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Abstract

Spectral analysis-based dimensionality reduction algorithms, especially the local mani-
fold learning methods, have become popular recently because their optimizations do
not involve local minima and scale well to large, high-dimensional data sets. Despite
their attractive properties, these algorithms are developed based on different geometric
intuitions, and only partial information from the true geometric structure of the under-
lying manifold is learned by each method. In order to discover the underlying manifold
structure more faithfully, we introduce a novel method to fuse the geometric informa-
tion learned from different local manifold learning algorithms in this chapter. First, we
employ local tangent coordinates to compute the local objects from different local
algorithms. Then, we utilize the truncation function from differential manifold to con-
nect the local objects with a global functional and finally develop an alternating optimi-
zation-based algorithm to discover the low-dimensional embedding. Experiments on
synthetic as well as real data sets demonstrate the effectiveness of our proposed method.

Keywords: dimensionality reduction, manifold learning

1. Introduction

Nonlinear dimensionality reduction (NLDR) plays an important role in the modern data

analysis system, since many objects in our world can only be electronically represented with

high-dimensional data such as images, videos, speech signals, and text documents. We usually

need to analyze a large amount of data and process them, and however, it is very complicated

or even infeasible to process these high-dimensional data directly, due to their high computa-

tional complexity on both time and space. Over the past decade, numerous manifold learning

methods have been proposed for nonlinear dimensionality reduction. From methodology,

these methods can be divided into two categories: global algorithms and local algorithms.

Representative global algorithms contain isometric mapping [1], maximum variance unfolding
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[2], and local coordinates alignment with global preservation [3]. Local methods mainly

include Laplacian eigenmaps (LEM) [4], locally linear embedding (LLE) [5], Hessian

eigenmaps (HLLE) [6], local tangent space alignment (LTSA) [7], local linear transformation

embedding [8], stable local approaches [9], and maximal linear embedding [10].

Different local approaches try to learn different geometric information of the underlying

manifold, since they are developed based on the knowledge and experience of experts for their

own purposes [11]. Therefore, only partial information from the true underlying manifold is

learned by each existing local manifold learning method. Thus, to better discover the underly-

ing manifold structure, it is more informative and essential to provide a common framework

for synthesizing the geometric information extracted from different local methods. In this

chapter, we propose an interesting method to unify the local manifold learning algorithms (e.

g., LEM, LLE, HLLE, and LTSA). Inspired by HLLE which employs local tangent coordinates

to compute the local Hessian, we propose to utilize local tangent coordinates to estimate the

local objects defined in different local methods. Then, we employ the truncation function from

differential manifold to connect the local objects with a global functional. Finally, we develop

an alternating optimization-based algorithm to discover the global coordinate system of lower

dimensionality.

2. Local tangent coordinates system

A manifold is a topological space that locally resembles Euclidean space near every point. For

example, around each point, there is a neighborhood that is topologically the same as the open

unit ball in ℝ
D. The simplest manifold is a linear manifold, usually called a hyperplane. There

exists a tangent space at each point of a nonlinear manifold. The tangent space is a linear

manifold which locally approximates the manifold. Suppose there are N points {x1;…;xN} in

ℝ
D residing on a smooth manifold M⊂ℝ

D, which is the image of a coordinate space Y⊂ℝd

under a smooth mapping ψ : Y ! ℝ
D, where d≪D. The mapping ψ is assumed as a locally

isometric embedding. The aim of a NLDR algorithm is to acquire the corresponding low-

dimensional representation yi∈Y of each xi∈M and preserve certain intrinsic structures of data

at the same time. Suppose M is smooth such that the tangent space TxðMÞ is well defined at

every point x∈M. We can regard the local tangent space as a d-dimensional affine subspace of

ℝ
D which is tangent to M at x. Thus, the tangent space has the natural inner product induced

by the embedding M⊂ℝ
D. Within some neighborhood of x, each point x∈M has a sole closest

point in TxðMÞ, and therefore, an orthonormal coordinate system from the corresponding

local coordinates on M can be associated with the tangent space.

A manifold can be represented by its coordinates. While the current research of differential

geometry focuses on the characterization of the global properties of manifolds, NLDR algo-

rithms, which try to find the coordinate representations of data, only need the local properties

of manifolds. In this chapter, we use local coordinates associated with the tangent space to

estimate the local objects over the manifold. To acquire the local tangent coordinates, we first

perform Principal Component Analysis (PCA) [12] on the points in N ðxiÞ ¼ {xi; xi1 ;…; xik } that
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is the local patch built by the point xi and its k nearest neighborhoods, and get d leading PCA

eigenvectors V i ¼ {vi1;v
i
2;…;vid}which correspond to an orthogonal basis of TxiðMÞ (the orthog-

onal basis can be seen as a d-dimensional affine subspace of ℝD which is tangent to M at xi).

For high-dimensional data, we employ the trick presented by Turk and Pentland for

EigenFaces [13]. Then, we obtain the local tangent coordinates U i ¼ {0;ui1;…;uik} of the neigh-

borhood N ðxiÞ by projecting the local neighborhoods to this tangent subspace:

uij ¼ ðV iÞTðxij−xiÞ (1)

An illustration of the local tangent space at xi and the corresponding tangent coordinates

system (i.e., the point xij 's local tangent coordinate is u
i
j) is shown in Figure 1.

3. Reformulations of LEM, LLE, HLLE and LTSA using local tangent

coordinates

3.1. Reformulation of Laplacian eigenmaps

The method LEMwas introduced by Belkin and Niyogi [4]. We can summarize the geometrical

motivation of LEM as follows. Assume that we are searching for a smooth one-dimensional

embedding f : M ! ℝ from the manifold to the real line so that data points near each together

Figure 1. Local tangent space and tangent coordinates system.
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on the manifold are also mapped close together on the line. Think about two adjacent points,

x;z∈M, which are mapped to f ðxÞ and f ðzÞ, respectively, we can obtain that

j f ðzÞ−f ðxÞj≤∥∇Mf ðxÞ∥∥z−x∥þOð∥z−x∥2Þ (2)

where ∇Mf is the gradient vector field along the manifold. Thus, to the first order, ∥∇Mf ∥

provides us with an estimate of how far apart f maps nearby points. When we look for a map

that best preserves locality on average, a natural choice to find f is to minimize [4]:

Φlapð f Þ ¼

ð

M

∥∇Mf∥2 ¼

ð

M

ΔMð f Þf (3)

where the integral is taken with respect to the standard measure over the manifold. Thus, the

function f that minimizes Φlapð f Þ has to be an eigenfunction of the Laplace-Beltrami operator

ΔM, which is a key geometric object associated with a Riemannian manifold [14].

Suppose that the tangent coordinate of x∈N ðxÞ is given by u. Then, the rule gðuÞ ¼ f ðxÞ

¼ f ∘ψðuÞ defines a function g : U ! ℝ, where U is the neighborhood of u∈ℝd. With the help

of local tangent coordinates, we can reduce the computation of the gradient vector ∇Mf ðxÞ

on the manifold to the computation of the ordinary gradient vector on the Euclidean

space:

∇tanf ðxÞ ¼ ∇gðuÞ ¼

�

∂gðuÞ

∂u1
;⋯;

∂gðuÞ

∂ud

�T

(4)

where u ¼ ðu1;…;udÞ∈ℝd, and we keep up tan in the notation to make clear that it counts on the

coordinate system in TxðMÞ. For different local coordinate systems, although the tangent

gradient vector will be different, the norm ∥∇tanf ðxÞ∥ is inimitably defined such that equa-

tion (3) can be approximated by estimating the following functional:

~Φ lapðf Þ ¼

ð

M

∥∇tanf ðxÞ∥
2dx (5)

where dx stands for the probability measure on M.

In order to compute the local object ∥∇tanf ðxÞ∥
2, we first use the first-order Taylor series

expansion to approximate the smooth functions {f ðxijÞ}
k
j¼1; f : M ! ℝ, and together with

Eq. (4), we have:

f ðxijÞ ¼ f ðxiÞ þ ð∇tanf ðxiÞÞ
Tðxij−xiÞ þOð∥xij−xi∥

2Þ

¼ gðuijÞ ¼ gð0Þ þ ð∇tanf ðxiÞÞ
Tuij þOð∥uij∥

2Þ
(6)

Over U i, we develop the operator αi ¼ ½gð0Þ;∇gð0Þ� ¼ ½gð0Þ;∇tanf ðxiÞ� that approximates the

function gðuijÞ by its projection on the basis Ui
j ¼ {1;uij1

;…;uijd
}:
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f ðxijÞ ¼ gðuijÞ ¼ ðαiÞTUi
j (7)

The least-squares estimation of the operator αi can be computed by:

argmin
αi

∑
k

j¼1
ð f ðxijÞ−ðα

iÞTUi
jÞ
2 (8)

It is easy to show that the least-squares solution of the above object function is α
i ¼ ðUiÞ†f i,

where f i ¼ ½ f ðxi1Þ;…; f ðxik Þ�∈ℝ
k, Ui ¼ ½Ui

1;U
i
2;…;Ui

k�∈ℝ
k · ð1þdÞ, and ðUiÞ† denotes the pseudo-

inverse of Ui. If we define a local gradient operator Gi∈ℝd · k which is constructed by the last d

rows of ðUiÞ†, we have ∇tanf ðxiÞ ¼ Gif i. Furthermore, the local object ∥∇tanf ðxiÞ∥
2 can be

computed as:

∥∇tanf ðxiÞ∥
2 ¼ ∇tanf ðxiÞ

T
∇tanf ðxiÞ ¼ ð f iÞTðGiÞTGif i (9)

An unresolved problem in our reformulation is how to connect the local object ∥∇tanf ðxÞ∥
2

with the global functional ~Φ lapðf Þ in (5) and its discrete approximation. In Section4, we will

discuss this issue in detail.

3.2. Reformulation of locally linear embedding

The LLE method was introduced by Roweis and Saul [5]. It is based on simple geometric

intuitions, which can be depicted as follows. Globally, the data points are sampled from a

nonlinear manifold, while each data point and its neighbors are residing on or close to a linear

patch of the manifold locally. Thus, it is possible to describe the local geometric properties of

the neighborhood of each data point in the high-dimensional space by linear coefficients which

reconstruct the data point from its neighbors under suitable conditions. The method of LLE

computes the low-dimensional embedding which is optimized to preserve the local configura-

tions of the data. In each locally linear patch, the reconstruction error in the original LLE can be

written as:

ε̂
i ¼ ∥xi− ∑

k

j¼1
wijxij∥

2 (10)

where {wij}
k
j¼1 are the reconstruction weights which encode the geometric information of the

high-dimensional inputs and are constrained to satisfy ∑jwij ¼ 1.

Since the geometric structure of the local patch can be approximated by its projection on the

tangent space TxiðMÞ, we utilize the local tangent coordinates to estimate the local objects over

the manifold in our reformulation framework. We can write the reconstruction error of each

local tangent coordinate as:
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ε
i ¼ ∥ui− ∑

k

j¼1
wiju

i
j∥

2 ¼ ∥∑
j
wijðui−u

i
jÞ∥

2 ¼ ∑
jk
wijwikG

i
jk (11)

where we have employed the fact that the weights sum to one, and Gi is the local Grammatrix,

Gi
jk ¼ 〈ðui−u

i
jÞ;ðui−u

i
kÞ〉 (12)

The optimal weights can be obtained analytically by minimizing the above reconstruction

error. We solve the linear system of equations

∑
k
Gi

jkwik ¼ 1 (13)

and then normalize the solution by ∑kwik ¼ 1. Consider the problem of mapping the data

points from the manifold to a line such that each data point on the line can be represented as

a linear combination of its neighbors. Let f ðxi1Þ;…;f ðxikÞ denote the mappings of ui1;…;uik,

respectively. Motivated by the spirit of LLE, the neighborhood of f ðxiÞ should share the same

geometric information as the neighborhood of ui, so we can define the following local object:

jσf ðxiÞj
2 ¼ jf ðxiÞ−∑

k

j¼1
wij f ðxijÞj

2 ¼ ðf iÞTðW iÞTW if i (14)

where W i ¼ ½1;−wi� ∈ ℝ
1 · ðkþ1Þ

; f i ¼ ½ f ðxiÞ ; f ðxi1Þ ;… ; f ðxikÞ�. The optimal mapping f can be

obtained by minimizing the following global functional:

Eðf Þ ¼

ð
M

jσf ðxÞj
2dx (15)

where dx stands for the probability measure on the manifold.

3.3. Reformulation of Hessian eigenmaps

The HLLE method was introduced by Donoho and Grimes [6]. In contrast to LLE that obtains

linear embedding by minimizing the l2 error in Eq. (10), the HLLE achieves linear embedding

by minimizing the Hessian functional on the manifold where the data points reside. HLLE

supposes that we can obtain the low-dimensional coordinates from the ðdþ 1Þ-dimensional

null-space of the functionalℋðf Þwhich presents the average curviness of f upon the manifold,

if the manifold is locally isometric to an open connected subset of ℝd. We can measure the

functional ℋðf Þ by averaging the Frobenius-norm of the Hessians on the manifold M as [6]:

ℋð f Þ ¼

ð
M

∥Htan
f ðxÞ∥2Fdx (16)

where Htan
f stands for the Hessian of f in tangent coordinates. In order to estimate the local

Hessian matrix, we first perform a second-order Taylor expansion at a fixed xi on the smooth

functions: { f ðxijÞ}
k
j¼1;f : M ! ℝ that is C2 near xi:
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f ðxijÞ≈ f ðxiÞ þ ð∇f ÞTðxij − xiÞ þ
1

2
ðxij − xiÞ

THi
f ðxij − xiÞ

¼ gðuijÞ ¼ gð0Þ þ ð∇gÞTuij þ
1

2
uij

THi
fu

i
j þOð∥uij∥

3Þ
(17)

Here, ∇f ¼ ∇g is the gradient defined in (4), and Hi
f is the local Hessian matrix defined as:

ðHi
f Þp;qðxÞ ¼

∂

∂up

∂

∂uq
gðuÞ (18)

where g : U ! ℝ uses the local tangent coordinates and satisfies the rule gðuÞ ¼ f ðxÞ ¼ f ∘ψðuÞ.

In the second identity of Eq. (17), we have exploited the fact that uii ¼ 〈V i;xi−xi〉 ¼ 0 [recall the

computation of local tangent coordinates in Eq. (1)].

Over U i, we develop the operator βi that approximates the function gðuijÞ by its projection on

the basis Ui
j ¼ {1;uij1

;…;uijd
;ðuij1

Þ2;…;ðuijd
Þ2;…;uij1

·uij2
;…;uijd−1

· uijd
}, and we have:

f ðxijÞ ¼ gðuijÞ ¼ ðβiÞTUi
j (19)

Let βi ¼ ½gð0Þ;∇g;hi�∈ℝ1þdþdðdþ1Þ=2, then hi∈ℝdðdþ1Þ=2 is the vector form of local Hessian matrix

Hi
f over neighborhood NðxiÞ. The least-squares estimation of the operator βi can be obtained

by:

argmin
βi

∑
k

j¼1
ðf ðxijÞ−ðβ

iÞTUi
jÞ
2 (20)

The least-squares solution is βi ¼ ðUiÞ†f i, where f i ¼ ½f ðx1Þ;…;f ðxkÞ�∈ℝ
k, Ui ¼ ½Ui

1;U
i
2;…;Ui

k�

∈ℝk · ð1þdþdðdþ1Þ=2Þ, and ðUiÞ† signifies the pseudo-inverse of Ui. Notice that hi is the vector form

of local Hessian matrix Hi
f , while the last dðdþ 1Þ=2 components of βi correspond to hi.

Meanwhile, we can construct the local Hessian operator Hi∈ℝðdðdþ1Þ=2Þ · k by the last dðdþ 1Þ=2

rows of ðUiÞ†, and therefore, we can obtain hi ¼ Hif i. Thus, the local object ∥Htan
f ðxiÞ∥

2
F can be

estimated with:

∥Htan
f ðxiÞ∥

2
F ¼ ðhiÞTðhiÞ ¼ ðf iÞTðHiÞTðHiÞðf iÞ (21)

3.4. Reformulation of local tangent space alignment

The method LTSAwas introduced by Zhang and Zha [7]. LTSA is based on similar geometric

intuitions as LLE. The neighborhoods of each data point remain nearby and similarly

colocated in the low-dimensional space, if the data set is sampled from a smooth manifold.

LLE constructs low-dimensional data so that the local linear relations of the original data are

preserved, while LTSA constructs a locally linear patch to approximate the tangent space at the

point. The coordinates provided by the tangent space give a low-dimensional representation of

the patch. From Eq. (6), we can obtain:
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f ðxijÞ ¼ f ðxiÞ þ ð∇tanf ðxiÞÞ
Tuij þOð∥uij∥

2Þ (22)

From the above equation, we can discover that there are some relations between the global

coordinate f ðxijÞ in the low-dimensional feature space and the local coordinate uij which

represents the local geometry. The LTSA algorithm requires the global coordinates f ðxijÞ that

should respect the local geometry determined by the uij:

f ðxijÞ≈f ðxiÞ þ Liu
i
j; (23)

where f ðxiÞ is the mean of f ðxijÞ, j ¼ 1;…;k. Inspired by LTSA, the affine transformation Li

should align the local coordinate with the global coordinate, and we can define the following

local object:

jκf ðxiÞj
2 ¼ jð f iÞT−

1

k
ð f iÞTeeT−LiU

ij2; (24)

where f i ¼ ½ f ðxi1Þ;…; f ðxikÞ�
T , Ui ¼ ½ui1; u

i
2;…; uik�, and e is a k-dimensional column vector of all

ones. Naturally, we should seek to find the optimal mapping f and a local affine transforma-

tion Li to minimize the following global functional:

Kðf Þ ¼

ð

M

jκf ðxÞj
2dx (25)

Obviously, the optimal affine transformation Li that minimizes the local reconstruction error

for a fixed f i is given by:

Li ¼ ð f iÞT
�

I−
1

k
eeT

�

ðUiÞ† (26)

and therefore,

jκf ðxiÞj
2 ¼ jðf iÞT

�

I−
1

k
eeT

�

ðI−ðUiÞ†UiÞj2; (27)

Let W i ¼ ðI−ðUiÞ†UiÞTðI− 1
k ee

TÞT , the local object κf ðxiÞ can be estimated as:

jκf ðxiÞj
2 ¼ jðf iÞT

�

I−
1

k
eeT

�

ðI−ðUiÞ†UiÞj2 ¼ ðf iÞTðW iÞTðW iÞðf iÞ (28)

4. Fusion of local manifold learning methods

So far we have discussed four basic local objects: ∥∇tanf ðxÞ∥
2, jσf ðxÞj

2, ∥Htan
f ðxiÞ∥

2
F, and jκf ðxiÞj

2.

From different perspectives, they depict the geometric information of the manifold. We look

forward to collect these geometric information together to better reflect the geometric structure
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of the underlying manifold. Notice that we can estimate these local objects under the local

tangent coordinate system according to Eqs. (9), (14), (21), and (28), respectively. Taking stock

of the structure of these equations, it is not hard to discover that we can fuse these local objects

together under our proposed framework. Assume that there are M different local manifold

learning algorithms, we can define the fused local object as follows:

LOf ðxÞ ¼ ∑
M

j¼1
cjLOjðxÞ (29)

where {cj}
M
j¼1 are the nonnegative balance parameters, {LOjðxÞ}

M
j¼1 are the local objects, such as

∥∇tanf ðxÞ∥
2, jσf ðxÞj

2, ∥Htan
f ðxiÞ∥

2
F, and jκf ðxiÞj

2, from different algorithms. It is worth to note that

the other local manifold learning algorithms can also be reformulated to incorporate into our

unified framework.

We employ the truncation function from differential manifold to connect the local objects with

their corresponding global functional such that we can obtain a consistent alignment of the

local objects to discover a single global coordinate system of lower dimensionality. The trun-

cation function is a crucial tool in differential geometry to build relationships between global

and local properties of the manifold. Assume that U and V are two nonempty subsets of a

smooth manifold M, where V is compact and V∈U ( V is the closure of V ). Accordingly, the

truncation function [15] can be defined as a smooth function s : M ! ℝ such that:

sðpÞ ¼
1; p∈V
0; p∉U:

�

(30)

The truncation function s can be discretely approximated by the 0-1 selection matrix Si∈ℝN · k.

An entry of Si is defined as:

ðSiÞpq ¼
1; p ¼ Ni{q}
0; p≠Ni{q}:

�

(31)

where Ni ¼ {i1;…;ik} denotes the set of indices for the k-nearest neighborhoods of data point xi.

Let f ¼ ½f ðx1Þ;…;f ðxNÞ�∈ℝ
N be a function defined on the whole data set sampled from the

global manifold. Thus, the local mapping f i ¼ ½f ðxi1Þ;…;f ðxikÞ�∈ℝ
k can be expressible by

f i ¼ ðSiÞT f . With the help of the selection matrix, we can discretely approximate the global

functional Gðf Þ as follows:

Gðf Þ ¼

ð

M

LOf ðxÞ dx ¼
1

N
∑
N

i¼1
LOf ðxiÞ

¼
1

N
∑
N

i¼1
ðf iÞT

�

∑
M

j¼1
cjL

i
j

�

f i ¼ f T
�

∑
M

j¼1
cjP

j

�

f
(32)

where {Lij}
M
j¼1 are the local matrices such as ðGiÞTGi, ðW iÞTW i, ðHiÞTHi, and ðW iÞTW i which are

defined in Eqs. (9), (14), (21), and (28). Pj ¼ 1
N ∑N

i¼1S
iLijðS

iÞT is the alignment matrix of the j-th

A Fusion Scheme of Local Manifold Learning Methods
http://dx.doi.org/10.5772/66303

141



local manifold learning method. The global embedding coordinates Y ¼ ½y1;y2;…;yN�∈ℝ
d ·N

can be obtained by minimizing the functional Gð f Þ. Let y ¼ f ¼ ½f ðx1Þ;…;f ðxNÞ� be a row vector

of Y. It is not hard to show that the global embedding coordinates and the nonnegative

weights c ¼ ½c1;…;cM� can be obtained by minimizing the following objective function:

argmin
Y;c

∑
M

j¼1
crjTrðYP

jYTÞ s:t:YYT ¼ I; ∑
M

j¼1
cj ¼ 1; cj≥0: (33)

where the power parameter r > 1 is set to avoid the phenomenon that the solution to c is cj ¼ 1

corresponding to the minimum TrðYPjYTÞ over different local methods and ck ¼ 0ðk≠jÞ other-

wise, since our aim is to utilize the complementary geometric information from different

manifold learning methods.

We propose to solve the objective function [Eq. (33)] by employing the alternating optimization

[16] method, which iteratively updates Y and c in an alternating fashion. First, we fix c to

update Y. The optimization problem in Eq. (33) is equivalent to:

argmin
Y

TrðYPYTÞ s:t: YYT ¼ I (34)

where P ¼ ∑M
j¼1c

r
jP

j. When c is fixed, we can solve the optimization problem [Eq. (34)] and

obtain the global optimal solution Y as the second to ðdþ 1Þ st smallest eigenvectors of the

matrix P. Second, we fix Y to update c. While Y is fixed, we can minimize the objective function

[Eq. (33)] analytically through utilizing a Lagrange multiplier to enforce the constraint that

∑M
j¼1cj ¼ 1. And the global optimal c can be obtained as:

cj ¼
ð1=TrðYPjYTÞÞ1=ðr−1Þ

∑M
j¼1ð1=TrðYP

jYTÞÞ1=ðr−1Þ
; j ¼ {1;…;M} (35)

5. Experimental results

In this section, we experiment on both synthetic and real-world data sets to evaluate the

performance of our method, named FLM. For LEM, LLE, HLLE, LTSA, and our Fusion of local

manifolds (FLM) algorithms, we experiment on these data sets to obtain both visualization and

quantitative evaluations. We utilize the global smoothness and co-directional consistence

(GSCD) criteria [17] to quantitatively compare the embedding qualities of different algorithms:

the smaller the value of GSCD, the higher the global smoothness, and the better the co-

directional consistence. There are two adjustable parameters in our FLM method, that is, the

tuning parameter r and the number of nearest neighbors k. FLMworks well when the values of

r and k are neither too small nor too large. The reason is that only one local method is chosen

when r is too small, while the relative weights of different methods tend to be close to each

other when it is too large. As a general recommendation, we suggest to work with r∈½2; 6� and

k∈½0:7⌈logðNÞ⌉, 2⌈logðNÞ⌉�.
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5.1. Synthetic data sets

We first apply our FLM to the synthetic data sets that have been commonly used by other

researchers: S-Curve, Swiss Hole, Punctured Sphere, and Toroidal Helix. The character of these

data sets can be summarized as: general, non-convex, nonuniform, and noise, respectively. In

each data set, we have total 1000 sample points, and the number of nearest neighbors is fixed

to k ¼ 10 for all the algorithms. For the S-Curve and Swiss Hole, we empirically set r ¼ 2, and

for the Punctured Sphere and Toroidal Helix data sets, we set r=3. Figures 2–5 show the

embedding results of the above algorithms on the four synthetic data sets. Each manifold

learning algorithm and the corresponding GSCD result are shown in the title of each subplot.

We can evaluate the performances of these methods by comparing the coloring of the data

points, the smoothness, and the shape of the projection coordinates with their original mani-

folds. Figures 2–5 reveal the following interesting observations.

1. On some particular data sets, the traditional local manifold learning methods perform well.

For example, LEM works well on the Toroidal Helix; LLE works well on the Punctured

Sphere; HLLE works well on the S-Curve and Swiss Hole; and LTSA performs well on the

S-Curve, Swiss Hole, and Punctured Sphere.

2. In general, our FLM performs the best on all the four data sets.

The above consequence is because only partial geometric information of the underlying man-

ifold is learned by each traditional local manifold learning method, while the complementary

geometric information learned from different manifold learning algorithms is respected by our

FLM method.

5.2. Real-world data set

We next conduct experiments on the isometric feature mapping face (ISOFACE) data set [1],

which contains 698 images of a 3-D human head. The ISOFACE data set is collected under

different poses and lighting directions. The resolution of each image is 64· 64. The intrinsic

degrees of freedom are the horizontal rotation, vertical rotation, and lighting direction. The 2-

D embedding results of different algorithms and the corresponding GSCD results are shown in

Figure 6. In the embedding, we randomly mark about 8% points with red circles and attach

their corresponding training images. In the experiment, we fix the number of nearest neighbors

to k ¼ 12 for all the algorithms. We empirically set r in FLM as 4. Figure 6 reveals the following

interesting observations.

1. As we can observe from Figure 6b and c, the embedding results of LEM and LLE show that

the orientations of the faces change smoothly from left to right along the horizontal direc-

tion, and the orientations of the faces change from down to up along the vertical direction.

However, as we can see at the right-hand side of Figure 6b and c, the embedding results of

both LEM and LLE come out to be severely compressed, and it is not obvious to survey the

changes along the vertical direction.

2. As we can observe from Figure 6d and e, the horizontal rotation and variations in the

brightness of the faces can be well revealed by the embedding result of HLLE and LTSA.

A Fusion Scheme of Local Manifold Learning Methods
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Figure 2. Embeddings of the synthetic manifold S-curve. The title of each subplot indicates the abbreviation of the

manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation

of the the manifold learning algorithm and the GSCD result.
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Figure 3. Embeddings of the synthetic manifolds Swiss Hole. The title of each subplot indicates the abbreviation of the

manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation

of the the manifold learning algorithm and the GSCD result.
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Figure 4. Embeddings of the synthetic manifolds Punctured Sphere. The title of each subplot indicates the abbreviation of

the manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbrevi-

ation of the the manifold learning algorithm and the GSCD result.
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Figure 5. Embeddings of the synthetic manifolds Toroidal Helix. The title of each subplot indicates the abbreviation of the

manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation

of the the manifold learning algorithm and the GSCD result.
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Figure 6. Embeddings of the ISOFACE data set. Subfigure (a) shows nine sample images, and subfigure (b) to subfigure

(f) are the embedding results of different manifold learning algorithms. The title of each subplot indicates the abbreviation

of the manifold learning algorithm and the GSCD result.
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3. As we can observe from Figure 6f, orientations of the faces change smoothly from left to

right along the horizontal direction, while the orientations of the faces change from down

to up, and the light of the faces varies from bright to dark simultaneously along the vertical

direction. These results illustrate that our FLM method successfully discovers the underly-

ing manifold structure of the data set.

Our FLM performs the best on the ISOFACE data set, since our method makes full use of the

complementary geometric information learned from different manifold learning methods. The

corresponding GSCD results further verify the above visualization results in a quantitative way.

6. Conclusions

In this chapter, we introduce an interesting method, named FLM, which assumes a systematic

framework to estimate the local objects and align them to reveal a single global low-dimen-

sional coordinate space. Within the framework, we can fuse together the geometric informa-

tion learned from different local methods easily and effectively to better discover the

underlying manifold structure. Experimental results on both the synthetic and real-world data

sets show that the proposed method leads to satisfactory results.
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