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1. Introduction  

The visual system of human beings has been optimised through millions of years by natural 
selection. This helps us to detect the pattern of 3D moving objects, its depth, speed and 
direction estimation, etc. The research in connectionism is inspired by complexity of neural 
interactions and their organisation in the brain that can allow us to propose a feasible 
neuromimetic model to imitate the capacities of human brain.  
Although visual perception of motion has been an active research field for the scientific 
community (since motion is fundamental for most machine perception tasks) [McCane, 
2001], recent research on computational neuroscience has provided an improved 
understanding of human brain functionality. In the human brain, the motion is perceived as 
an interaction between several cortical areas and in two main pathways : the dorsal pathway 
formed by primary visual area (V1), middel temporal area (MT), middel superior area 
(MST), etc.,  specialized on the detection of motion. The ventral pathway, formed by 
primary visual area (V1), secondary visual area (V2), third visual area (V3), inferotemporal 
area (IT), etc., which processes characteristics related to the form of the visual information. 
This visual information has been taken to create the so called bio-inspired algorithms, which 
are based on or inspired by functions of some areas in the brain. This bio-inspired 
algorithms have been proposed to mimic the abilities of the brain for motion perception and 
understanding [Castellanos-Sánchez, 2005]. There are several bio-inspired models for visual 
perception of motion, some of them inspired by V1 neurons with a strong neural 
cooperative-competitive interactions that converge to a local, distributed and oriented auto-
organisation [Fellez & Taylor, 2002; Moga, 2000]. Some others are inspired by MT neurons 
with cooperative-competitive interactions between V1 and MT and an influence range 
[Derrington & Henning, 1993; Mingolla, 2003]. And the others are inspired by MST for 
coherent motion and egomotion detection [Pack et al., 2000; Zemel & Sejnowski, 1998], see 
[Castellanos-Sánchez, 2005] for a more detailed explanation. 
All these works are based on a specific cortical area. However, for our proposal we 
considered that all these specializations might be integrated to make a more robust process. 
Here we present a bio-inspired connectionist approach, called CONEPVIM model 
(Neuromimetical Coneccionist Model for the Visual Perception of Motion), which not only 
considers the higher areas of processing, but also the information from V1, since it might 
add descriptors for the motion detection problem, based on a particular adaptation of the 
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spatiotemporal Gabor filters. Also it takes advantage of a modular and strongly localized 
approach for the visual perception of motion that handles a shunting inhibition mechanism 
(based on MT and MTS). Due to the methodology used in the model three neuromimetic 
indicators emerged for visual perception of motion (proposed [Castellanos-Sánchez, 2005; 
Castellanos-Sánchez et al., 2004]), they allowed us to identify: null motion in objects, 
whether the motion in the scene is caused by moving objects or ego-motion, and also the 
speed and direction of the motion. 
In this chapter we discuss about some neurobiological principles, next we mention the 
foundations for the CONEPVIM model, then we continue with the manipulation of several 
parameters obtained in the antagonist interaction mechanism and three neuromimetic 
indicators for motion estimation are shown, these indicators emerge from the interactions 
between the neurons of V1, MT and MST mainly. A series of experiments with real image 
sequences are described. Finally, we make some conclusions about the proposed 
methodology and the results. 

 

 

MT, MTS 

IT, V4 

V2, V3 

V1 
LGN 

 

Figure 1. The visual pathway. The information comes in from the retina, after it is integrated 
in LGN, treated in V1, and finally processed in two different pathways : dorsal (MT, MTS, 
etc.) and ventral (V4, IT, etc.) 

2. Biological foundations 

In order to understand better how the bio-inspired model that we propose as well as the 
existing model work it is necessary to describe some biological bases that sustain  them. We 
separated these foundations in two subsections mentioned in the following: the course of 
the light signals in the human brain, and the bio-inspiration modelling from the visual 
pathway.  
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2.1 The course of the light signals in the human brain 

From the retina up to the cerebral cortex of a human being, seventeen different areas take  
part in vision processing [Sunaert, 1999]. The main areas may be organized in four major 
stages: acquisition  and compression of light signals in the retina; their relaying in the lateral 
geniculate nucleus (LGN); their cortical analysis in V1, and their secondary treatment in 
areas MT and MTS of the temporal cerebral cortex in the areas IT and V4 of the parietal 
cerebral cortex (see figure 1). 
a) Acquisition and compression of the light signals in the retina. 
In the eye the information from the world is received by photoreceptors, they are called the 
cones and rods cells. It is from this acquisition that the integration starts by means of the 
interactions between horizontal and bipolar cells. Finally the information is compressed in a 
proportion of 160:1 in the ganglional cells [Imbert, 19883]. 
b) Integration in LGN. 
The information comes out from the retina through the optical nerve (formed by the 
ganglional cells)  and receives the next treatments: 

• A binocular selection at a optical chiasm, it shares partial information from both eyes. 

• A temporal integration in the LGN, which acts as a relay. 
80% of the information received in LGN comes from the feedback from the higher areas, and 
only 20% arrives from the retina [Castellanos-Sánchez, 2005]. 
c) Analyse in V1. 
After the relay in LGN the information of luminal signals is concentreted in the primary 
visual area (V1), and receives its first cortical treatment by means of the cells sensitive to the 
contrast (simple cells). These cells have been modelled by local motion energy filters (Gabor 
filters) [Adelson & Bergen, 1985; Heeger, 1987]. 
d) Secondary treatment. 
Here two pathways may be discovered in this course of visual signals [Hengyi, 2003]: the 
ventral or occipito-temporal pathway and the dorsal for occipito-parietal pathway. The first 
one mostly consists of parvocellular cells and it is responsible for the perception of the 
objects and of their shape, and the second one mostly consists of magnocellular cells and it is  
responsible for motion and space perception. In the present study, we are particularly  
interested in the dorsal pathway and in areas specialized in motion analysis. 
The processing of the visual signals in the brain might be summariezed in the figure 2. 

 
Figure 2. Simplified description of the visual pathway for motion treatment, starting from 
the eye and ending with the processing in the MST 
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2.2 Bio-inspired modelling from vision 

An important fact is that all the processes mentioned before might be integrated to comform 
the so called bio-inspired computational models for motion detection, by using local 
detections and integrating various directions for various scales and spaces to end in a global 
answer [Van Santen, 1985; Adelson, 1985]. Motion detection, spatiotemporal local inhibition, 
and integration are the main ideas of neurosciences research that will inspire our 
connectionist conception. From a biological point of view it is known that motion detection 
and analysis are achieved by means of a cascade of neural operations [Sekuler, 2002], called: 
the detection of local motion signals within restricted regions of the visual field and their 
integration into more global descriptions of the direction and speed of object motion. 
The main areas that we are considering in this paper are the human brain areas specialized 
in motion perception are [Sekuler, 2002]: V1, MT, MST, the kinetic occipital area (KO), and 
finally the superior temporal sulcus (STS). 
The first cortical analysis is performed in V1 by ensuring contrast sensitivity thanks to 
extended receptive fields. These neurons mainly send their extensions in the vertical 
direction and they are tuned to a preferred direction of motion [Hubel, 1962] so they 
perform a local analysis of motion energy that is called filtering. These orientation-selective 
cells may be modelled as spatiotemporal filters [Adelson, 1985; van Santen, 1984] and their 
receptive fields may be modelled as a product of inhibitory and excitatory interactions in 
space and time. On the other hand, contrast detection is sufficient for the identification of 
motion direction, so that the visual mechanisms that extract motion are built from direction-
selective primitives [Derrington, 1993].  
Summarizing, the process starts from the local motion of a retinal image that is extracted by 
neurons in V1 that have a receptive field similar to a small spatially bounded window where 
they can detect the presence of movement in a specific direction. This strongly localized 
processing based on lateral interactions is our first source of inspiration for motion detection 
and estimation. However, the visual perception of motion is not completely determined by 
the local responses in the neural receptive fields. These responses are also handled to obtain 
speed information after having collected and combined them from V1 and after having 
grouped them together in MT. The ambiguity of individual neural responses is solved by 
this combination of signals. 
In the next section we make wider description of the functioning of the stages in the 
CONEPVIM model, starting from the Casual spatial-temporal Gabor-like filters to finish 
with the Antagonist interaction mechanism. 

3. CONEPVIM model 

This section broadly describes the mathematical and biological foundations of the proposed 
bio-inspired model for visual perception of motion based on the neuromimetic connectionist 
model reported in [Castellanos-Sánchez, 2005; Castellanos-Sánchez, 2004]. The first stage of 
this neuromimetic model is mainly based on the causal spatiotemporal Gabor-like filtering 
and the second stage is a local and massively distributed processing defined in [Castellanos-
Sánchez, 2004], where they have proposed a retinotopically organised model of the 
following perception principle: local motion information of a retinal image is extracted by 
neurons in the primary visual cortex, V1, with local receptive fields restricted to small areas 
of spatial interactions (first stage: causal spatio-temporal filtering, CSTF); these neurons are 
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densely interconnected for excitatory-inhibitory interactions (second stage: antagonist 
interaction mechanism, AIM). 
We will describe in this section the stages of the CONEPVIM model: the spatial processing 
to model the orientation-selective neurons of V1, temporal processing to model the speed 
selectiveness of neurons in the medium temporal area, MT, connectionist processing to 
mimic the excitatory-inhibitory local interactions in the cerebral cortex of human beings, and 
self-organising mechanisms for coherent motion estimation.  

3.1 Casual spatial-temporal Gabor-like filtering (CSTF) 

Receptive fields modeled by bidimensional spatial Gabor filters were proposed by Marcelja 
[Marcelja, 1982] and they were discovered in biological vision systems [Pollen, 1981]. The 
spatial part of a standard Gabor function approximates well the spatial profile of receptive 
fields in the cerebral cortex [Jones, 1987]. But its temporal part is non-causal (negative 
weights are assigned to immediate past images). Several more causal approaches have been 
proposed. Adelson and Bergen used an asymmetric spatial distribution [Adelson, 1985] and 
Gzrywacz and Yuille made it with Gabor functions in spatiotemporal co-dependence 
[Grzywacz, 1990; Grzywacz, 1991]. They concluded that directional selectiveness is equal to 
orientation in space-time. Our approach handles causality in a simple and local way with a 
strong hypothesis that ensures the ability to detect local motions.  
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Figure 3. CONEPVIM model. It is divided in four stages: the spatial treatment of the images, 
the temporal processing of the information (these both stages are grouped in CSTF), the 
antagonist interaction mechanism (AIM) and the combination and integration of the 
information 

Let I(x, y, t) be an image sequence representing the shape of intensity in the time-varying 
image, assuming that every point has an invariant brightness.  

Let us assume that ( ) ( ),  , ,  I x y t I x ut y vt= − − where (u, v) is the motion vector of a small 

region f the image, and where I(x, y) is the frame of the image sampling the time t 0= . 
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Thanks to the hypothesis of a high enough sampling frequency to ensure local motion 
detection, we may assume an immediate constant local speed. Therefore, for a given 
supposed motion direction and speed, we expect to identify a local motion by finding a 
spatial contrast at expected places and times. 
By applying the oriented Gabor filter, Gθ(x,y) with 0 ≤ θ ≥ π, in I(x, y) we obtain (intensity 
consevation principle): 

 

Θ Θ=

Θ

=

= − −

− −
=

∫∫

∫∫

0

0

( , , )
ˆ ˆ ˆ ˆ( ) * ( , )

ˆ ˆ ˆ ˆ( , , ) * ( , )

t

t

dI x y t
D t G x u y v dxdy

dt
I x y t G x u y v dxdy

d
dt  (1) 

Where the rotational equations are given by: 

 

ˆ ( )cos ( )sin

ˆ ( )sin ( )cos

x x y

y x y

ξ η

ξ η

= − Θ − − Θ

= − Θ − − Θ
 (2) 

where ( , )ξ η ∈ ϒ is a small neighbourhood around ( , )x y and: 

 

'
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1
'
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1
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−
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Τ −
−
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Τ −  (3) 

for Τ consecutive images, 't t≤ , and the supposed velocity v that ranges from w−  to w , 

where w is the number of supposed absolute speeds. 
ˆ ˆ( , )x y is the place where the oriented Gabor signal is going to be computed in a standard 

way: 

 

22

2 2

ˆˆ ˆ1
ˆ ˆ( , ) exp exp(2 )

2 2 2
i

x y x y

yx x
G x y

γ
π φ

πσ σ σ σ λΘ

⎛ ⎞
= − − +⎜ ⎟⎜ ⎟

⎝ ⎠  (4) 

Is the response function to the impulse of the Gabor filter that models the function of the 

ganglion magnocellular cells, where γ is the eccentricity of the receptive field and ,x yσ σ the 

dimensions, λ is the wavelength and φ is the phase Y. Discretizing the equation 4, we 

finally compute the following spatial-temporal filter: 

 
, , ˆ ˆ' 0 ,

' '
ˆ ˆ( , , ) cos , sin

1 1
v t x y

t t t t
f x y t G x v y vΤ Θ Θ=

− −⎛ ⎞
= − Θ − Θ⎜ ⎟

Τ − Τ −⎝ ⎠
∑ ∑

 (5) 

However, the measure obtained by a single filter is not ale to determine the 2D motion 
vector. It is necessary to use a set of filters that differ only in moition. Then they are gathered 
in a vector called motion sensor vector where every orientation is a motion sensor. 
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3.2 Antagonist interactions mechanism (AIM) 

The second stage of model describe in [Castellanos-Sánchez et al., 2004] (depticted in the 
centre of figure 3) emulates an antagonist interaction mechanism by means of excitatory-
inhibitory local interactions in the different oriented cortical columns of V1.  
In this mechanism each neuron receives both excitation and inhibition signals from neurons 
in a neighbourhood or influence range to regulate its activity. The figure 3 shows the 
excitatory and inhibitory local interactions where neurons interact with their close 
neighbours in this mechanism that change the internal state of neurons and, consequently, 
their influence range, which generate a dynamic adaptive process. The exitatory and 

inhibitory influence ratios are defined as { }( , ) ( , )|| | ,| | , ,x y e e e E e E e ex y Zξ η ξ ξ η η ξ ηΕΘΩ = − ≤ − ≤ ∈ , 

where Eξ and Eη are the superior limits of the exitatory influence ratio. And the inhibitory 

influece ration given by { }( , ) ( , )|| | ,| | , ,I

x y i i i I i I i ix y Zξ η ξ ξ η η ξ ηΘΩ = − ≤ − ≤ ∈ , where Iξ and 

Iη are the superior limits of the inhibitory influence ratio. This is done for each one of the 

orientations. 
Usually in excitatory-inhibitory neural models, the weighted connections to and from 
neurons have modulated strength according to the distance from one another. Nevertheless, 
we call it an interaction mechanism because the inhibitory connections among neurons 
regulate downwards the activity of opposing or antagonist neurons, i.e. neurons that do not 
share a common or similar orientation and speed. On the other hand, excitatory connections 
increase the neuron activity towards the emergence of coherent responses, i.e. grouping 
neuron responses to similar orientations and speeds through an interactive process.  
Then the updaiting of the of the internal state of a neuron is given by: 

 

( , , )
( , , )

                        ( - ( , , )) ( , , )

                        - ( ( , , )) ( , , )

H x y T
A H x y T

T
B H x y T Exc x y T

C H x y T Inh x y T

η
∂

= − ⋅
∂

+ ⋅

+ ⋅

 (6) 

Where ( )A H− ⋅ ⋅ is the passive decay, ( ( )) ( )B H Exc− ⋅ ⋅ ⋅ the feedback excitation and, 

( ( )) ( )C H Inh+ ⋅ ⋅ ⋅  the feedback inhibition. Each feedback term includes a state-dependent 

nonlinear signal, ( ( , , )Exc x y T  and ( , , ))Inh x y T and an automatic gain control term 

( ( )B H− ⋅ and ( )C H+ ⋅ , respectively). ( , , )H x y T is the internal state of the neuron localised in 

( , )x y at time ,T ( , , )Exc x y T is the activity due to the contribution of excitatory interaction in 

the neighbourhood ( , )
E

x y
ΩΩ and ( , , )Inh x y T is the activity due to the contribution of inhibitory 

interactions in the neighbourhood ( , )
I

x y
ΩΩ . Both neighbourhoods depend on the activity level 

of the chosen neuron in each direction. ,  and A B C are the real constant values and η is the 

learning rate. For more details on the excitation and inhibition areas see [Castellanos-
Sánchez et al., 2004; Castellanos-Sánchez, 2005].  
The excitation is defined as follows: 

 ( , )

( , , ) ( , , ) ( , ) ( , )
E Ex y

Exc x y T H x y T W x y L x yΘ ΘΩ
= +∑

 (7) 
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and the inhibition is calculated by 

 ( , )

( , , ) ( , ) ( , )
I Ix y

Inh x y T W x y L x yΘ ΘΩ
=∑

 (8) 

and where 

 
,

( ( , , , ), ( , , ), , ) if  ( ) ( )
( , )

0 otherwiseE I

e eg d x y R x y t d R
W x y

ξ η µ σ
Θ

⋅ < ⋅⎧
= ⎨
⎩  (9) 

with ( ( ), ( ), , )g d R µ σ⋅ ⋅ as a gaussian centered in (x, y) with mean µ and standar deviation σ . 

Let ( , , )R x y t be the influence ratio of neuron ( , )x y defined as | ( , , )H x y t saturationΓ , where 

Γ is the proposed influence ration and ( , , , , )2max ( ( , , ))x y tsaturation H x y tθ υ= . This neuron 

receives at most 2( , , )R x y t excitatory connections from neurons with the same direction and 

speed and at most 2( 1) ( , , )V R x y t⋅Θ − ⋅ inhibitory connections from other close neurons. At 

this level, each pixel correspond to VΘ⋅ different neurons that encode information of 

directions and speeds. Finally ( , )L x y is the algebraic sum on the all speeds, for each 

orientation. 
The computations described in this subsection analysing its neural and synaptic parallelism 
have been implemented on FPGA circuits [Girau et al., 2005]. 

 
 
 

 

Figure 4. Different directions of controlled sub sequences of real images generated for each 
supposed speed 

4. Neuromimetic indicators 

The visual perception of motion is not totally determined in the local responses of the V1 
neurons. They are processed to obtain the speed after being collected and combined from V1 
and being integrated in MT. It is this combination of signals that resolve the local ambiguity 
of responses of neurons in V1 [Castellanos-Sánchez, 2005]. This activity is the inspiration of 
the last part of figure 3 (directions and speeds combination and integration). 
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4.1 Controlled generation of sequences of real images 

The model described here has several parameters to be fixed. The results shown are the 
product of several experiments. To begin with, we analysed the active neurons in each 
direction and speed, the frequencies of active neurons after updating (ANaU) and the 
negative updating increase (NUI) through m different sequences of real images about 
384x288 pixels per image. 
Next, to analyse ego-motion, we selected n images of each sequence of real images and for 

each selected image we generated VΘ×  controlled sub-sequences ( Θ are different 

directions and V different speeds) indicated in the figure 4. 

Finally for motion classification, we took a subsequence of each sequence of real images too 
where : a) the motion does not exist, b) one object moves, c) two or more objects move 
simultaneously. The interpretation of the different obtained values are shown in the next 
subsections. 

4.2 Motion type 
It is important to mention that this neuromimetic indicator is purely based on the 
interactions between cells of the orientation columns in V1 and integration and treatment of 
the proposed velocities in the MST cells.  
The equation 6 shows the actualisation rule in the AIM for the active neurons. Let S be a real 

image sequence and let R S⊂ be a subsequence with ( )Card R τ= the subsequence size and 

let p be the percentage of the neurons to update. 
The AIM mechanism updates p% of active neurons and we obtain in it two frequency 
percentages : the active neurons after updating (ANaU) and negative updating increase 
(NUI, see the right side in the equation 6). 
The frequencies of the products between ANaU and NUI indicators in all the different 
controlled sub-sequences (see last section) inspire us to propose our first neuromimetic 

indicator: neuromimetic motion indicator, *NMI ANaU NUI= . The experimented ranges 

of NMI obtained are shown in table 1. 

4.3 Speed and direction 

Once the orientations have been estimated by the V1 cells the information must be collected, 
integrated and homogenized in MT, following a hierarchical principle (grouped by 
orientation columns). Achieving this way a disambiguation of the orientation (caused by the 
local treatment in V1 cells) of the moving objects, and so forth, it solves the local aperture 
problem and homogenates the orientations. In the case of the speed the neurons in MST 
group the information from the different speeds, using a extended-type of receptive fields, 
to offer an estimation of the velocity. 
The equation 6 shows the actualisation rule in the AIM for the active neurons. Let S be a MT 
neurons sum the responses of V1 neurons with receptive field positions inside a local spatial 
neighbourhood that is defined through time and generates a response according to the 
speed of the visual stimulus [Castellanos-Sánchez, 2005]. This locality of the AIM 
mechanism on all the several considered motion directions in V1 bring an emerging answer 
corresponding to the global direction [Castellanos-Sánchez et al., 2004; Castellanos-Sánchez, 
2005]. 
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 Condition Description 

NMI < 0.10 Null motion 

NMI < 1.00 Small movin objects or bruit 

NMI < 5.00 One or two moving objects 

NMI < 10.00 Three to five moving objects 

NMI < 40.00 Six or more moving objects, or ego-motion 

NMI < 250.00 Ego-motion or big moving objects 

NMI < 400.00 Ego-motion 

NMI ≥ 400.00 Strong Ego-motion 

Table 1. Experimental ranges for neuromimetic motion indicator (NMI) 

On the other hand, neurophysiological studies roughly indicate that neurons in MT of the 
visual cortex of primate brains are selective to speed of visual stimuli; which implies that 
neurons respond strongly in a preferred direction and with a preferred speed [Simoncelli, 
1998]. 
For each real subsequence R and for the filtering images generated in the equation 1 we 
define 

 , , , , , , , ,max ( ( , )), min ( ( , ))t v t v t v t vsat H x y sat H x y+ −
Θ Θ Θ Θ= =  (10) 

where sat+ and sat− are the positive and negative saturation respectively. 

For each direction and speed of each neuron, we count the neurons with a response greater 
than at. This parameter is the average of positive and negative saturations. The equation 12 
shows its behaviour and the equation 11 computes this frequency in direction θ with speed 
v. 

 , ,
,

( , ) ( , ( , ))t v
x y

C v D at H x yΘΘ =∑  (11) 

with 

 , ,

, ,

1 if ( , )
( , ( , ))

0 otherwise          
t v

t v

H x y at
D at H x y Θ

Θ

>⎧
= ⎨
⎩

 (12) 

where ( , )D ⋅ ⋅ is the threshold of the CSTF filtering.The collection and combination in MT for 

direction estimation is computed by: 

 ( , ) 3 ( , ) 2 ( ( , )) ( , )) ( 2 , ) ( 2 , )E v C v C v C v C v C vφ φ φ φΘ = ⋅ Θ + ⋅ Θ − + Θ + + Θ − + Θ +  (13) 

where 2φ π= Θ is the separation in degrees between each oriented column and ( , )E ⋅ ⋅ is the 

sum of several oriented responses of V1 that activate a neuron in MT. Finally we computed 
the frequencies for negative and positive supposed speeds by the following equations: 

 
0, 0 ,

( , ),         ( , )
v v

G C v G C v+ −

> Θ < Θ

= Θ = Θ∑ ∑  (14) 

Then we arranged ( , )E vΘ in a direction according to each speed and arranged G+ and 

G− too for processing them to obtain speed and direction indicators. These indicators will be 

describe in the next two paragraphs. 
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4.3.1 Speed 
To obtain the winner speed, we propose the neuromimetic speed indicator (NSI) defined 
by following equation: 

 
100 min( , )

max( , )

G G
NSI

G G

+ −

+ −

⋅
=  (15) 

With this indicator we compute the relative speed (rs) that compares the different speed 
frequencies and their proportion. The table 2 shows our  experimental values for V=5. Then 
v_i={-2,-1,0,1,2}, with v1 is the frequency of |v_i|=1 and v2 is the frequency of |v_i|=2. 

4.3.2 Direction 
Finally, for an interpretation of integration of directions for each neuron in MT, we compute 
the equation 10 for each direction and speed. Next, we arrange their values from major to 
minor and we take the first three. If these candidates are contiguous in direction, the winner 
will be at the centre of the three candidates' directions. This is our  neuromimetic direction 
indicator NDI. 
Finally, if the maximum of the two computed speeds in the equation is the negative one, the 

winner direction will be its antagonist, ei, 180ºΘ = Θ − . 

Type Condition Relative speed Prototype speed 

Weak if v1 > v2 
NSI > 70.0 rs = (100.00-NSI)/29.0 
NSI > 12.0 rs = (71-NSI)/59 + 1 
otherwise   rs = (12-NSI) * 0.3529 / 12 + 1 

0 
1 
2 

Strong if v1 < v2 
NSI > 22.0 rs = (NSI * 0.6470)/22 + 2.3530 
NSI > 39.0 rs = (NSI - 22) / 10 + 3 
Otherwise Speed not processed 

3 
4 
≥ 5 

Table 2. Experimental ranges for neuromimetic speed indicator (NSI) 

5. Results 

The free parameters of our model were set according to the suggestions in [Castellanos, 
2004]. We chose only three sequences of images among m = 50 analysed sequences : the 
Yosemite Fly-Through (sequence of synthetic images), the Hamburg Taxi, the Karl-Wilhelm 
(DKW, traffic video surveillance) and the BrowseB (issue of a surveillance camera). They 
include various numbers of RGB images (15, 42, 1035 and 875 images, respectively) and of 
sizes of : 316×252, 256×191, 702×566, 384×288, respectively, and they are first gray-scaled.  
The figure 5 and 6 shows four images of these sequences and their graph of the proposed 
neuromimetic indicators. The values of NMI are between 0 (null motion) and 1000 (ego-
motion), of NSI between 0 and 6, and NDI is in {1, 2, 3, 4, 5, 6, 7, 8} (0°,45°,...,315°).  
The real  Hamburg Taxi sequence shows three moving cars and a pedestrian. The NMI is 
between 6 and 18, then according to the table 1 there are about three moving objects and the 
global speed is 2 pixels per image moving at approximately 180° and end at around 135°.  
The BrowseB sequence issue of video surveillance in the hall of INRIA laboratory, Grenoble, 
France, may be split into three parts : (1) a person walks to the centre, stops and returns; (2) 
there is no motion; (3) another person walks in, stops and goes farther.  
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The Hamburg Taxi Sequence. 

    

 

 

The BrowseB sequence. 

    

 

Figure 5.  Two natural sequences, showing the sequence contents. In the first line and down 
of each one the graphic describing its motion behaviour (decomposed in the three 
neuromimetics indicators) 
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The DKW sequence 

    

 

 
 

The Yosemite Sequence 

    

 

Figure 6. Sequences of real and synthetic images, Yosemite and DKW sequence below each 
one the graphic describing its motion behaviour (decomposed in the three neuromimetics 
indicators) 
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For the case of the BrowseB sequence in figure 5. The first part (images 0 to 220) may be split 
into three parts according to NMI : two parts with motion and the other part with null 
motion that correspond to the first person walking between 90° and 135° and with a speed 
of 4 to 2 pixels per image, stops and returns between 270° and 315° and with a speed of 2 to 
4 pixels per image. For the second part (images 221 to 325) there is null motion. The last part 
may be split too into three parts according to NMI : (1) motion, (2) generally null motion and 
(3) motion, respectively to describe this part of the BrowseB sequence. The person walks 
approximately at 0° with a speed of 1-2 pixels per image. Next, a period of null motion with 
very weak motions (see pics in the graph between image 550 and 750). Finally, the person 
moves to about 90° with a speed of about 2 pixels per image. 
The DKW sequence shows the images taken with a surveillance camera. In the first part 
(images around the 230) describe an increment in the motion due to the amount of objects 
moving in the scene. This kind of increments are accented in images around the 700, where 
after a period of low motion (images from 580 to 600). Besides the speed tends to remain 
stable during the whole sequence, this because the combination of objects in motion is 
almost the same for the whole sequence. Besides, in this last sequence it is important to 
mention that the obtained results of the direction are due to the combination of the objects 
that are moving in multiple direction (south or north, east or west). 
Finally, the synthetic Yosemite Fly-Through sequence shows an aeroplane flying on the 
mountains, and mainly presents an ego-motion with a speed of five pixels (down image) 
that diverge and two pixels for the moving clouds to the right (top image). The NMI is 
between 300 and 450, then according to the table 1 it proposes an ego-motion with 2 pixels 
per image moving at around 45°.  
In the figure 7, we show the average of direction and speed of optical real flow of  Yosemite 
sequence and the experimental results obtained by our  model. Our model presents a conceptual 
error about 22.5°, despite which it is sufficient to  describe the real movement towards the North-
East. Finally, the speed is not numerically exact, but our estimation is very similar to the real one. 
Then, the global motion obtained here is very similar to the Yosemite Fly-Through data.  

6. Conclusions and Perspectives 

This work is based on the CONEPVIM model [Castellanos-Sánchez et al., 2004]: a 
neuromimetic connectionist model for visual perception of motion. A model fully inspired 
by the visual cortex system, the superior areas and their relations. 
In this paper we took advantage of the low-level analysis to detect local motions to obtain 
the global speed and direction. They are determined by the neuromimetic motion indicator 
issued by AIM mechanism. 
Our first experiments show that this model is capable of estimating the null motion, simple 
motion and ego-motion with an estimation of global speed and direction in an environment 
where other persons or objects move. The estimation of motion is robust in quite complex scenes 
without any predefined information. Nevertheless, the estimation of NMI is fastidious. The 
experimental values are correct for the sequence of real images of ±33% the size of 384 × 288.  
Besides, it has been seen that the proposed model gives good results, it has do basically with 
two characteristics, the first one is the local and distributed treatment of the information 
used for the analyse of the sequences. The second is the integration of these stages of 
processing, the last one is very important due to it is strongly linked to the methodology 
proposed to overcome the task. 
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Figure 7. Comparison between the optical real flow of Yosemite sequence and the experimental 
results obtained by our model. In this case, both the speed and direction estimated are very 
similar to the results that are taken as the true. In the case of the direction the precision we are 
handling (the separation of the groups of neurons in 45º sets) gives a range of error 

In this sense we have some perspectives about the methodology: 
1. Following this methodology it is possible to understand not only the type of motion 

that is perceived but also to understand what is moving in the scene, since this 
processing belongs to the Ventral Pathway and in theory it works very similar to the 
Dorsal Pathway. This because it might be inferred that the processing in this path might 
also have strong interactions with the Dorsal Pathway, which help us to depict the 
information perceived. 

2. Assuming that the information from other senses (auditory or sensitive)  in the brain is 
processed by groups of neurons (just like it happens in the case of the visual processing) 
so this methodology will be helpful to understand  how these arrangements of neurons 
work and how the information is combined with the information from other senses to 
interact with the environment. 
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