

Spatial frequencies: û
p
mn ¼ lu

SΔd
, v̂

p
mn ¼ lυ

SΔd
; − S

2 ≤lu, lυ≤
S
2; û

′p
mn ¼ lu

S′Δd
, v̂ ′p

mn ¼ lv
S′Δd

; − S′

2 ≤lu, lυ≤
S′

2 , S
′ < S

Table 1. Single frequency fringe pattern in the segment.
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finer sampling were merged into a single step in the algorithm ACPAS [57] which yielded

quality of reconstruction very close to the reference model. The best results are provided by the

FPAS algorithm which is characterized with better phase compensation than the previous

methods. This was confirmed by quality assessment with conventional image-based objective

metrics as intensity distribution and peak signal-to-noise ratio [75] for reconstruction of a

single point and also by good quality of reconstruction from white-light viewable colour holo-

grams (Figure 10) printed by our wavefront printing system [73] on an extra-fine grain silver-

halide emulsion Ultimate08 [78]. The CGH computed by the FPAS algorithm for each elemen-

tal hologram was displayed on an amplitude type SLM. The demagnified pixel interval was

0.42 μm at the plane of the hologram and gives a diffraction angle of � 39.3°. For uniform

illumination of the CGH on the SLM without decreasing too much the laser beam intensity we

used only 852 + 852 pixels in the SLM to project CGHs. Thus, the size of the elemental

hologram became equal to 0.38 mm by 0.38 mm. The printed holograms are shown in Figure 10;

their size is 5 cm + 5 cm and 9 cm + 9 cm. The smaller hologram consisted of 131 + 131

elemental holograms. The segment size for calculating the CGH fed to a given elemental

hologram was 32 + 32 pixels while the FFT computation area was 128 + 128 pixels, and each

elemental hologram comprised more than 700 segments.

4. Conclusion

Holographic imaging is a 3D imaging with all depth cues and inherent vision comfort for the

viewer. That is why the last decade was marked by rapid development of methods of 3D capture

and 3D content generation for holographic display, holographic projection and holographic

printing. In the chapter, we considered implementation of the holographic imaging by digital

means when the input data are in the form of a 2D real-valued matrix, which should encode the

light wavefront coming from the 3D scene. This wavefront can be extracted from optically

recorded holograms or synthesized numerically using various 3D scene descriptions. Holo-

graphic recording by digital photo-sensors or computer generation of holograms for pixelated

SLMs imposes severe limitations on the space-bandwidth product of the capture/display system.

We discussed two cases of data mapping from holographic capture to holographic display to

Figure 10. Photographs of reconstruction from printed holograms: (a)–(c): different views of a churchmodel; (d): 9 cm + 9 cm

printed hologram of a bunch of flowers.
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show that holographic data transfer from optically recorded digital holograms to the data format

of a given display is not a trivial task due to inevitable distortions introduced as a result of

different capture and display parameters. Representing 3D contents as computer-generated

holograms seems more flexible and promising way to create input data for holographic displays.

The main requirements are to improve the quality of imaging and computational efficiency. We

presented an algorithm for fast computation of holograms and showed the good quality of

imaging it provided in holographic printing of white-light viewable reflection holograms.
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