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Abstract

Apoptosis is a regulated energy-dependent process for the elimination of unnecessary or
damaged cells during embryonic development, tissue homeostasis and many patholog-
ical conditions. Apoptosis is characterized by specific morphological and biochemical
features in which caspase activation has a pivotal role. During apoptosis, cells undergo
characteristic morphological reorganizations in which the cytoskeleton participates
actively. Traditionally, this cytoskeleton rearrangement has been assigned mainly to
actinomyosin ring contraction, with microtubule and intermediate filaments both
reported to be depolymerized at early stages of apoptosis. However, recent results have
shown that microtubules are reformed during the execution phase of apoptosis forming
an apoptotic microtubule network (AMN). Current hypothesis proposes that AMN is
required to maintain plasma membrane integrity and cell morphology during the exe-
cution phase of apoptosis. AMN disruption provokes apoptotic cell collapse, secondary
necrosis and the subsequent release of toxic molecules which can damage surrounding
cells and promote inflammation. Therefore, AMN formation in physiological or patho-
logical apoptosis is essential for tissue homeostasis.

Keywords: microtubules, actin, intermediate filaments, apoptosis, apoptotic microtu-
bule network

1. Introduction

The term apoptosis refers to the process of programmed cell death characterized by a stereo-

typic sequence of cellular events including cell shrinkage, caspase activation and degradation

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of cell content, blebbing and maintenance of plasma membrane integrity and condensation

and fragmentation of DNA, followed by ordered removal by phagocytes [1]. Apoptosis was

first described in 1972 as a vital biological phenomenon, with both physiological and patho-

logical implications [2]. Apoptosis regulates cell number in tissues serving as a quality control

mechanism in order to eliminate damaged and senescent cells, and it has been proven to be

essential during development of multicellular organisms. In the proliferative environment of

embryonic development, apoptosis helps to shape organs, drives morphogenesis and deletes

structures that won't be required any longer; for instance, the formation of the four-chamber

architecture of the heart is a consequence of this process [3].

Traditionally, the process of apoptosis occurs in three distinct phases: induction, execution and

clearance. The first one comprises all the intrinsic or extrinsic environmental changes that lead

to the activation of the apoptotic cascade. Meanwhile, the execution phase is distinguished by

the activation of a caspase-dependent proteolytic cascade [4]. Caspases are aspartic acid-

specific proteases responsible for cellular components degradation. Some of them, such as

caspase-8 and -9 act as initiators of the apoptotic signalling pathway, while other caspases such

as caspases-3, -6 and -7 operate as executor caspases which actively participate in the degrada-

tion of intracellular proteins [5]. Eventually, the dying cell is engulfed by professional phago-

cytes or by neighbouring cells. This process of apoptotic cell clearance is essential for tissue

turnover and homeostasis [6].

The fate of apoptotic cells in multicellular animals is their prompt elimination by professional

phagocytes. However, cells that perform apoptosis in vitro cultures progress to secondary

necrosis, which implies the loss of membrane integrity and the release of cellular content into

the culturing medium [7]. In vivo, apoptotic cells can also undergo secondary necrosis when

they are not properly eliminated due to massive cell death or impaired phagocytosis [8].

Efficient apoptotic cell removal is driven by the interaction with phagocytes through the

expression of “eat-me” signals, the release of “find-me” signals, engulfment of the dying cell

and its eventual digestion in phagocyte phagolysosomes. This interaction prevents

undesired immune reactions by contributing to the development of an immunomodulatory

environment [9]. On the other hand, secondary necrosis is thought to be pro-inflammatory

and immunogenic, as it causes the release of endogenous damage-associated molecular

patterns (DAMPs) [8]. Among DAMPs are proteolytically processed autoantigens, nucleo-

somes, proteases, calcium-binding protein (calgranulin), high-mobility group box 1 (HMGB-

1) and urate crystals.

2. Cytoskeleton rearrangements during the execution phase of apoptosis

Cell contraction, plasma membrane blebbing, chromatin condensation and DNA fragmenta-

tion are typical hallmarks of the execution phase of apoptosis, which lasts approximately 1 h

[10]. In order to achieve such dramatic morphologic changes, apoptotic cells make profound

cytoskeleton reorganizations. On the other hand, caspase-mediated cytoskeleton proteins

digestion ensures the proper dismantlement of the dying cell [11].
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The eukaryotic cytoskeleton is mainly composed of actin filaments, microtubules and interme-

diate filaments. These three constituents act coordinately to increase tensile strength, allow cell

motility, maintain plasma integrity, participate in cell division, contribute to cell morphology

and provide a network for cellular transport [12]. It is widely accepted that actin cytoskeleton

plays a central role in cell remodelling during the execution phase of apoptosis [13], while

microtubules and intermediate filaments are disorganized at the onset of this phase [10].

However, recent work have demonstrated that microtubules are reorganized at later stages of

apoptosis, giving rise to the formation of the apoptotic microtubule network (AMN) that

contributes to the maintenance of the plasma membrane integrity [14, 15]. All these events are

summarized in Figure 1.

Intermediate filaments are ubiquitous cytoskeletal components of 10 nm of diameter which

provide mechanical strength and allow tissue growing among other functions. According to

amino acid sequence identity, intermediate filaments can be classified into six types. Acidic

keratins belong to type I, whereas basic keratins belong to type II intermediate filaments. They

are typical components of hair and epithelium. Type III includes vimentin, desmin, glial

fibrillary acidic protein and perinephrin. Nuclear lamins A and B, which support the cell

nucleus, are represented by type V. Finally, type VI refers to nestin [16]. Intermediate filaments

connect with other cytoskeletal components via cytolinker proteins of the plakin family,

including desmoplakin, periplakin and plectin [17]. At the onset of the execution phase of

apoptosis, type I keratins are targeted by caspases-3, -7 and -6 at their linker domain, whereas

type II keratins are resistant to caspase-mediated proteolysis. Similarly, type III intermediate

filaments, such as desmin or vimentin, are cleave by caspases. Once cleaved, intermediate

filament subunits accumulate in the cytoplasm forming large aggregates. All these events

contribute to cytoskeleton reorganizations [18]. Furthermore, caspase digestion of K18 (type I)

has been proved to be indispensable for membrane integrity maintenance during apoptosis, as

interference with keratin caspase cleavage shunts hepatocytes towards necrosis [19]. Keratins

are not only caspase substrates but they also seem to regulate the induction phase of apoptosis.

Figure 1. Cytoskeleton rearrangements during the execution phase of apoptosis.
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Thus, it has been shown that deficiencies in keratins 8 and 18 favour tumour necrosis factor

(TNF)/cycloheximide-induced cell death. Keratin 18 sequesters the adaptor molecule TNF

receptor-associated death domain (TRADD) and thus prevents its interaction with the TNF

receptor, regulating negatively apoptosis. In contrast, keratin type II K8 offers protection

against Fas-mediated apoptosis.

With respect to the digestion of nuclear lamins, nuclear breakdown begins with the activation

of caspases. Lamins appear to be specifically targeted by caspases 3 and 6 that become

activated both via the intrinsic and extrinsic pathway of apoptosis [20]. However, little is

known about the exact mechanism by which the cell nucleus dismantles. It has been

established that active caspases are able to proteolyze lamins A and B, leading to lamina

cleavage and chromatin condensation and fragmentation. These alterations contribute to the

collapse of the nucleoskeleton [18].

Microtubules are depolymerized at the same time that intermediate filaments although the

exact molecular mechanism involved is still unknown. Several hypotheses have been postu-

lated to explain this process, which are not mutually exclusive [21]. Microtubules are polar

protofilaments made up of α and β tubulin, which are involved in cell migration, growth,

transport or mitosis [22]. Their dynamics is governed by microtubule-associated proteins

(MAPs), Ran-GTP and proteins that bind to tubulin [22–24]. The cyclin-dependent kinase 1

Cdk1, associated with cyclin B is a key regulatory kinase which controls the entry in mitosis

and regulates microtubule dynamics. In fact, it induces the depolymerization of interphase

microtubules [25]. Cdk1 regulates some microtubule effectors such us MAP4, which reduces

its ability to stabilize microtubules after phosphorylation [26]. In addition, Cdk1 is able to

phosphorylate β-tubulin, thus inhibiting its incorporation to growing protofilaments. As Cdk1

and other Cdks activities have been observed during apoptosis, it has been suggested that they

may act essential regulators in the apoptotic cytoskeleton reorganizations during apoptosis

[27]. On the other hand, some authors have shown that microtubules depolymerization is

associated with activation of the PP2A-like phosphatase, dephosphorylation of the microtu-

bule regulator τ protein and deacetylation of tubulin [28]. This last mechanism can coexist with

the hypothesis of Cdk1 regulation because PP2A downregulates the Cdk1 activator Cdc25

phosphatase [29].

In contrast to the apparent passivity of intermediate filaments and microtubules, the actin

cytoskeleton is highly dynamic, and its remodelling turns out to be essential in the first stages

of apoptosis. Actin filaments function in the generation and maintenance of cell morphology

and polarity, endocytosis, intracellular trafficking, contractility, motility, cell division and apo-

ptosis [30]. Actin is a 42-KDa globular protein (G-actin) which polymerizes to form actin

filaments (F-actin). They adapt to the cell environment through actin-binding proteins (ABPs)

which regulate actin cytoskeleton dynamics. A family of RhoGTPases are in charge of control-

ling ABPs in such a way that actin is organized into highly ordered structures such as stress

fibres, lamellipodia and filopodia in non-apoptotic cells [13].

Once adherent cells have initiated apoptosis, they partially detach from the substrate by losing

their focal adhesion sites. This is achieved by caspase-mediated cleavage of the focal adhesion

kinase pp125, among other proteins [31]. Next, actin is reorganized into an actin-myosin II
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cortical ring with contractile force. Actinomyosin contraction is activated via the Rho/Rho-

kinase (ROCK) signalling pathway which ends up with the phosphorylation of myosin light

chain II (MLC-II) [32]. Rho-kinases are effectors of Rho-GTPase proteins, being RhoA and

RhoC the most well characterized ROCK regulators [33]. Active GTP-bound Rho proteins

activate ROCK by binding to their C-terminal portion of the coiled coil. Then, it induces

actinomyosin contraction through two distinct mechanisms. First, it can increase the phos-

phorylation state of the MLCs by inhibiting the MLC phosphate or by directly phosphorylat-

ing MLC-II [32]. Alternatively, ROCK I but not ROCK II can be cleaved by caspase-3 at a

conserved DETD1113/G sequence and its carboxy-terminal inhibitory domain is consequently

removed [34]. The contractile force generated depends on other ROCK targets, such as the LIM

kinase (a serine/threonine kinase containing LIM and PDZ domains), which phosphorylates

and inactivates the actin stabilizer cofilin [35]. Cortical ring contraction results in the formation

of membrane protrusions known as blebs. Their formation depends on a pressure gradient

between the extracellular medium and the intracellular medium, taking place in areas of

external negative pressure or in places where the plasma membrane is weakened as a conse-

quence of caspase cleavage [11]. Thus, blebbing appears to be also dependent on the activation

of ROCK by active caspases because it can be blocked by Y27632, a ROCK selective inhibitor.

However, C3 toxin-induced inhibition of Rho is unable to block the formation of blebs [36].

Actinomyosin ring contraction is a fast process and coincides with the beginning of the

execution phase. After that, cell content including organelles is packaged into apoptotic bodies

and the actin cytoskeleton is dismantled by caspases [32]. Rho GTPases effectors contribute to

this new cytoskeleton reorganization [11]. The Rho effector protein kinase C-related kinase

(PRK1) is cleaved by caspase-3 generating a constitutively active kinase fragment that is able to

induce actin structures disassembly [37, 38]. Similarly, the Rac effector p21-activated kinase

(PAK2) may promote stress fibres dissolution after caspase cleavage [39]. Likewise, caspase-3

induces gelsolin fragmentation, contributing to the collapse of actin filaments in a calcium-

independent manner [40].

At this time of the execution phase, apoptotic cells lack the main structured elements of

cytoskeleton. It is then, when microtubules reorganize to give rise to the AMN [21]. Its

organization, maintenance and properties will be reviewed in the next sections.

3. Influence of apoptotic cells on tissue remodelling

In tissues, apoptotic cells interact with their neighbouring partners and eventually must be

eliminated. For example, in epithelia apoptotic cells are removed from the tissue by cell

extrusion. Dying cell ejection is usually done apically, although it has been described that cells

also extrude basally during Droshophila development. This coordinated process is necessary

for tissue homeostasis and developmental morphogenesis [41]. In 2001, Rosenblatt et al. pro-

posed a model to describe the sequence of events during epithelia extrusion [42]. They dem-

onstrated that an actinomyosin ring is formed both in the apoptotic and in the neighbouring

non-apoptotic cells. Apoptotic cells were proposed to send an undetermined early signal to the

adjacent epithelial cells to induce the formation of an actinomyosin cable ring as well as the
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activation of small RhoGTPases. Recently, spinsohine-1-phosphate receptor 2 pathway has

been proposed as the mediator between apoptotic and non-apoptotic cells [43]. Contraction of

the cable ring extrudes the now late apoptotic cell out of the epithelium. In other words, during

apoptosis within epithelia, dying cells are able to not only rearrange their cytoskeleton but also

induce actinomyosin reorganizations within adjacent cells. Importantly, apoptotic cell mem-

branes do not permeabilize until cell extrusion is completed [44].

The mechanical force produced during apoptosis is used not only to extrude dying cells from

tissues but also to change the morphology of neighbouring cells to fill the space originally

occupied by the dying cell [45]. This finding suggests that apoptotic forces might be harnessed

throughout cell death-related morphogenesis. Mechanical forces arising from the apoptotic

process had been originally proposed as an “apoptotic force theory” [46] that would

be important during animal development including elimination of interdigital webs, dorsal

closure or leg folding [46, 47]. Therefore, apoptosis should not be seen as a passive carving

process. Instead, it is a generator of mechanical forces and an active player during tissue

remodelling that helps to the correct morphogenesis of embryos and control of tissue

dynamics [47].

4. Apoptotic microtubule network

The reorganization of microtubules during the execution phase of apoptosis has been exam-

ined in a variety of cell lines such as H460, A431, HeLa cells, primary human fibroblasts and

pig LLCPK-1α cells, under several apoptosis inducers such as camptothecin (CPT),

anisomycin, staurosporine, serum withdrawal, UV irradiation and TNF-related apoptosis-

inducing ligand (TRAIL). In addition, apoptotic microtubules have also been observed in cell

fragments and apoptotic bodies [48, 49]. These findings suggest that AMN may play an

important role during the apoptotic process.

Commonly, AMN is arranged beneath plasma membrane, adopting a cortical structure that

gives a “cocoon-like” structure which confines most of the intracellular content of apoptotic

cells. Furthermore, apoptotic microtubules may extend from the body of apoptotic cells as

long and thin spikes, suggesting a key structural role in maintaining apoptotic cell morphol-

ogy and surface extensions (Figure 2). Apoptotic microtubules organization beneath plasma

membrane also suggests that AMN may function as a kind of support to preserve plasma

membrane integrity and/or as a barrier for confining the degradation reactions inside

apoptotic cells.

Apart from plasma membrane protection, another function of apoptotic microtubules has been

associated with the process of apoptotic body formation by helping to sustain the peripheral

localization of chromatin within surface blebs and by facilitating cell fragmentation [48].

To exclude the possibility that AMN could be an artefact of the process of fixation in the

immunofluorescence protocol, apoptotic microtubules formation has been also monitored

in vivo in pig epithelial (LLCPK-1α) expressing GFP-tubulin (Green fluorescent protein-tubulin)

and A431 cells expressing YFP-tubulin (Yellow fluorescent protein-tubulin) by live imaging [48,
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49]. In control interphase cells, microtubules are arranged in long fibres that fill the entire

cytosol, growing from a central microtubule organizing centre (MTOC) corresponding to the

likely position of the centrosome. In cells undergoing apoptosis, this radial network disappears

and is replaced by a cortical arrangement of microtubules corresponding to the AMN observed

by immunofluorescence of fixed cells. Initially, interphase microtubules are depolymerized

while cells rounded up in the early stages of the execution phase of apoptosis. However,

microtubules are soon reorganized beneath plasma membrane with a characteristic cortical

localization.

Under physiological conditions, cytoskeleton proteins support plasma membrane integrity.

Therefore, changes in the cytoskeletal components beneath plasma membrane can increase

membrane permeability. During the execution phase of apoptosis, both the cell cortical actin

network and intermediate filaments which support plasma membrane become depolymerized.

Therefore, apoptotic microtubules are the only remaining cytoskeletal component supporting

plasma membrane and cell shape during apoptosis. The organization of AMN beneath plasma

membrane suggests that tubulin repolymerization in the execution phase of apoptosis may

have a protective role, helping to maintain plasma membrane integrity and thus, delaying the

transition to secondary necrosis. In fact, AMN is present in all genuinely apoptotic cells but is

disrupted in cells undergoing secondary necrosis [49]. Furthermore, AMN disorganization by a

short treatment with colchicine, an inhibitor of tubulin polymerization, increases cell perme-

ability and the release of cell content into the culturing medium. In addition to a purely

supporting role, AMN disorganization by colchicine treatment may also facilitate the access of

Figure 2. Immunofluorescence microscopy image of control and apoptotic cells in the execution phase. Apoptosis was

induced in H460 cells by 10 μM camptothecin treatment for 48 hours. After fixation, control and apoptotic cells were

stained with anti α-tubulin (red), and coumarin-phalloidin to visualize actin filaments (blue). Nuclei were revealed by

Hoechst staining (blue). Arrows, apoptotic cells with AMN. Bar = 15 μM.
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caspases to essential proteins localized in plasma membrane and cellular cortex such as calcium

channels and fodrin (α II-spectrin) whose cleavage could induce ionic imbalance, cellular

collapse and eventually secondary necrosis [50].

5. AMN formation

As mentioned above, formation of AMN is a biphasic process: first, during the early phase of

apoptosis, interphase microtubules rapidly depolymerized, but soon after actin and interme-

diate filaments disassemble they are reorganized in extensive bundles of closely packed new

tubulin polymers. The initial microtubule depolymerization phase correlate with the loss of

centrosomal γ-tubulin, suggesting that the two events may be interconnected [48]. The mech-

anisms involved in centrosome disorganization remain unknown. One hypothesis is that

pericentriolar proteins can be cleaved by active caspases, but to our knowledge, none of these

proteins has been identified as caspase targets [51, 52]. Interestingly, it has been demonstrated

that dynein, a microtubule motor protein, is essential for the centrosomal localization of

pericentrin and γ-tubulin in living cells [53]. Cytoplasmic dynein function is abolished by

caspase cleavage during the execution phase [54]. Therefore, an alternative hypothesis is that

dynein hydrolysis reduces the content of pericentrin and γ-tubulin at the centrosome, thereby

impairing its capacity to nucleate microtubules.

On the other hand, the mechanism of microtubules reassembly in the execution phase remains

uncertain. Although the core centrioles remain essentially intact throughout apoptosis, they

are unlikely to direct the formation of the novel apoptotic microtubule array, because they are

not assembled with a radial pattern, and instead appear randomly throughout the peripheral

cytoplasm. Furthermore, apoptotic microtubules assembly takes place in the absence of γ-

tubulin ring complex, suggesting that AMN formation is produced by another unknown

mechanism [48, 49]. Although they are tightly packed, apoptotic microtubules are dynamic—

assessed by tracking the plus-end protein EB1 by time-lapse imaging [48]—indicating that

their polymerization is regulated.

It has been postulated that active caspases may cleave the C-terminal regulatory regions of

tubulins which increases their ability to polymerize and thus facilitate the formation of apo-

ptotic microtubules [52, 55]. However, AMN reorganization during the execution phase of

apoptosis has been also observed in the presence of caspase inhibitors [49].

In another approach, Jon Lane's group has described that active GTP-bound Ran is necessary

for apoptotic microtubule polymerization, and that RanGTP release into the apoptotic cyto-

plasm triggers microtubule nucleation [56]. They showed that RanGTP-activated spindle

assembly factor, TPX2 (targeting protein for Xklp2), escapes from the nucleus during the

execution phase and associates with apoptotic microtubule bundles [57]. Furthermore, silenc-

ing of TPX2 expression by siRNA impairs apoptotic microtubule polymerization. They pro-

pose that apoptotic microtubule polymerization shares several common characteristics with

mitotic and meiotic spindle assembly, with a particular dependence upon RanGTP and TPX2

[56]. These findings suggest that apoptotic cells utilize the RanGTPase pathway to promote the
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reorganization of apoptotic microtubules. In another study, the examination of apoptotic

microtubules components has showed that in addition to the expected tubulin subunits, they

bind other microtubule-associated proteins (MAP) such as MAP-4. These findings may be

interesting for elucidating the role of MAPs in AMN nucleation. Given previous evidences

associating MAP4 with microtubule nucleation and stabilization [58, 59], this protein may

participate in AMN formation and maintenance during apoptosis.

Although AMN lacks the morphological and functional accuracy of the mitotic/meiotic spindle

apparatus, it nevertheless represents a model of regulated non-centrosomal microtubule poly-

merization, and further accentuates how apoptosis should be viewed as regulated process of

cellular death.

6. Apoptotic microtubules delimit an active-caspase–free area in the

cellular cortex

AMN indeed may work as physical barrier impeding active caspases to access into the cellular

cortex where it can cleave critical proteins involved in plasma membrane integrity [60]. AMN

disorganization in apoptotic cells by colchicine, a microtubule depolymerizing agent, allowed

caspase-mediated cleavage of plasma membrane and cell cortex and proteins such as focal

adhesion kinase (FAK), E-cadherin, α-spectrin, paxilin, Na+/Ca2+ exchanger (NCX), plasma

membrane Ca2+ ATPase-4 (PMCA-4), β4 integrin and Na+/K+ pump subunit β. This caspase-

mediated proteolysis was associated with increase cell permeability, calcium and sodium

overload and bioenergetics failure that eventually led to secondary necrosis [50]. The essential

role of caspase-mediated cleavage of plasma membrane and cortical proteins in plasma mem-

brane permeabilization was demonstrated because the concomitant addition of colchicine and

Z-VAD, a pan-caspase inhibitor, blocked protein cleavage and significantly reduced plasma

membrane permeability and secondary necrosis.

7. Apoptotic cells with AMN enhance phosphatidylserine exposure and

interactions with macrophages

Clearance of apoptotic cells by phagocytes (or efferocytosis) can be divided into four distinct

processes: aggregation of phagocytes near apoptotic cells, recognition of apoptotic cells by cell

surface bridge molecules and receptors, engulfment of apoptotic cells, and degradation of

apoptotic cells within phagocytes [61]. The elimination of apoptotic cells by macrophages

reduces the probability of inflammation by ensuring that apoptotic cells are eliminated before

the release of intracellular contents into de extracellular medium [62, 63]. Apoptotic cells are

recognized by phagocytosis through the externalization of phosphatidylserine in the outer

leaflet of the plasma membrane [64]. Phosphatidylserine translocation is an early event of

apoptosis, occurring while the plasma membrane remains intact and cells exclude membrane-

impermeant dyes [65]. Phosphatidylserine exposure has been reported to be a caspase and

energy-dependent process [66, 67], but its mechanism is not completely understood. It has
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been proposed that a combined effect of activation of a lipid scramblase and downregulation

of a phospholipid translocase activity may contribute to phosphatidylserine exposure [68].

In agreement with a role of apoptotic microtubules for proper phosphatidylserine transloca-

tion, it has been shown that apoptotic cells with AMN show indeed high expression of

phosphatidylserine on the cell surface and increased phagocytosis rate. However, both pro-

cesses were markedly reduced when AMN was depolymerized by colchicine treatment [60].

Interestingly, phosphatidylserine externalization and phagocytosis of apoptotic cells were

restored when AMN was depolymerized in the presence of Z-VAD, suggesting that caspase-

dependent degradation of plasma membrane and cellular cortex proteins impairs proper

phosphatidylserine externalization and apoptotic cell removal by macrophages. These findings

Figure 3. Scheme summarizing the main findings on AMN during the execution phase of apoptosis. (A) Apoptotic cell

interacting with macrophage (B) secondary necrotic cell. PS = Phosphatidylserine.
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corroborate previous observations showing that after AMN disorganization (by nocodazole

treatment) the percentage of macrophages making contacts and engulfing apoptotic cells was

significantly reduced compared to apoptotic cells with AMN [48]. The ability of apoptotic cells

to stimulate their phagocytosis by macrophages before cell lysis is crucial to prevent the

adverse effects (tissue damage and inflammation) associated with secondary necrosis [69]

(Figure 3).

8. Apoptotic microtubules organization and maintenance depend on high

cellular ATP levels and energized mitochondria

Microtubule polymerization is an energy-dependent process because β-tubulin hydrolyzes

GTP during polymerization [70]. Therefore, it has been proposed that AMN formation

depends on the bioenergetic status of apoptotic cells [71].

ATP levels must be kept high in apoptosis to allow all the energy-dependent processes occur-

ring during the execution phase including AMN formation and maintenance. Thus, in vivo

and in vitro experiments have shown that AMN was visualized predominantly in apoptotic

cells with polarized/hyperpolarized mitochondria and, on the contrary, was dismantle in

apoptotic cells with depolarized mitochondria. These observations suggest that AMN depends

on energized mitochondria and high ATP levels [71]. Kinetics examination in pig LLCPK-1α

cells expressing GFP-tubulin also showed that AMN was maintained during the execution

phase of apoptosis until mitochondria depolarization marked the onset of secondary necrosis.

Furthermore, mitochondria depolarization by treatments with uncouplers of mitochondrial

oxidative phosphorylation (FCCP) or mitochondrial inhibitors (antimycin, rotenone and

oligomycin) induced AMN disassembly associated with enhanced plasma membrane perme-

ability. However, inhibition of glycolysis by 2-deoxyglucose treatment had no effect on mito-

chondrial polarization or either AMN organization or plasma membrane permeability. In

contrast, stabilization of apoptotic microtubules by taxol prevented both mitochondrial depo-

larization and plasma membrane permeabilization. AMN stabilization also prevented the

increased plasma membrane permeability when mitochondria were depolarized by rotenone

or FCCP treatment. These results underline the essential role of AMN in plasma membrane

integrity during apoptosis.

9. Zombie cells: Stabilization of apoptotic cells

Taken into account that apoptotic cells maintain the integrity of plasma membrane and cellular

cortex proteins [60], an innovative method aimed to the temporal stabilization and preserva-

tion of apoptotic cells has been developed [72]. This method consists in the treatment of

apoptotic cells with a cocktail of taxol, Zn2+ and coenzyme Q10 (CoQ). This experimental

approach has been reported to prevent secondary necrosis for at least 96 h in cell cultures.

The rationale for using this stabilizing cocktail is (a) taxol, a microtubule stabilizing agent,

prevents AMN depolymerization and the access of active caspases into cellular cortex [73, 74];
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(b) Zn2+, a caspase inhibitor, prevents caspase-dependent cleavage of cellular cortex and

plasma membrane proteins [75–78]; and (c) CoQ, an antioxidant, that protects against oxida-

tive membrane damage which is increased in apoptotic cells [79].

Stabilized apoptotic cells can be considered as dying cells in which the cellular cortex and

plasma membrane are intact or alive. Metaphorically, they can be considered as “living dead”

or “zombie cells”. Stabilized apoptotic cells retain many of the hallmarks characteristic of

apoptotic cells such as cellular cortex and plasma membrane integrity, low intracellular cal-

cium levels, plasma membrane potential, high phosphatidylserine exposure and the ability of

being engulfed by phagocytes.

Recently, interest in apoptosis research has increased remarkably for a number of reasons

including the technological development of cell cultures and the expansion of new therapeutic

strategies. Furthermore, apoptotic cell quantification plays an important role in biomedicine

because it is widely used to evaluate the cytotoxic effects of drugs [80]. However, apoptosis

determination is often affected by the process of cell manipulation (harvesting, cell centrifuga-

tion, cell pipetting…), especially in adherent cell cultures, required for flow cytometry assays.

Very often, these manipulations disrupt plasma membrane permeability and leads apoptotic

cells to secondary necrosis [81]. As a consequence, reliable apoptosis quantifications are par-

ticularly difficult in adherent cell cultures. Stabilization of apoptotic cells before cell harvesting

may allow a more accurate and reliable quantification of the actual number of apoptotic cells

or the correct determination of biochemical parameters such as mitochondrial membrane

potential, intracellular calcium concentration, pH or caspase activity in genuine apoptotic cells.

Currently, apoptotic cells are used for various forms of therapy, especially with the objective of

promoting immunological tolerance in recipient individuals [82]. Therefore, stabilization of

apoptotic cells before their administration to patients may ensure that apoptotic cells will

retain their characteristic features until they are removed by macrophages. The administration

of stabilized apoptotic cells can also be of interest for the delivery of proteins (for protein

replacement therapy) or drugs to recipient macrophages [83].

There are forms of cell death which by their nature impair the correct formation of AMN

(e.g.mitochondrial toxics and cold exposure) [71] and, as a result, apoptotic cells are not

able to maintain plasma membrane integrity. Therefore, apoptotic cell stabilization may

provide a new approach for preventing the adverse effects of early secondary necrosis.

10. Conclusion

Microtubule cytoskeleton is reformed during the execution phase of apoptosis forming an

AMN. AMN is required to maintain plasma membrane integrity and cell morphology during

the execution phase of apoptosis. AMN disruption leads cells to secondary necrosis and the

release of toxic molecules which can damage neighbour cells. Therefore, AMN formation,

preservation or stabilization in apoptosis is essential for tissue homeostasis preventing cell

damage and inflammation.
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