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Almost Global Synchronization of Symmetric 
Kuramoto Coupled Oscillators 

Eduardo Canale and Pablo Monzón 
Facultad de Ingeniería, Universidad de la República 

Uruguay  

1. Introduction 

A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled 
oscillators that gave a formal framework to some of the works of A.T. Winfree on biological 
clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea 
that several oscillators can interact in a way such that the individual oscillation properties 
change in order to achieve a global behavior for the interconnected system. The Kuramoto 
model serves as a good representation of many systems in several contexts: biology, 
engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), 
Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et 
al. (2004), Moshtagh et al. (2005)]. 
Recently, many works on the control community have focused on the analysis of the 
Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective 
synchronization of the individuals is particularly important in many applications 
representing coordination, cooperation, emerging behavior, etc. Local stability properties of 
the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that 
little attention has been devoted to the influence of the underlying interconnection graph on 
the stability properties of the system. The reason could be the fact that the local stability 
does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global 
dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. 
(2006)]. In these works, the relevance of the interconnection graph of the system was hinted. 
In the present chapter, we go deeper on the analysis of the relationships between the 
dynamical properties of the system and the algebraic properties of the interconnection 
graph, exploiting the strong algebraic structure that every graph has. We step forward into a 
classification of the interconnection graphs that ensure almost global attraction of the set of 
synchronized states. 
In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general 
properties and the notion of almost global synchronization; in Section 3 we review some 
basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis 
are presented in Sections 4 and 5; Section 6 gives some examples and applications of the 
main results; Section 7 presents the problem of classification of almost global synchronizing 
topologies. 
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2. The Kuramoto model  

In the 1970s, Kuramoto proposed a model to describe a population of weakly coupled 
oscillators. In this model, each individual oscillator is described by its phase and the 
coupling between two individuals is a function of the phase difference. The general 
Kuramoto model takes the following form [Strogatz (2000)]: 

( ) Ni

N

j

jiijii ,...,1,

1

=−Γ+= ∑
=

θθωθ$  

where ijΓ  are the interaction functions that represent the coupling and N is the total number 

of oscillators. Since each angle )2,0[ πθ ∈i , the corresponding state space is the N-

dimensional torus NT . We consider the particular case of sinusoidally coupled oscillators, 

 ( ) Ni
N

K

iNj

jiii ,...,1,sin. =−+= ∑
∈

θθωθ$  (1) 

where iN  refers to the set of index of agents that affect the behavior of agent i -the neighbors 

of i- and K is the strength of the coupling. We will assume that all the agents have the same 
natural frequency. So, with a suitable shift, and simplifying the notation by eliminating the 

factor 
N

K
 -this amount for to renormalizing time- we can write the previous model as 

 ( ) Ni
iNj

jii ,...,1,sin =−= ∑
∈

θθθ$  (2) 

We want to emphasize the following aspects of system (2): 

• The dynamic depends only on the phase difference of the oscillators. Then, there are 

several properties that are invariant under translations on the torus. For example, if θ  

is an equilibrium point, so is1 Nc 1.+θ  for every )2,0[ π∈c .  

• As was done by Kuramoto [Kuramoto (1984)], we associate the individual oscillator 
phases to points running around the circle of radius 1 in the complex plane. Then, each 

oscillator can be described by the unitary phasor ij
i eV

θ= . 

Equation (2) has always two kinds of trivial equilibria: 

• We call consensus or synchronization the state where all the phase differences are zero, 

i.e. the diagonal of the state space. Every consensus state is of the form Nc 1.=θ , with 

)2,0[ π∈c . We have a closed curve of consensus points. Observe that at a consensus 

point, all the associated phasors coincide. 

                                                                 

1 p1  denotes the column vector in 
pR  with all the elements equal to one. Analogously, p0  denotes 

the column vector in 
pR  with all the elements equal to zero. 
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• We say we have partial synchronization when all the phasors are parallel but they are not 
synchronized; i.e. most of the phases takes the value 0 (taking a suitable reference), but 

there are m agents with phase π± , for some Nm ≤< 20 . 

• The other equilibrium points have non-parallel phasors and we refer to them as non 
synchronized. 

Example 2.1: Consider the graph G shown at the left of Figure 1. A non synchronized 
equilibrium point of (2) with interconnection graph G is given by 

[ ]T180,0,09.19,90,91.160,09.19,90,95.160 −−−=θ  

and it is shown at the right of Figure 1 (the angles are measured in degrees).  ♦ 

 

Figure 1. Phasor representation of the equilibrium point θ  of Example 2.1. The underlying 

graph is shown on the left 

The key question we try to answer in this work is whether or not the system behavior of (2) 
reaches consensus, since this particular equilibrium may represent a desired behavior of the 
system. Recently, the Kuramoto model has received the attention of control theorists 
interested in the coordination and consensus of multi-agent systems (see [Jadbabaie et al 
(2004)] and references there in). We focus on the global properties of the consensus 
equilibrium. Since the system has many equilibria, we can not talk about global stability or 
global synchronization. But we may wonder if the system present the so called almost global 
stability property, that is, if the set of initial conditions that no lead to synchronization has 
zero Lebesgue measure. From an engineering point of view, this is a nice property [Rantzer 
(2001)], specially when it is combined with local stability. When the system has the almost 
global stability property, almost every initial condition leads to the synchronization of the 
system. So, we will use the expression almost global synchronization and the abbreviation 
a.g.s. 

2.1 General properties 
The following results are true for the general dynamic (2) 

Proposition 2.1: At any equilibrium point θ  of (2), it must be true that the phasors ∑
∈ iNh

hV  

and iV  are parallel in the complex plane, for every i. 

Proof: For Ni ,...,1= , consider the number  
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( ) ( ) ( )∑∑∑∑
∈∈∈

−

∈

−+−===

iii

ih

i Nh

ih

Nh

ih

Nh

j

Nh i

h
i je

V

V
θθθθα θθ

sin.cos  

Since θ  is an equilibrium point, iα is a real number and ii

Nh

h VV

i

.α=∑
∈

. ♦ 

Important consequences of Proposition 2.1 will be presented in further sections. 
Nevertheless, we can write a direct corollary. 

Corollary 2.1: Consider an agent i such that }{kN i = , ki ≠ . Then, at an equilibrium point 

θ , it must be true that ki θθ =  or πθθ += ki . ♦ 

For example, if the underlying graph is a tree (see Section 3), an iterative application of 
Corollary 2.1 shows that the only equilibria are full or partial synchronized points. 
To conclude this Section, we introduce the concept of phase-locking solution. We say that a 

solution )(tθ  is phase-locking when the phase difference between any two agents remains 

constant in time. It follows that for Ni ,...,1= , we have Ω=iθ$  and ii tt 0)( θθ +Ω= . For 

the particular case of 0=Ω , we have the equilibrium points described above. Phase-locking 

solutions with 0≠Ω  correspond to closed periodic orbits in NT  and play important roles 

in many contexts, such pace generators or muscular contractions in biology [Ermentrout 
(1985)], cyclic pursuit problems [Marshall et al. (2004)] or circular polarization generation 
with antennas [Dussopt et al. (1999). 

3. Brief review of algebraic graph theory 
We will use a graph to naturally describe the interconnection topology between the agents 
in the Kuramoto model. In this Section we review the basic facts on algebraic graph theory 
that will be used along the article. A more detailed introduction to this theory can be found 
in [Biggs (1983); Cvetkovic et al. (1979)]. A graph G consists in a set of n nodes or vertices 

{ }nvvVG ,...,1=  and a set of m links or edges { }meeEG ,...,1=  that describes how the nodes 

are related to each other. If n=1 the graph is called trivial. We say that two nodes are 

neighbors or adjacent if there is a link in EG  between them. If all the vertices are pairwise 

adjacent the graph is called complete or all to all and written nK . A walk is a sequence 

lvvv ,...,, 10  of adjacent vertices. If the vertices are different except the first and the last 

which are equal ( jivv ji <<≠ 0,  and lvv =0 ) the walk is called a cycle. A graph with no 

cycle is called acyclic. The graph is connected if there is a walk between any given pair of 
vertices. A tree is an acyclic connected graph and has m=n-1 edges. The graph is oriented if 
every link has a starting node and a final node. The topology of an oriented graph may be 
described by the incidence matrix B with n rows and m columns: 

⎪
⎩

⎪
⎨

⎧
−=

otherwise

nodeleavesedgeif

nodereachesedgeif

ij

ij

Bij

0

1

1
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Observe that 01 =n
TB . The semidefinite matrix BBL T=  is called the Laplacian of G and 

contains the spectral information of the graph. The vertex space and the edge space of G are the 
sets of real functions with domain VG and EG respectively, which we sometimes will 

identify, respectively, with the vectors spaces nR  and mR . Thus, the incidence matrix B can 
be seen as a linear transformation from the edge space to the vertex space. The kernel of B is 
called the cycle space of the graph G and its elements are called flows. Every flow can be 
thought as a vector of weights assigned to every link in a way that the total algebraic sum at 
each node is zero. The cycle space is spanned by the flows determined by the cycles: given a 

cycle 00 ,..., vvv l = , its associated flow )(efC  is 1±  if e leaves some iv  and reaches 1±iv  

and 0 otherwise. 

If the graph G is the union of two nontrivial graphs 1G  and 2G  with one and only one node 

iv  in common, then iv  is called a cut-vertex of G. A connected graph with more than two 

vertices and no cut-vertex is called 2-connected and it follows that for every pair of nodes, 
there are at least two different walks between them. A bridge is a link with the following 
particular property: if it is removed, the resulting graph is not connected. Given a subset 

VGV ⊂1 , its induced subgraph is 1V , with vertex set 1V  and edge set 

{ }1: VeEGe ofverticesjoins∈ . The maximal induced subgraphs of G with no cut-

vertex, are called the blocks of G. Every graph has the form of Figure 2: a collection of blocks 
joined by cut-vertices. For a complete graph, there is only one block, the graph itself. A tree 

can be seen as a collection of 2K .  

 

Figure 2. Representation of a graph as a union of blocks 

The complement G  of a graph G is another graph with the same nodes as G and such that 

two nodes are related in G  if and only if they are not related in G. It follows that GG +  is a 

complete graph, where the sum of two graphs with the same set of nodes is defined as a 
new graph which has all the edges of the original graphs. 

We will use the following vector notation: given a n-dimensional vector [ ]nθθθ ,...,1= , then 

[ ]jiji θθθ ,...,):( =  and ii θθ =)( . 

4. Symmetric Kuramoto model 
4.1. Dynamics 

The dynamic of a given agent depends on the sine of its phase differences with its 

neighbors. Symmetry is characterized by ik NkNi ∈⇒∈ . As in [Jadbabaie et al. (2003)], we 
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can build a directed graph G with the agents as nodes and the edges representing the 
relationships between agents. We only put one link between neighbors, with arbitrary 

orientation. Let M be the number of edges. We construct the incidence matrix MNB ×  as in 

previous Section. In matrix notation, the dynamic (2) can be written as 

 ( )θθ TBB sin.−=$  (3) 

We must emphasize that equation (3) does not depend on the particular orientation we have 
chosen for the links of the underlying graph. First of all, we show that the only phase-

locking solutions of a symmetric system are the ones with 0=Ω . 

Lemma 4.1: The only phase-locking solutions of system (3) are equilibrium points.  
Proof: Symmetry implies that the sum of all the phases is a constant magnitude of the 
system: 

( ) 0sin..1.1

11

=−===∑∑
==

θθθθ TTT
N

i

i

N

i

i BB
dt

d $$  

since 01. =TB . At a phase-locking solution, 01. =Ω=θ$ . Then, Ω=Ω== .1.1..10 NTT θ$  

So, 0=Ω  and we have an equilibrium point.  ♦ 

We remark that through this article, we deal with connected graph topologies. 

4.1. Stability analysis  
Local stability of the consensus point for system (3) was studied in [Jadbabaie et al. (2004)] 
using La Salle's invariance principle [Khalil (1996)]. The function  

 ( )θθ TT
M BMU cos.1)( −=  (4) 

is non-negative, and such that the system can be written in the gradient form: )(θθ U−∇=$ . 

In particular this implies that the derivative of U  along the trajectories is 
2

)( θθ $$ −=U . 

Hence, the function U  is non-increasing along the trajectories. Since 0≡U  at the 

consensus set, it is a local Lyapunov function for the consensus set, meaning that if we start 
near enough to this set, we will converge to it. Since the state space is compact, every 

trajectory has a non-empty ω-limit set [Guckenheimer et al. (1983)]. La Salle's result ensures 
that every trajectory goes to the set 

⎭
⎬
⎫

⎩
⎨
⎧ =−== 0)(:

2
θθθ $$UW  

which consists only of equilibrium points. In particular, this proves that the system admits 
no closed limit cycles and we recover the conclusion of Lemma 4.1. In order to establish 
almost global attraction of the consensus set (almost global synchronization, a.g.s.), it must 
be true that this set is the only attractor. Frequently, when we are dealing with an a.g.s. 
system, we will say that the underlying graph G is a.g.s.. The next Example shows a system 
without the a.g.s. property. 
Example 4.1: Consider the case with N=6 in which the dynamics of the agents are as follows: 
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( ) ( ) Niiiiii ,...,1sinsin 11 =−+−= +− θθθθθ$  

Here the configuration is circular; we identify 7θ  with 1θ  and 0θ  with 6θ . Consider the 

equilibrium point showed in Figure 3. Using an approach that will be presented later, it can 

be shown that this configuration is locally attractive.  ♦ 

3πφ =  

 

Figure 3. Stable non-consensus equilibrium for the Kuramoto model of Example 4.1 

We thus see that guaranteeing almost global asymptotical consensus is more involved. We 
will analyze the stability of the equilibrium points using Jacobian linearization. A first order 

approximation of the system at an equilibrium point θ  takes the form δθθδ .A=$ , with 

θθδθ −=  and A the symmetric matrix NN ×  with entries 

( )

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪⎩

⎪
⎨
⎧

∈

∈−
=

−=−−= ∑
∈

i

iik

hi

i

Nk

ikii

Nh

Nh
a

a

i

,0

,cos

cos

θθ

αθθ

 

with iα  defined as in Proposition 2.1. The matrix A can be written as 

 ( )( ) TT BBdiagBA .cos. θ−=  (5) 

and can be seen as a weighted Laplacian, since TBBLA .−=−= at a consensus equilibrium. 

Two facts must be remarked. First of all, A is symmetric, reflecting the bidirectional 
influence of the agents. This implies that it is a diagonalizable matrix, with real eigenvalues. 

Note also that 01. =NA . Hence, A always has the zero eigenvalue, with associated 

eigenvector N1 . We will analyze the transversal stability of the consensus set [Khalil (1996)], 

that is, the convergence to the consensus set. 
The following results are true for general graph topologies. Their were originally introduced 
in [Monzón et al. (2005), Monzón (2006) and Monzón et al. (2006)]. 

Lemma 4.2: Let θ  be an equilibrium point of (3), such that at least one 0<iα . Then, θ  is 

unstable.  
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Proof: The numbers iα−  appear at the diagonal of the matrix symmetric A. So, a negative 

iα  implies that A has a positive eigenvalue. Then, θ  is unstable.  ♦ 

Lemma 4.3: Let θ  be an equilibrium point of (3), such that ( ) 0cos >− ik θθ  for every iNk ∈ , 

Ni ,...,1= . Then, θ  is stable.  

Proof: Since the underlying graph G is connected, 0 is a simple eigenvalue of the Laplacian 

matrix TBBL = [Biggs, (1993)]. The linearization matrix A described in (5) is a weighted 

version of L. Since the weigths are all positive, i.e., the matrix ( )[ ]θTBdiag cos  is positive 

definite, θ  is stable.  ♦ 

Example 4.2: Lemma 4.3 explains Example 4.1. In that case, the characteristic polynomial of 

the linear approximation has the roots 0 and -2 (simple), and 
2
1−  and 

2
3−  (double). 

Indeed, for large N, there can be equilibrium configurations with all neighboring angles 

lesser than 
2

π , and thus provide other attractors than the consensus set.  ♦ 

Proposition 4.1: Let θ  be a partial consensus equilibrium point of (3). Then θ  is unstable. 

Proof: At a partial equilibrium point, we have agents at phase 0  and agents at phase π . 

Define the vector ( )θcos=v , which only contains 1  and 1− . Then, an element of vector 

vBT .  is null if the link related to the l-h row of 
TB  joins agents with distinct phases. Then, 

after some calculus, we have that cvAv T .4.. = , where c is the number of links that join 

agents of the two groups. Then, A has a positive eigenvalue and then, θ  is unstable.  ♦ 

If for a given graph G we can prove that the only equilibrium points correspond to partial or 
total consensus, we can ensure the almost global stability of the synchronized state. This 
observation leads us to our first main result. 
Lemma 4.4: Consider the system (3) with an associated graph G that is a tree. Then, the only 
equilibrium points are the trivial ones: partial or full consensus. 

Proof: With an appropriate reference, a (partial or total) consensus state θ  is such that 

( ) 0sin =θTB . In order to have only partial or total consensus equilibria, 0 must be the only 

solution of the equation: 0=B.x. That is, the cycle space must be trivial. Observe that for a 
connected graph, the matrix B, with N rows and e columns, has always rank N-1. Then, the 
previous equation has only the trivial solution when e=N-1, that is, it has full column rank. 

The only connected graphs with N-1 links are the trees.  ♦ 
Theorem 4.1: Consider the system (3). If the associated graph G is a tree, it is almost globally 
stable. 

Proof: The result is a direct consequence of Lemma 4.3 and Proposition 4.1.  ♦ 
If we have several systems with underlying topology given by trees, we can interconnect 
them using single links, keeping the almost global synchronization property. The next 
Example illustrates that fact. 
Example 4.3: A star graph is a connected tree graph that has a particular node, a hub, which is 
related with all of the rest of the nodes, while all the rest of the nodes are related to the hub 
only. The graph can be sketched as a star and it models several examples of centralized 
interactions between agents. It is a particular case of Theorem 4.1. The synchronized state is 
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an almost global attractor. Moreover, if we have two star graphs and we couple them 
through their hubs, as in Figure 4, (or through any pair of agents), we obtain a new almost 
globally stable system (a kind of synchronization preserving interconnection). If we add one 
more link to a connected tree, we must have a cycle, and we may lose the almost global 

stability property, as in Example 4.1.  ♦ 
To conclude this Section we present another important result. It states that complete graphs 
are always a.g.s. The result was originally hinted in several works [Jadbabaie et al. (2004); 
van Hemmen et al. (1993)]. The prove can be found in [Monzón et al. (2005)]. 
Theorem 4.2:  Consider the system (3). If the underlying graph G is complete, the consensus 

set is almost globally stable.  ♦ 

 

Figure 4. Two star graphs coupled through their hubs (Example 4.3) 

5. Block analysis and synchronizing interconnection  
In this Section we present some results that help to answer the question of whether or not a 
graph is a.g.s. They were originally presented in [Monzón et al. (2007); Canale et al. (2007)]. 
Here, we give a longer presentation.  

From equation (3) we see that a phase angle vector θ  is an equilibrium point if and only if 

( )θTBsin  is a flow on G. Thus, it should be possible that the equilibrium points of (3) could 

be obtained from the equilibrium points of the blocks of the graph G. In fact, this is exactly 
what happens. Furthermore, the stability of these equilibria depends only on the stability of 
the associated equilibrium points of the blocks. Firstly, we present some basic results. We 
include two different proofs for Lemma 5.1, in order to show two distinct interpretations of 
the same facts: one based on linear algebra, the other using graph theory elements. Then, we 
study the relationship between the equilibria of G and the equilibria of its blocks, which will 
follow directly from Lemma 5.1. After that we focus on the stability properties. 

Lemma 5.1: Consider a graph G, with v a cut-vertex between 1G  and 2G . Then, an edge 

space element REGf →:  is a flow on G, if and only if 
1

|EGf  and 
2

|EGf  are a flows on 

1G  and 2G  respectively.  
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Proof 1: Suppose that the i vertices of 1G  and its k edges come first in the chosen labelling. 

Suppose, also, that ivv = , then B has the following form: 
 
 

 
 
 
 

where 1w  and 2w  are column vectors with appropriate dimensions. With this notation, the 

incidence matrices of 1G and 2G  are, respectively 

 

 
 
 

Besides, 1B , as incidence matrix, verifies 01 1 =BTi , thus 01 11)1( =+−
TT

i wW , so  

 1)1(1 1 Ww T
i

T
−−=  (6) 

Let f be a flow on G. In order to prove that 
1

|1 EGff =  is a flow on 1G , we must show that 

0. 11 =fB , i.e. )1(11 0. −= ifW  and 0. 11 =fwT . The former is true because since f is a flow on 

G, 0. =fB  and )1:1)(.(. 11 −= ifBfW . On the other hand, by (6), we have that,  

00.1)..(1).1(. )1()1(11)1(11)1(11 =−=−=−= −−−− i
T
i

T
i

T
i

T fWfWfw . With the same arguments, we 

obtain that 
2

|2 EGff =  is a flow on 2G . 

Conversely, if 1f  and 2f  are flows on 1G and 2G  respectively, we have that 

ifBiBf 0.)1:1)(( 11 ==−  and )1(22 0.):1)(( +−==+ infBniBf . Finally, a direct calculation 

gives 000..))(( 2211 =+=+= fwfwiBf TT . ♦ 

Proof 2: Following [Biggs (1993), Lemma 5.1, Theorem 5.2], given a spanning tree T of G, we 

obtain a basis of the cycle space in the following form: for each edge ETEGEe \=∈ ' , we 

have a unique cycle ),( eTcyc  which determines a flow eTf , . The set Β  of these flows is a 

basis of the cycle-space. However, since v is a cut-vertex, any cycle is included either in 1G  

or in 2G , so its associated flow is null either in 1G  or  in 2G . If we regard a flow on G which 

is null in 1EG  as a flow on 2G , we can split Β  into two sets 1Β  and 2Β ,  cycle-space basis 

of 1G and 2G  respectively. Thus the cycle-space of G is the direct sum of the cycle-spaces of 

1G and 2G .  ♦ 

Lemma 5.2: Let G be a graph, VGV ⊂1  and 11 VG =  the subgraph of G induced by the 

vertices 1V  with incidence matrix 1B . Let RRH →:  be any real function, RVG →:θ  an 

element of the vertex-space of G and ( )θTBHf = . Then, if 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−×−

×− 2

2

)()1(

)(

1

1 0

0 W

ww

W

B T

kmi

kin

T

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=
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1
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11
|,|: 11 VGEGff θθ =  

it is true that 

( )111 θTBHf =  

Proof: Suppose that the i vertices and k edges of 1G  come first in the chosen labelling. Then, 

for some 'B , ''B  and 2θ , we have that 

 
 
 
 

Thus, ( ) 11):1( θθ TT BkB = , and ( ) ( )[ ] ( )11 1):1():1():1( θθθ TTT BHkBHkBHkff ==== .  ♦ 

5.1 Equilibria 

If RVG →11 :θ  is in the vector space of a subgraph 1G  of G, we will regard it also as its 

unique extension to the vector space of G which is null elsewhere of 1G . The same for an 

element of the edge space. 

Proposition 5.1: Consider the graph G with a cut-vertex v between 1G  and 2G . If θ  is an 

equilibrium point of G, then 
1

|1
VG

θθ =  and 
2

|2
VG

θθ =  are equilibrium points of 1G  and 

2G  respectively. Conversely, if 1θ  and 2θ  are equilibrium points of 1G  and 2G  

respectively, there exists a real number α  such that kN−+= 1' 22 αθθ  is an equilibrium 

point of 2G  and 21 θθθ +=  is an equilibrium point of G. 

Proof: Let B, 1B , 2B , etc. like in Lemma 5.1. If θ  is an equilibrium point of G, then 

( )θTBf sin=  is a flow on G, thus, by Lemma 5.1, 
1

|1 EGff =  is a flow on 1G . Thus, it is 

enough to prove that ( )111 sin θTBf = , which follows from Lemma 5.2, taking )sin()( xxH =  

and noticing that 1G  is an induced subgraph of G. The case for 2G  follows by the same 

arguments. 

Now, assume that 1θ  and 2θ  are equilibrium points of 1G  and 2G  respectively. Let 

)()( 21 vv θθα −= , kN−+= 1' 22 αθθ , 21 'θθθ += , and ( )θTBf sin= . Then, by Lemma 

5.2, ( )111 sin|
1

θTEG Bff ==  and ( )111 sin|
1

θTEG Bff == . On the other hand, due to the 

invariance of the system we have remarked on Section 2, the vector 2'θ  is also an 

equilibrium point of 2G , and then, 1f  and 2f  are flows in 1G  and 2G  respectively. 

Therefore, by Lemma 5.1, 21 ff +  is a flow on G. But 21 fff += , because 

Φ=∩ 21 EGEG . ♦ 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ×

21

11

2

11

'''''

0

' θθ

θ

θ

θ
θ

BB

B

BB

B
B

T
ki

T
T  
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5.2 Stability analysis 

We will relate the stability properties of the graph G with a cut-vertex with the stability 

properties of the subgraphs 1G  and 2G  joined by it. Since every equilibrium of G defines an 

equilibria for 1G  and 2G , we wonder whether or not the dynamical characteristics of these 

equilibria are or not the same. We will use Jacobian linearization. Recall that the zero 
eigenvalue is always present due to the invariance of the system by translations parallel to 

n1 . If the multiplicity of the zero eigenvalue is more than one, Jacobian linearization may 

fail in classifying the equilibria. In this work, we assume that we always have a single null 
eigenvalue. We do not present here the study of this particular problem. 

Theorem 5.1:  Consider the graph G, with a cut-vertex v joining the subgraphs 1G  and 2G  of 

graph G. Let nR∈θ  be an equilibrium point of G. Then, θ  is locally stable if and only if 

1
|1 VGθ  and 

2
|2 VGθ  are locally stable and coincide in 21 VGVGv ∩= . 

Proof: Recall that the first order approximation of the system around an equilibrium point is 
given by 

( )( ) TT
G BBdiagBA .cos. θ−=  

Suppose that 1G  has i vertices, that they come first in the chosen labelling and that v is the 

last of them ( )ivv = . Then, a direct calculation gives: 

 21 AAAG +=  (7) 

with 
 
 
 
and 
 
 
 
Observe that these matrices partially overlap, so the matrix A takes the form: 
 
 
 
 
 
 

First of all, we consider the case with 1θ  and 2θ  stable and )1()( 21 θθ =i . Then, 
1G

A  and 

2G
A  are stable and equation (7) holds for ( )):2(, 21 in −= θθθ . So, GA  is the sum of two 

semidefinite negative matrices which gives rise a semidefinite negative one. Besides, the 

kernel of GA  has dimension 1, since if 0=wAG , then 0=wAw G
T . Thus, 

021 =+ wAwwAw TT
. But, 111 1

wAwwAw G
TT =  and 222 2

wAwwAw G
TT =  for 

1
|1 VGww =  and 

⎥
⎦

⎤
⎢
⎣

⎡
=

−×−

−×

×− )()(

)(

)(
1 0

0

0
1

inin

ini

iin

GA
A  

⎥
⎦

⎤
⎢
⎣

⎡
=

+−×−

−×+−

−×−

2

)1()1(

)1()1(

)1()1(

2

0

0

0

G

ini

iin

ii

A
A  

=A

2G
A  

1G
A  
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2
|2 VGww = . Then 02211 21

=+ wAwwAw G
T

G
T . That can happen if only if 011 1

=wAw G
T  and 

022 2
=wAw G

T . But the kernels of 
1G

A  and 
2G

A  are spanned by i1  and 11 +−in  respectively. 

Thus iw 1.1 α=  and inw −= 1.1 β . Since )()1()( 21 iwwiw == , we have βα =  and 

nw 1.α= . This proves the stability of GA . 

Now, we focus on the case with 1θ  or 2θ  unstable. We analyze the first case, since the other 

is similar. Suppose that 
1G

A  has a positive eigenvalue with associated eigenvector 1w , thus 

011 1
>wAw G

T  

Define the column vector 

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=

+−− 11

1

1

1

1).(

)1:1(

1).( inin iw

iw

iw

w
w  

Then, 

11
2
111 11).(

21 +−+−+= inG
T
inG

T
G

T AiwwAwwAw  

which actually is 011 1
>wAw G

T  since 011).( 11
2
1 2

=+−+− inG
T
in Aiw . Then, θ  is unstable.  ♦ 

We are now ready to state and prove one of the main results of this Chapter. 

Theorem 5.2: Consider the graph G, with a cut-vertex iv  joining the subgraphs 1G  and 2G . 

Then, 1G  and 2G  have the almost global synchronization property if and only if G does. 

Proof: First of all, let θ  be an equilibrium point of G. According to Theorem 5.1., θ  is stable 

only if 
1

|1 VGθθ =  and 
2

|2 VGθθ =  are too. If 1G  and 2G  are a.g.s., the only locally stable 

set is the consensus, and since they have a vertex in common, the only locally stable 
equilibria of G is also the consensus and G is a.g.s. 

In the other direction, if 1θ  is a locally stable equilibrium of 1G , we chose 

( )111 1).(, −= niθθθ  and we construct a stable equilibrium for G (as we have mentioned 

before, a consensus equilibrium is always locally stable [Jadbabaie et al. (2004)]. Since G is 

a.g.s., θ , and so 1θ , must be consensus equilibrium points.  ♦ 

Theorem 5.2 has many direct consequences. We point out some of them, with a brief hint of 
the respective proofs. 

Proposition 5.2: Consider a graph G with a bridge ke  between the nodes iv  and jv  and let 

1G  and 2G  be the connected components of }keG {\ . Then, G is a.g.s. if and only if 1G  and 

2G  are. 

Proof: If a graph has a bridge, the behavior of the system depends only on the parts 
connected by the bridge. Indeed, the bridge together with its ends vertices form a block, 
which is in fact a complete graph and its vertices are cut-vertices of the graph, as is shown in 
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Figure 5. Since any complete graph is a.g.s., the a.g.s. character of the original graph 

depends on the other blocks.  ♦ 

 

Figure 5. A graph with a bridge 

 

Figure 6. A graph with arboricities 

We are now ready to present a different proof of Theorem 4.1: 
Proof 2: We can iteratively apply Proposition 5.2, since in a tree, every link is a bridge. 
If we have a graph with arboricities, like the one shown in Figure 6, we can neglect the trees 

in order to prove the a.g.s. property.  ♦ 
Corollary 5.1:A graph with the structure shown in Figure 6 is a.g.s. if and only if the graph 

1G  is. 

Proof: The result is a straightforward application of Theorem 5.2.  ♦ 
Now, we state an important result in order to classify a.g.s. graphs: 
Theorem 5.3: A graph G is a.g.s. if and only if every block of G is a.g.s.  
Proof: The graph G can be partitioned into its blocks. Then, G can be thought as a collection 
of subgraphs connected by cut-vertices. An iterative use of Theorem 5.2 leads us to the 

result.  ♦ 
Theorem 5.3 reduces the characterization of the family of a.g.s. graphs to the analysis of 2-
connected graphs. As an application, consider the case where we connect two a.g.s. graphs 
through another a.g.s. graph. In this way, we construct a new a.g.s. graph. Figures 7 and 8 
illustrate the situation. Using the known fact that every complete graph is a.g.s., we derive 
the following result. 
Theorem 5.4: If G is a graph such that all its blocks are complete graphs, then G is a.g.s.  
Proof: As we have seen in Theorem 4.2, complete graphs are always a.g.s. So, the conclusion 

follows from Theorem 5.3.  ♦ 
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Figure 7. Two graphs connected by an a.g.s. graph 

 

Figure 8. Two graphs connected by a tree 

Finally, we present two direct consequences of Theorem 5.3. They are illustrated in Figure 9.  

 

Figure 9. Situation of Propositions 5.3 and 5.4 

Proposition 5.4: If G is a tree and we build a new graph K replacing some (or every) edges of 

G by an a.g.s. graph, then K is a.g.s.  ♦ 
Proposition 5.5: If G is a tree and we build a new graph K replacing some (or every) nodes of 

G by an a.g.s. graph, then K is a.g.s.  ♦ 
Previous results, specially Theorem 5.3, imply that in order to establish that a graph is a.g.s., 
we only need to deal with its blocks. So, we must focus in the general analysis of 2-
connected graphs, as structural pieces of every connected graph. We know that complete 
graphs are a.g.s. 2-connected graphs. As long as we are able to find new a.g.s. 2-connected 
graphs, we are moving forward on the classification of all a.g.s. graphs. 
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6. Examples 

In this Section we present some examples that illustrate applications of the theoretical 
results we have presented. 
Example 6.1: Consider two Kuramoto systems with complete underlying interconnection 

graphs 31 KG =  and 51 KG =  (both a.g.s.). Starting from arbitrary initial conditions, each 

system quickly reaches a consensus state. At time T=3 seconds, we connect the two systems 
through a bridge between an arbitrary pair of agents. Then, the whole systems reaches a 
new consensus state. Observe that this convergency is slower than the previous (for the rate 
of local convergency, see [Jadbabaie et al. (2004)). Figure 10-left shows the results obtained 

from the simulation. They perfectly agree with Proposition 5.2.  ♦ 

 

Figure 10. Left: two a.g.s. systems connected by a bridge; the connection takes place at time 
T=3 seconds. Right: two a.g.s. systems that become connected by a vertex; the connection 
takes place at time T=5 seconds 

Example 6.2:  Consider two a.g.s. systems, with underlying graphs 51 KG =  and 71 KG = . 

They run independently and at time T=5 seconds, an agent of the first system gets connected 
with some agents of the second one. Then, the new system has a new underlying graph G 

which has a vertex at this agent. Figure 11-right shows the evolution of the system.  ♦ 

7. On the classification of A.G.S. graphs  
In this Section, we introduce two operations on graphs. The first one transforms any 
connected graph into an a.g.s. graph. The second one destroy the a.g.s. property. Firstly, we 
introduce the idea of twin vertices. 
Definition 7.1:  We said that two vertices u and v are twins if their have the same common 
neighbors: 

}{\}{\ uNvN vu =  

Previous definition does no assume that u and v are adjacent vertices. So, we will 
distinguish between two cases. 

7.1 Adjacent twin vertices 
The following Lemma generalizes previous results for complete graphs. 
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Lemma 7.1:  Let θ  be a stable equilibrium point of (5), then any set of adjacent twin vertices 

should be synchronized. 

Proof: Let },...,{ kvvS 1=  a set of twin vertices with the set SN  of adjacent twins and their 

common neighbors. Let α  be the sum of all the phasors of SN . Then 

( )ii

ij

SNj i

j
i

SNj

j V
V

V
VV αα +=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+== ∑∑
≠

∈∈

1.1.  

with iα  as in Proposition 2.1.  First, notice that all the iV  should be parallel. Otherwise, let 

iV   and jV  be linearly independent. Since ( ) ( )jjii VV ααα +==+ 1.1. , we should have 

( ) 01 =+ iα , thus 1−=iα  and, by Lemma 4.2, the equilibrium can not be stable. So, we 

have a group of say a vertices of SN  in phase 0θ  and another group of b=k-a ones in phase 

πθ +0 . We claim that b should be zero. Indeed, let iv  and jv  vertices of SN in the first and 

second group respectively, then: 

( )∑
∈

−+−−=
SSNl

li ba

\

θθα 0cos)1(  

and 

( )∑
∈

−++−−=
SSNl

lj ab

\

θπθα 0cos)1(  

But, ( ) ( )ll θθθπθ −−=−+ 00 coscos , thus 2−=+ ji αα  and at least one of them should be 

negative. This means that θ  is unstable.  ♦ 

As a consequence of this Lemma, we have a new way to prove that any complete graph is 
a.g.s. since all its vertices are adjacent twins. But, as we will prove, we have even more, if the 
identification of adjacent twin vertices give rise a tree, then the graph is a.g.s. Since being 
adjacent (or itself) and twin is an equivalence relation we can make the quotient graph by this 
relation. In the quotient graph, the vertices are the classes of the equivalence and two 
vertices are adjacent in the quotient if the classes have adjacent vertices. We will say that a 
graph is a twin cover of its quotient graph. 

Theorem 7.1:  Consider a given graph G and its quotient graph QG  by the adjacent-twin 

relation. If QG  is a tree, G is a.g.s. 

Proof: Let θ  be a stable equilibrium point of G. Then, ( )θTBsin  is a flow on it. This flow 

gives rise the following flow in the quotient graph. Consider two adjacent vertices u and v in 

G which are not twins. Then, the classes [ ]u  and [ ]v  are adjacent in QG . Since θ  is stable, 
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by Lemma 7.1, all the neighbors of u have the phase uθ . In the same way, we define vθ . 

Assign the number 

[ ] [ ] ( )uvvu θθ −sin..  

to the edge in QG  joining the node classes [ ]u  and [ ]v  ( [ ]u denotes the number of 

elements of the class [ ]u ). We affirm that this assignment is a flow in QG . Indeed, 

[ ] [ ] ( )
[ ] [ ]

[ ] [ ] ( )
[ ] [ ]

∑∑
∈∈

−=−
uu Nv

uv

Nv

uv vuvu θθθθ sin..sin..  

Observe that if [ ]u\uNv∈  in G, then, the term ( )vu θθ −sin  appears [ ]v  times in the 

expression of uθ$ . Then, 

[ ] ( )
[ ] [ ]

( )
[ ]

0sinsin. ==−=− ∑∑
∈∈

θ
θθθθθ u

Nv

uv

Nv

uv

uu

v $
u\

 

So, the stable equilibrium point θ  of G induces another equilibrium point Qθ  in QG . If QG  

is a tree, Qθ  is a partial or full synchronized point. If it is a partial synchronization state, the 

phase value of each class in QG  is 0 or π  (taking a suitable reference) and θ  is also a 

partial synchronization state and so is unstable, which contradicts the hypothesis. Then, Qθ  

and θ  are consensus equilibrium and G is a.g.s.  ♦ 

The opposite result is obviously not true. We present several corollaries that recover some 
known results and introduce tools for building a.g.s. graphs. 
Corollary 7.1: Any complete graph is a.g.s. 

Proof: Its quotient graph is the trivial one.  ♦ 
Corollary 7.2: Any complete graph minus an edge is a.g.s. 

Proof: Its quotient graph is a  tree: the only one with three vertices.  ♦ 
Corollary 7.3: Any complete graph minus any proper subset of the edges adjacent to a given 
vertex is a.g.s. 
Proof: Its quotient graph is again the only tree with three vertices. The three groups of twins 
are: first the vertex that lost more edges, those who lost only one edge and those who did 

not lose any edge.  ♦ 
The following Theorem shows that a connected graph G can be enlarged, adding twin 
vertices, in order to obtain a new a.g.s. graph. 
Lemma 7.2: In a connected graph, no equilibrium but the synchronized one is possible with 
all phasors in a half of the unit circle. 
Proof: Indeed, by absurd, suppose that there are unsynchronized vertices and without loss 

of generality that [ ]πθ ,0∈i  for all i, then 
Mm iiii θθθθ =<= maxmin . We claim that there 
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should exists an agent j achieving the minimum but unsynchronized with at least one of its 

neighbors. Indeed, it suffices to consider a walk from vertex mi  to vertex Mi  and the first 

moment when the angle grows. Thus, for some j, for all 
jNi∈  we have 0≥− ji θθ ,  and 

0≥− jk θθ for someb 
jNk∈ . But since the angles are in [ ]π,0 , we hace such 

( ) 0sin >− jk θθ . Therefore, 

( ) 0sin >−∑
∈ jNi

ji θθ  

 contradicting the equilibrium hypothesis.  ♦ 
Theorem 7.2: Any connected graph G admits an a.g.s. twin cover. 
Proof: Remember that by Lemma 7.1, twin vertices in a stable equilibrium should be 

synchronized. Thus, we can restrict our study to a set },...,{ nvvV 1=  of representants of the 

twins. We will identify V with the vertices of G. Furthermore, we will prove that given 

0>ε , there is a twin cover such that for any stable equilibrium θ , the angle differences 

ji θθ −  are less than ε  for all pairs ( )ji vv ,  of adjacent vertices. Thus, if the graph is 

connected with diameter D, the result will follow by taking 
D

πε =  and applying Lemma 

7.2. Notice that we can restrict our self to pairs ( )ji vv ,   in a spanning tree. 

Let us suppose that we have constructed the cover by splitting each vertex iv  of G in a 

number ia  of twins vertices. Then, the flow equation for (any twin of) vertex iv  in the new 

graph becomes: 

( ) 0sin. =−∑
∈ iNj

ijja θθ  

Then, for any iNk ∈  

( ) ( )∑
≠

∈

−−=−

kj

Nj

ijjikk

i

aa θθθθ sin.sin.  

and 

( )
k

kjNj

j

ik
a

a

i

∑
≠∈

≤−
,

sin θθ  

So, in order to find an upper bound for the difference ik θθ −  it is enough to find an upper 

bound for the last term together with a lower one for ( )ik θθ −cos . Now, we will construct 
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the spanning tree T. Let iS  be the vertices at distance i from vertex  1v  (i.e. the sphere in the 

graph of center 1v  and ratio i). Then, sort each set iS  with an order i< . We consider the 

following lexicographical order: given two vertices iSv∈  and jSw∈ , we say that wv <  if 

ji <  or if ji =  and wv i< . The order defined in this way is total, so we can relabel the 

vertices following this order, having nvvv <<< ...21 . Next, set ( ) in
ia

−
Δ= ε (rounded up) 

where Δ  is the maximum degree of a vertex in G. Then T will be the spanning subgraph of 

G that joins vertices iv  and jv  if { }l
Nl

i aa
j∈

= max . We claim that T is a tree. Indeed, it is 

acyclic, because for each i>1, any vertex in iS  is adjacent to exactly one vertex in 1−iS . 

Besides any vertex reaches vertex 1v , thus T is connected as well. 

Let us now find an upper bound for the sine of the difference between adjacent vertices of T. 

Let iv  and kv  be adjacent vertices of T with ki > . Then 

( ) ( ) ( )[ ]
( )

ε
ε

ε
θθ <

Δ

+Δ−Δ
≤≤−

−

−−
≠∈

∑
kn

kn

k

kjNj

j

ik
a

a

i
1.1

sin
1

,
 

for any Δ<ε . On the other hand, since the equilibrium is stable we have that 

( ) 0cos.1 ≥−+− ∑
∈ iNj

ijji aa θθ  

Thus, by the same argument 

( )
( )

( )1,
1.

cos.

cos −≠∈
Δ+−>

−+

−≥−

∑
ε

θθ

θθ
k

kjNj

ijji

ki
a

aa

i  

Thus, choosing ε  small enough we will have that the angles differ in less than any 

prescribed  'ε . ♦ 

We can prove a dual version of this theorem which says that if we add an enough amount of 
vertices to an edge which is not a bridge we will obtain a non a.g.s. graph. 

Theorem 7.3 Let e be an edge of a graph G. Then, if e is not a bridge, there is an integer 0n  

such that the graph obtained from G by making 0nn >  subdivisions of e is not a.g.s. 

Proof: The idea is the following. Consider the cycle 
nC , with 6≥n . As was mentioned in 

Example 4.1 and Lemma 4.3, 
nC  is not a.g.s. because 

n
i

π
θ

2
=  is an equally distributed stable 

equilibrium point. Consider also the graph }{\ eG , obtained from G by removing the edge 

e. Take a edge of 
nC , say uv and replace it by }{\ eG , joining the vertices of e with u and v. 
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The new graph we have obtained is the original G with the edge e split into several edges 
(see the sketch of Figure 11). 

 

Figure 11. Situation of Theorem 7.3 

The idea is the following: if n is large enough, the force induced by 
nC  will be weak enough 

to change the trivial equilibrium point of G to another still stable one. 

Let 
mvv ,...,1

 be the vertices of G and let 
21vve = . Since e is not a bridge, }{\ eGG ='  is 

connected and 
m0  is an stable equilibrium point of 'G . Now, connect the vertices 

1v  and 
2v  

of 'G  through a path 
211 ,...,: vwwvP nn ==  to obtain a graph G

~
 with vertices 

{ }mn vvwwV ,...,,,...,
~

31= . We want to prove that for n large enough, there exist an 0>ε  

and angles εθi ,  mi ≤≤1 , such that the point RVi →
~
:εθ  defined by: 

i

i

i

x
vx

wxi

=

=

⎩
⎨
⎧

=
if

if

,

,
/

ε

εε

θ

ε
θθ  

is a stable equilibrium point of G
~

.  In order for εθ  to be an equilibrium it must satisfies: 

( ) Vx

xNy
xy

~
,0sin ∈=−∑

∈

εε θθ  

where 
xN  is the set of neighbors of vertex x in graph G

~
. These equations are trivially 

fulfilled for 
12 ,..., −= nwwx . Thus, it remains the following set of equations: 

( )

( )

( ) { }⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈=∑ −

=−∑ −

=+∑ −

∈

∈

∈

21

2
'

2

1
'

1

,
~

0sin

0)sin(sin

0)sin(sin

vvVx
xNy

xy

vNy
vy

vNy
vy

\
εε

εε

εε

θθ

εθθ

εθθ

 

where N and N’ denote neighbors in G and G’ respectively. This system can be thought as an 

ε --perturbation of the system that defines the equilibrium of G’. Moreover, if we add an 

adequate equation, e.g. 0
1

=vθ , the system verifies the hypothesis of the implicit function 

theorem for 
m0=θ  and 0=ε . Thus, it implicitly defines the angles εθ x  as a function of ε , 
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for each 
GVx∈ , in a neighborhood ( )00 ,εε−  of 0. Moreover, we will have that 

εθ  is a ∞C  

curve in 
nR  passing through 

m0  for 0=ε . 

Finally, in order to prove stability, we notice that when 0=ε , all the cosines ( )εε θθ ji −cos  are 

positive, thus, the eigenvalues of the Jacobian linearization are negative, by Lemma 4.3. 

Thus, by the continuous dependence of the eigenvalues, 
0ε  could be taken in such a way to 

assure the stability of equilibrium points 
εθ  for each ( )00 ,εεε −∈ . Therefore it suffices to 

take 
00 2 επ>n , and for each 

0nn > ,  to set nπε 2= . ♦ 

7.2 Non adjacent twins 
When the vertices are twins but not adjacent, previous arguments does not work, but 

something interesting can however be said. Indeed, let { }tvvS ,...,1=  a set of non adjacent 

twin vertices with the set SN  of common neighbors. As in Proposition 2.1, let α  be the sum 

of the phasors of SN. Then 

tiV
V

V
VV ii

SNj i

j

i

SNj

j ,...,1,.. ==== ∑∑
∈∈

αα  

So if two of them, say 
iV  and 

jV  are linearly independent, then, one of them is linearly 

independent to any of the others. So, 
kα  should be zero for any tk ,...,1= .  

Otherwise, if all of them are parallel, but non synchronized, we have a group of say a 

vertices of SN in a phase 
0θ  and another group of atb −=  ones in phase πθ +0 .  Let 

iv  

and 
jv  be in each group. Then: 

( )∑
∈

−=
SNl

li
θθα cos    and ( )∑

∈

−+=
SNl

lj
θπθα cos    

But, ( ) ( )
ll θθθπθ −−=−+ coscos  , thus 0=+

ji
αα . As this argument could be repeated for 

any of the others pair of not synchronized vertices, if 1, >ba , we have a consistent 

homogeneous system of equations which has the null solution as the only one. Then, each 

i
α  should be zero. If a or b is 1, either both i

α  and j
α  are null or some of them is negative. 

Summing all this up we have the following result. 

Lemma 7.3: Let θ  be an equilibrium point of (3), then any set of t twin vertices should have 

their i
α  equal to 0 if the equilibrium is stable or the synchronized twins are more than one. ♦ 

In that case, the matriz A of (5) will have a block of zeros (the one corresponding to the set of 
twins), thus either A has a kernel of dimension greater than one or it has positive 
eigenvalues and so is unstable. Thus we have the following result. 

Proposition 7.1:  Let θ  be a non degenerated stable equilibrium point of (3), then any set of 

non adjacent twin vertices should be synchronized.  ♦ 
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8. Conclusions  
In this work we have introduced the idea of almost global synchronization  (a.g.s.) of 
Kuramoto coupled oscillators. Local stability properties of the synchronization were 
recently stated and the are independent of the underlying interconnection graph. We have 
shown that the algebraic properties of this graph  play a fundamental role when we look for 
global properties. Algebraic and dynamical properties are extremely related for these kind 
of systems. So, we presented the idea of a.g.s. graphs and started a characterization of this 
family of graphs. We have shown that the trees, the simplest graphs, are a.g.s. We have 
proved that complete graphs, the most complex, are also a.g.s. Several counterexamples 
illustrates that there are non a.g.s. graphs. We have proved that the characterization of a.g.s 
graphs can be reduced to the analysis of 2-connected graphs, since a graph is a.g.s. if and 
only if its block are. Typical techniques for graphs classification, like the use of 
homeomorphisms, can not be applied here, since we have shown that the a.g.s. property is 
not preserved by this way. Then, a different approach must be considered to go on with the 
classification. 
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