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Abstract

In the last few decades, the study of the spectrum of density fluctuations in fluids at the
transition from the continuous to the single particle regimes has attracted an increas‐
ing interest. Although the shape of the spectrum is well known in these two extreme
limits, no theory firmly predicts its evolution in the broad crossover region. However,
the development of  inelastic  X-ray scattering (IXS) has substantially expanded the
potentialities  of  modern  spectroscopy,  thus,  providing  an  unprecedented  detailed
mapping of such a crossover. A better understanding of the line-shape evolution in this
intermediate regime is deemed to improve our knowledge of all dynamical processes
occurring in a fluid from macroscopic to microscopic scales. The aim of this chapter is
to review some relevant experimental contributions brought about by IXS in this field
since its development toward the end of past millennium.

Keywords: inelastic X-ray scattering, simple fluids, hydrodynamics, single particle
limit, collective excitations

1. Introduction

In the last 50 years, the short-time collective dynamics of molecules in fluid and glassy systems
has been in the focus of a thorough experimental, theoretical, and computational scrutiny, yet
it still has many unsettled aspects. This mostly owes to the lack of a large-scale symmetry in
the structure of these systems and to the often exceptionally complex movements of their
microscopic  constituents.  Among  various  variables  providing  insight  into  the  dynamic
behavior of a disordered system, density fluctuations are a particularly well-suited subject to
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study, as they can be directly accessed by several independent investigation methods. Indeed,
the most significant advances made in the field of dynamics of liquids have been achieved
thanks to the critical comparison of parallel experimental and computational results. In fact,
both spectroscopy experiments and molecular dynamics simulations provide direct access to
the Fourier transform of correlation functions between density fluctuations, i. e., the dynam‐
ic structure factor,  S(Q,ω).  This variable is a unique function of the energy, ħω,  and the
momentum ℏQ

→
 exchanged between the probe and the sample in a scattering event; here

ℏ=h / 2π with h  being the Planck constant.

In general, the shape of S(Q,ω) is reasonably understood both at quasi-macroscopic distances,
over which the fluid appears as a continuum, and at truly microscopic scales where instead
the single particle dynamics is probed.

The evolution of the S(Q,ω) shape in the whole crossover between these two limits still
represents a theoretical challenge. This particularly applies to the so-called “mesoscopic”
regime, corresponding to distances and timescales roughly matching first neighboring
molecules’ separations and cage oscillations periods, respectively. From the experimental side,
the study of S(Q,ω) in liquids at mesoscopic scales has been for long time an exclusive domain
of inelastic neutron scattering (INS), a technique already in its mature phase, having been
developed in the mid-1950s [1]. The complementary mesoscopic technique, inelastic X-ray
scattering (IXS), is instead relatively young, since its first demonstration dates back to the last
decade of the past millennium [2, 3]. Its implementation was enabled by the advent of
synchrotron sources with unprecedented brilliance and by parallel advances in crystal optics
fabrication. Furthermore, the improved performance of X-ray sources has greatly increased
the level of statistical accuracy typically achieved by inelastic scattering measurements, thus
enabling more detailed and physically informative modeling of the spetral shape. Across the
years, this new spectroscopic tool allowed the scientific community to gain a deep-seated
knowledge of the mesoscopic dynamics of disordered systems. Nowadays, IXS experiments
have reached the level of statistical accuracy required for extremely detailed and informative
line-shape analyses, thus representing a valuable test for the most advanced theories of liquid
dynamics.

As a simple example of possible IXS applications, this chapter will provide a concise overview
of relevant IXS investigations of the S(Q,ω) across the transition from the hydrodynamic to the
single particle regimes. Looking at the available literature results from a global perspective
has a relevant scientific interest since a better understanding of this crossover can shed further
insight into the various dynamic events occurring in a fluid from macroscopic to microscopic
scales.

2. Generalities on an inelastic scattering experiment

In a scattering experiment, a beam impinges on the sample exchanging with it, an energy of
ħω and a momentum of ħ Q

→
. It can be shown that intensity measured in a spectroscopy
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experiment from GHz frequencies [4] to THz ones [5–7] is proportional to the spectrum of
density fluctuations, or dynamic structure factor:

*( , ) = ( , ) ( ,0) exp ( )
V

S Q dr r t r i Q r t dtw dr dr w
+¥

-¥
é ù× -ë ûò ò
rr r r r (1)

with δρ(r→ ,t) being the space (r→ ) and time (t) dependent density fluctuation of the target sample
within the volume V. The term δρ(r→ ,t) appearing in Eq. (1) may represent either a spontaneous
or a scattering-induced density fluctuation, in either case its amplitude is assumed small
enough to induce a linear response on the target sample. Under this condition, the response
of the latter can be expressed in terms of correlation functions calculated at its equilibrium.
Note that for isotropic systems as liquids and glasses, only the amplitude Q = |Q

⇀ |  of the
exchanged wave-vector Q

⇀
 counts, the actual direction being irrelevant. For this reason, while

dealing with these systems, it is customary to express the dynamic structure factor as S(Q,ω)
rather than S (Q

⇀
, ω).

Typically, in a scattering experiment the sample is kept at a constant temperature T and
therefore the correlation function, defined by the symbol ...... , can be calculated as a thermal
average over the initial states of the target atoms. For a classical system, this sum can be
performed using the counting factor n(EI )=exp(−βEI ) /∑I exp(−βEI ), with β = 1/kBT, where EI is

the energy of the I-th initial state and kB, the Boltzmann constant. From the above formula, one
readily recognizes that the scattering of a plane wave at an energy (frequency) and a direction
(wavevector) different from the initial ones is caused by a density fluctuation δρ(r→ ,t). If, for
instance, if the probe is visible light, the occurrence of a density fluctuation causes a local
variation of the index of refraction, thereby disrupting the optical homogeinity of the medium.
By virtue of the scattering event, according to the Huygens principle (see, e.g., [8]), the target
sample becomes the source of spherical wave: ψsc∝ e ikr / r  with r being the distance from the
origin, that is the location of the probe-sample collision.

The photoms deviated at an angle 2θ, after passing through an analyzer filter are ultimately
counted by the detector. If the latter intercepts only a very small portion of the solid angle, it
can be safely assumed that the wavevector of photons impinging on its sensitive area is
constant and orthogonal to the front wave (plane wave approximation). Consequently, the
scattering process can be treated as a transition between two distinct plane waves.

Given the above general considerations, we can now attempt a course derivation of the
frequency distribution of the scattering from a density wave to achieve a rough estimate of the
shape of S(Q,ω).

As apparent from Eq. (1), S(Q,ω) is connected to density fluctuations through the space and
time Fourier transform of their correlation function. Its determination thus provides a snapshot
of this correlation function over timescale ~ ω−1 and distances ~ Q−1. For small Q and ω, the
target system is “perceived” by the probe as a continuous and homogeneus medium, whose
dynamic response is averaged over long times. This continuous limit can be probed, for
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instance, by illuminating the sample with the visible light beam emitted by a laser. In fact, Q
values typical of visible light scattering measurements span the 10−3–10−2 nm−1 range, corre‐
sponding to sub-μm to μm lengthscales. These distances are sufficiently smaller than the
sample size, yet still much larger than first neighboring atoms’ separations. Clearly, at these
scales the detail of the microscopic structure and dynamics cannot be directly observed, since
only long distances and times effects on the dynamics can be captured by the probe.

Over long distances density fluctuations in a liquid can, for instance, have the form of density
(acoustic) waves propagating throughout the medium with the speed of sound, cs. Since cs is
much smaller the speed of light in the medium a given density wave is “seen” by the incident
photons as essentially static, i. e., stationary, perturbation.

We can now focus on the intensity scattered, e.g., by successive crests of the density wave, as
illustrated in Figure 1. The interference between these successive reflections is constructive
whenever the difference in their optical paths (namely, the two red segments in the scheme of
Figure 1) equals an integer multiple of the incident wavelength in the medium. Considering
the smallest of these integer numbers, one has:

Figure 1. Schematics of the interaction between a density wave and a photon beam (see text) causing a scattering at an
angle 2θ.

2 sin 4 sins
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where λ and λ/n are, respectively, the wavelength of light in vacuum and in the target medium,
with n being the refractive index of the sample; furthermore, λs, cs, and ωs are the wavelength,
the speed and the angular frequency of the acoustic wave with λs = 2πcs/ωs. The scattering-
genearted acoustic wave has a wavevector of amplitude amplitude = Q, therefore it propagates
at a frequency ωs = csQ. From Eq. (2) it follows that the amplitude of the exchanged wavevector
is Q = (4πn/λ) sinθ.

From a physical point of view, the acoustic wave can be considered as a source of scattered
radiation traveling with a velocity cs. As well known from Physics textbooks, the frequency of
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the radiation emitted by a moving source is frequency-shifted by the Doppler effect. This
ultimately causes a ± csQ offset of the frequency of scattered wave with respect to the one of
the incident beam; here the signs “+” and “−“ refer to the acoustic wave propagating toward
or away from the detector, respectively. From these very general arguments, one can expect
the frequency distribution of the scattered intensity, i.e., the spectrum, to be dominated by two
peaks symmetrically shifted by an amount ± csQ from the center of the spectrum, ω = 0.

These peaks are customarily quoted as “inelastic” insofar their energy is either lower or higher
(by an amount E = ħcsQ) than the energy of the impinging beam.

The two symmetric side peaks are named Brillouin peaks after their prediction by L. Brillouin
in the early 1920s [9] and, as discussed in the following, their position and width convey insight,
on the frequency and the lifetime of acoustic waves, respectively.

Let us now consider the case of diffusive, rather than propagating, density fluctuations. These
can be for instance those generated by local temperature gradients causing transient density
inhomogeneities. Their time evolution can be described by the Fick‘s law [10], which predicts
a simple exponential time decay. The corresponding spectral shape is the Fourier transform
of such an exponential law, namely a Lorentzian centered at w = 0. Since this position corre‐
sponds to the absence of energy-transfer, the corresponding peak is thus customarily referred
to as quasi-elastic. Here the prefix “quasi-” alludes to the nonvanishing width of the peak and
to its wings extending to the inelatic region of the spectrum (w ≠ 0).

Since in general density fluctuations in a fluid can have either a diffusive, or a propagating
character, one can anticipate that the spectrum of density fluctuations has a triplet shape
composed by a quasi-elastic peak—connected to internal diffusive motions—and two symm‐
metric side peaks— arising from acoustic modes.

A physically more informative description of the spectral shape in the continuous limit
requires a detailed knowledge of the thermodynamic and transport properties of the sample.
As well assessed both experimentally and computationally, the hydrodynamic theory for
continuous media can be consistently used to describe the spectral shape in this limit.

This theory stems from an explicit expression of the conservation laws of the density of mass,
momentum, and energy of the target sample [4, 11]. These can be described by few independent
equations, which, however, do not form a complete set unless complemented by two so-called
constitutive equations: the Navier-Stokes equation and the heat transfer one. The spectrum of
density fluctuation can be ultimately obtained through Fourier and Laplace transforms of this
set of equations. The result can be conveniently expressed in terms of a hydrodynamic matrix,
whose eigenvalues define the modes dominating the spectral shape. As shown in Ref. [4] these
long-lived, or quasi-conserved, collective modes are customarily referred to as “hydrodynamic
modes,” and appear in the spectrum as a triplet, well approximated by the following expres‐
sion:
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where the shape parameters ωs, zh and zs represent the acoustic frequency and the inverse
lifetime of the quasi-elastic and inelastic modes, respectively. All shape parameters in Eq. (3)
are in general Q dependent, even if such dependence is not explicitly mentioned in the notation.

At low Q values, such a Q-dependence can be made explicit using a polynomial Q-expansion
(see, e.g., [12]), which to the lowest order yields:

hyd
s s sc Qw w» = (4a)

( ) 21 2hyd
s s T Lz z D Qg n» = é - + ùë û (4b)

2hyd
h h Tz z D Q» = (4c)

with cs, DT, and υL being, respectively, the adiabatic sound velocity, the thermal diffusivity,
and the longitudinal kinematic viscosity.

One readily recognizes that Eq. (3) consists of these components (from left):

1. The so-called Rayleigh, or central, peak (term ∝ Ah) which relates to entropy (heat)
fluctuations diffusing at constant pressure (P).

2. The two Brillouin side peaks (term ∝ AS), connected to P-fluctuations propagating at
constant entropy, and

3. An additional contribution (term ∝ ASb) asymmetric around the Brillouin peaks position
having negative tails. This term distorts the Lorentzian terms (1) and (2) ultimately

enabling the convergence of spectral moments ∫−∞
+∞

ω nS (Q, ω)dω for n ≤ 2. The latter imposes

the following constraint: b = Ah zh / (1−Ah ) + zs / ωs.

The Rayleigh-Brillouin triplet in Eq. (3) is customarily quoted to as either generalized or simple
hydrodynamic spectrum, respectively with or without the lowest order Q approximation in
Eqs. (4a)–(4c).

It is worth stressing that the shape in Eqs. (3) and (4a)–(4c) provides an accurate description
of the spectrum only when DT Q 2, ΓQ 2 < <csQ, or, equivalently, as long as the lifetime of
hydrodynamic modes is much longer than the acoustic period. In this regime the spectrum is
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dominated by three sharp peaks, forming the so-called Rayleigh-Brillouin triplet, typically
measured in Brillouin light scattering (BLS) experiments.

Figure 2 displays the generic shape of the Rayleigh-Brillouin triplet from a liquid along with
its three individual spectral components.

Figure 2. Typical shape of the Rayleigh-Brillouin triplet measured by Brillouin light scattering. The separate contribu‐
tions to the total shape are represented by lines of different color, as indicated in the legend.

In general, the shape of the spectrum determined by a scattering experiment strongly depends
on the probed space and time (or, equivalently, Q and ω) window, however the analytical form
of such a dependence is generally unknown. Indeed, this is exactly known only at extreme Q
and ω values: either extremely small (hydrodynamic limit-discussed above) or extremely large
(single particle limit, to be discussed in Section 5).

At the crossover between these two limits, the shape of S(Q,ω) becomes highly sensitive
complex dynamical processes involving inter and intramolecular degrees of freedoms. The
coupling of density fluctuation with the mesoscopic dynamics of fluids makes the investigation
of their spectrum of prominent interest.

3. The persistence of hydrodynamic modes beyond the continuous limit:
first INS results

In principle, a “bare” extension of the hydrodynamic description of S(Q,ω) to the so-called
mesoscopic regime would appear suspicious, since at those scales the matter can no longer be
considered as continuous, or stationary. In fact, this regime corresponds to distances and times
comparable with atomic separations and cage oscillations periods, respectively. Nonetheless,
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sound arguments can still be used in support of a suitably generalized hydrodynamic
description in this range. To understand this point, it is useful to recognize that for a dense
liquid the mean free path can span the (10−1 nm) window, thus possibly becoming even smaller
than interatomic separations. Under these conditions, the movements permitted to the atoms
mainly resemble rapid, vibration-like, cage oscillations in the 0.1 ps window.

Consequently, even at mesoscopic (nm, ps) scales the response of the system is still “averaged”
over a large number of elementary dynamic interactions, as required by a suitably generalized
hydrodynamic description to hold validity. Based upon the above argument, possible
reminiscences of Brillouin peaks in the THz spectrum of fluids appeared as an intriguing, yet
somehow realistic, possibility since the early development of INS methods, which motivated
several pioneering INS investigations in the mid-1960s.

Figure 3. Few representative INS spectral line shapes of Ar measured by Bafile et al. [19] at low exchanged wave-vec‐
tors. Reported spectra have a mutual vertical offset for clarity.

Unfortunately, the first results reported in the literature were mutually inconsistent. In fact,
the persistence in the spectrum of side shoulders reminiscent of hydrodynamic modes was
suggested by Chen et al. [13] and successively confuted by Kroô et al. [14]. The former INS
work focused on several samples having a strongly coherent neutron-scattering cross-section,
as Ne, Ar, and D2, and showed that, at low Qs, the frequency shift of side peaks approached
from the above linear hydrodynamic law predicted by Eq. (4a) This pinpointed a link between
these high frequency spectral features and the Brillouin peaks dominating the spectrum at
much lower Qs. In a further INS work on Ar in both liquid (at T = 94 and 102 K) and solid (at
T = 68 and 78 K) phases, Sköld et al. [15] found close resemblances between the phonon
dispersion curves of a liquid and the one of a solid, thus suggesting that the local pseudo-
periodicity of the liquid structure gives rise to quasiperiodic zones reminiscent of the Brillouin
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zones of a crystal. A similar conclusion was previously reached by an INS investigation on
liquid Pb [16], as well as a computer simulation on liquid Rb [17].

Coming back to noble gases, the first convincing evidence of well-defined inelastic peaks
beyond the hydrodynamic regime is suggested by an INS measurement of Bell and collabo‐
rators on supercritical neon [18]. The low Q values explored in such a work (0.6 nm−1 ≤ Q ≤ 1.4
nm−1) substantially reduced the dynamic gap between neutron and visible light Brillouin
scattering techniques. The results demonstrated that the simple hydrodynamic theory
consistently describes the spectral shapes well beyond the continuous limit and at least down
to few nanometers distances. In particular, the inelastic shift of side peaks had, reportedly, a
linear Q-dependence, whose slope is consistent with the adiabatic sound velocity.

Almost two decades after the measurement by Bell et al. on Ne, further low Q INS measure‐
ments were performed by Bafile et al. on supercritical Ar [19]. Again, the spectral line-shape
measured in this work clearly confirmed the persistence of extended Brillouin peaks beyond
the hydrodynamic limit (see Figure 3).

Figure 4. Shape parameters of the S(Q,ω) reported by Refs. [18, 19] for Ne and Ar, respectively, under the indicated
thermodynamic conditions. Data are normalized to the corresponding hydrodynamic values as derived from Eqs.
(4a)–(4c). Transport parameters in Eqs. (4a)–(4c) were extracted either from original works or from the database of the
National Institute of Standards and Technology (NIST).

The extremely low Q range explored by this work (0.35 nm−1 ≤ Q ≤ 1.25 nm−1) further reduced
the gap separating standard INS measurements from light scattering ones. The INS investi‐
gation of Bafile and collaborators took full advantage of the improved statistical accuracy in
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the beam counting and the unprecedented fine Q-grid. Both these assets enabled a very precise
determination of the Q-dependence of line-shape parameters in Eq. (3).

Best-fit values of such parameters derived from [19] are reported in Figure 4 after normaliza‐
tions to the respective simple hydrodynamic predictions, expressed by Eqs. (4)–(4). The
corresponding quantities derived by Bell and collaborators for neon [18] are also reported for
comparison.

Data reported in Figure 4 demonstrate that the simple hydrodynamic laws in Eqs. (4a)–(4c)
derived for continuous media hold validity up to the ≈ 1 nm−1 mesoscopic Q-range. This result
is certainly surprising since at these Q’s the spectral peaks gradually transform into broad
features (see, e.g., Figure 3) for which the simple hydrodynamic approximation
( DT Q 2, ΓQ 2 < <csQ) becomes clearly inaccurate. In Ref. [19] these high frequency inelastic
features are quoted to as “extended hydrodynamic modes,” which emphasizes their hydro‐
dynamic-like behavior persistent well beyond the continuous limit.

4. The advent of inelastic X-ray scattering

The only THz spectroscopic technique available until the mid-1990s, INS, is intrinsically
hampered by kinematic limitations (see, e.g., [5] pp. 63–101). These shrink the accessible
portion of dynamic plane (Q,ω) especially at low Qs, where the collective modes dominate.
This problem was successfully addressed by the development of IXS, a technique virtually free
from kinematic limitations [2, 3], apart from, of course, those arising from finite energy
resolution width. Toward the end of past millennium, the availability of this new spectroscopic
tool revitalized the interest toward experimental studies of the transition from the continuous
to the mesoscopic regime. It is important to stress that noble gases present undoubted
advantages in this kind of studies. In fact, at variance of molecular fluids, their microscopic
components lack internal degrees of freedom and contrary to, e.g., metallic liquids, micro‐
scopic interactions are simpler and shorter-ranged. These, for instance, are key assets to reliably
approximate the interatomic potential when performing molecular dynamics (MD) simulation
studies [20]. Another advantage of gaseous systems in general is the large compressibility,
which permits substantial variations of density, that is the strength of atomic interactions, even
with moderate thermodynamic changes.

The first IXS measurement on a dense noble gas was performed on deeply supercritical neon
(T = 295 K, n = 29.1 atoms/nm3) in 1998. Experimental results were discussed in combination
with the outcome of a parallel MD simulation on a Lennard-Jones model representative of the
same sample [21]. In Figure 5, some of the IXS spectra discussed in this work (and, successively
in Ref. [22]) are compared with the best-fitting line-shape obtaining using Eq. (3) as a model,
without any constraint on the Q dependence of shape parameters. In this case the persistence
of a triple peak structure at mesoscopic scale can be inferred at least up to Q = 6 nm−1, while at
Q = 10 nm−1 or higher the two shoulder can be no longer easily discerned in the IXS spectral
shape.

X-ray Scattering12



Figure 5. Some representative spectral shapes (circles) of deeply supercritical neon at P = 3 kbar and ambient tempera‐
ture reported in [22] are compared with corresponding best-fitting line shapes (black lines) and their quasi-elastic
(blue), inelastic (red) and “negative tails” (green line) components. These are obtained using Eq. (3) as a model for the
spectral shape.

4.1. The Q-dependence of the spectral shape parameters

At this stage a question may arise on the Q dependence of inelastic peaks beyond the extremely
low Q ( <1nm−1) extended hydrodynamic regime probed by Brillouin neutron scattering. A
meaningful answer to this question is provided by the IXS results displayed in Figure 6, which
illustrates the results reported in [21] and also discussed in [22]. These data refer to deeply
supercritical neon at room temperature and 3 Kbar pressure. Plotted data appear paradigmatic
of an IXS measurement on a simple, hard sphere-like, system of a supercritical dense gas. The
curves are compared with the trends expected in the simple hydrodynamic limit, as obtained
by inserting in Eqs. (4a)–(4c) the transport parameters derived from the National Institute of
Standards and Technology (NIST). It can be readily noticed that the Q-dependence of ωs is
linear within a Q range extending up to Q ≈ 10 nm−1, the slope being consistent with the
adiabatic sound velocity of the sample (1050 m/s). The Q-interval spanned by this linear trend
corresponds to distances larger than about .6 nm, a value higher, yet comparable, with first
neighboring atoms separations. This indicates that an extended hydrodynamic behavior can
be still observed at Q higher by a decade than those previously investigated by Bell et al. [18]
and Bafile et al. [19].
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Figure 6. Shape parameters of the inelastic modes of S(Q,ω), as derived for supercritical Ne by IXS (circles [22]) and
MD simulations (dots [21]). The solid lines represent the hydrodynamic predictions derived from Eqs. (4a) and (4b),
while inserting in them thermodynamic and transport parameters from [28] and from [29], respectively.

4.1.1. The role of the static structure factor

From Figure 6 one readily notices that beyond Q = 10 nm−1 the extended acoustic frequency ωs

bends down to a minimum at about 22.5 nm−1. This turns out to be the same Q value where
the structure factor S(Q) (not reported in the plot) reaches its first maximum. We recall here
that the static structure factor is related to the S(Q,ω) by the simple relation:

( )( ) ,S Q S Q dw w
¥

-¥

= ò (5)

Upon inserting Equation (1) i the formula above, it readily appears that the ω-integration of

S(Q,ω) introduces a term ∝ δ(t)=1 / 2π ∫
−∞

∞

exp iωt dt , which, as well known, is nonvanishing only

for t = 0. It follows that S(Q) essentially measures the “static” (t = 0) value of density correlations,
rather than the dynamic one probed by S(Q,ω). Therefore, S(Q) carries direct insight into time-
independent or structural properties of the fluid, which justify the name “static structure
factor,” customarily used for this variable. Alternatively, S(Q) is often referred to as diffraction
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profile as directly determined by diffraction measurements. These are frequency integrated
measurements of the scattering and, as such, not directly sensitive to the dynamic (t-depend‐
ent) properties of the sample.

Figure 7. The dispersion liquid neon (bottom panels) are compared with the diffraction profiles S(Q) (upper panels),
both being derived from IXS measurements discussed in Ref. [24] The vertical dashed lines indicates the essentially
coincident Q-position of minima and maxima of ωs and S(Q), respectively. Horizontal lines in the upper plots indicate
the asymptotic large Q unit value. The dispersive effects discussed in the text are labeled and indicated by arrows.

Typical S(Q) profiles of a liquid are reported in Figures 7 and 9. In all reported curve one
readily notices the presence of a sharp maximum at some exchanged wavevector, Q = Qm for
which Qm = 2π/a, with a being the average distance between first neighboring atoms. Further‐
more, it clearly appears from Figure 9 that beyond the first diffraction peak the S(Q) displays
oscillations from the unit limiting value, which is reached at extremely high Q’s. As discussed
in Section 5 in further detail, these oscillations are induced by coherent or “pair” interactions.
In crystalline solid pair, interactions are much stronger and this is reflected by the circumstance
that the diffraction profile, rather than highly damped oscillations, displays narrow and
exceptionally intense spots (Bragg peaks) [23].

4.2. The physical meaning of the dispersion minimum

The coincidence between the positions of the first S(Q) maximum and the ωs minimum is an
ubiquitous feature of liquids, clearly exemplified in Figure 7. There, the dispersion curve and
corresponding static structure factor are compared as derived from the modeling of IXS spectra
of liquid Ne [24]. The vertical dashed line shows unambiguously the coincidence between the
S(Q) maximum and ωs minimum. Indeed, both effects appear as a manifestation of the
interference between the density fluctuations and the pseudo-periodicity of the local structure.
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Specifically, a maximum in S(Q) is observed when the probed distance, Q−1, roughly matches
the first neighboring atoms’ separation. Under this condition, the presence of an “interference
node” (the first neighboring atom) causes a sharp minimum in the density wave dispersion.

This minimum arises from the coexistence of an acoustic wave “transmitted” through the node
— for which ∂ωs / ∂Q > 0 (positive group velocity)—and one reflected by it— for which ∂ωs / ∂Q
< 0 (negative group velocity). It is commonly observed that the sharpness of this minimum
deeply enhances upon approaching the solid phase. This suggests that, at mesoscopic scales,
dispersion of a dense liquid resembles the one of its crystalline counterpart.

4.3. The slowing down of the dynamics

Figure 6 clearly shows that beside the extended sound frequency ωs, also the half-width of the
sound mode, zs, reaches a local minimum at Qm and, although non reported in the figure, a
similar behavior is observed for the quasielastic half-width zh [25]. The occurrence of a
minimum in zh was predicted by De Gennes [26], the effect having been named after him the
“De Gennes narrowing.” More in general, a large body of IXS results on liquids demonstrates
that all relevant timescales defining the dynamics of density fluctuations undergo a clear
enhancement at Qm. This global slowing down of the dynamics stems from the higher corre‐
lation between the movements of the atoms and those of the respective first neighbor cages
for Q = Qm. As noticed by Sköld [27] S(Q) yields a measure of the effective number of atoms
contributing to the scattered intensity at a given exchanged wave vector Q. It seems thus
natural to ascribe the slowing down at Qm to the higher inertia of the target system due to the
larger number of atoms participating to the collective response of the target system. In
particular, first neighbor movements become more correlated when Q matches the inverse of
first neighbor’s separations and S(Q) approaches its first maximum. One can thus identify the
quantity Q*= Q / S (Q) as the momentum “effectively” transferred, where the factor S (Q)
embodies the inertia of the target system [27]. For a perfect crystal, owing to the global
periodicity of first neighbors’ arrangement, such a factor diverges when Bragg conditions are
met. Here the whole target system coherently participates to density fluctuations and,
correspondingly, an infinitely narrow intrinsic spectral linewidth is to be expected. Further‐
more, the effective inelastic shift, proportional to Q*, tends to vanish as 1 / S(Q).

4.4. The onset of viscoelastic effects

A noticeable feature displayed by the left bottom plot of Figure 7 is the clear inconsistency
between the low-intermediate Q region of the dispersion curve and the corresponding linear
hydrodynamic prediction.

Although a detailed description of this effect goes beyond the scope of this chapter, it is useful
to recall here that this is a manifestation of the viscoelastic response induced by the coupling
with a relaxation process.

To better illustrate this point, it is useful to recall that scattering-excited density fluctuation
causes a time-dependent perturbation of the local equilibrium of the target sample. As a
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response, decay channels redistribute the energy from the density fluctuation toward some
internal degrees of freedom, thus ultimately driving the sample to relax into a new local
equilibrium within a timescale τ.

Two limiting scenarios can thus occur:

1. the time-dependent acoustic perturbation has a timescale much longer than any internal
degrees of freedom of the system. Under these conditions, the latter relaxes to equilibrium
“instantaneously” and the density fluctuation propagates or diffuses over successive
equilibrium states (viscous, or liquid-like, limit);

2. If the density fluctuation is instead extremely rapid, it “perceives” internal rearrange‐
ments as frozen-like and does not couple with them thus virtually evolving with no energy
losses (elastic or solid-like limit).

If such considered perturbation has the form of an acoustic wave, its transition from the viscous
to the elastic limit is accompanied by a decrease of dissipation and a consequent increase in
the propagation speed. Therefore a viscoelastic transition manifests itself through a systematic
increase of sound velocity with Q. While the hydrodynamic theory correctly predicts (through
Eq. (4a)) the Q-dependence of ωs in the viscous limit, it fails to predict its elastic value at
intermediate Qs. This explains the discrepancy between the hydrodynamic straight line and
the actual value of the inelastic shift in the 5 nm−1 < Q < 14 nm-1 range, as evidenced in the
bottom left plot of Figure 7.

5. Moving toward the single particle limit

Upon reaching extremely high Q values, the probed dynamic event gradually reduces to the
free recoil of the single particle after the collision with the probe particle and before any
successive interactions with the first neighbors’ cage.

Within these short times, the struck atom can be assumed to freely stream without interacting
with the neighboring cage, its equation of motion being thus expressed as R

⇀
j(t)=v⇀ jt .

This merely “ballistic” behavior can be easily understood for a system of hard spheres, in which
microscopic interactions essentially consists of atomic collisions, i.e., interactions instantane‐
ous and localized in space. For a more realistic system, atomic interactions can no longer be
considered as “close contact”, rather spanning finite distance and time lapses. However, if the
energy transferred in the scattering event is much larger than any local interaction, the struck
particle can still be “perceived” as freely recoiling from the collision with the probe. In this so-
called impulse approximation (IA) regime it can be safely assumed that no sizable external
force acts on the isolated system formed by the incident photon and the struck atom.

Within the unrealistic hypothesis that the target atom is exactly at rest, its response function
would reduce to a delta function centered at the recoil energy. More realistically, one can
assume that the initial state of the system is characterized by a distribution of initial momenta,
and the spectrum scattered by this moving source therefore becomes “Doppler broadened.”
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Each possible initial momentum provides a contribution to the scattering intensity and the
shape of the spectrum is directly connected to the momentum distribution of the struck
particle.

For a classical particle this can be assumed to have the form of a Maxwell-Boltzmann distri‐
bution ∝exp(−M v 2 / 2kBT ), where M is the atomic mass. Disregarding the analytical details of
the derivation (thoroughly discussed, for instance, in Ref. [5]), it is here important to mention
that the use of the Boltzmann distribution ultimately yields the following Gaussian shape for
the dynamic structure factor:

1/ 2
2

2 2( , ) exp ( )
2 2IA r

B B

M MS Q
k TQ k TQ

w w w
p p

æ ö é ù
= -ç ÷ ê ú
è ø ë û

h (6)

where the suffix “IA” labels the impulse approximation value of S(Q,ω). One readily recog‐
nizes that profile in Eq. (8) is a Gaussian centered at ω =0 and its variance, kBT Q 2 / M , can be
simply related to the mean kinetic energy of the struck particle ( K .E .  = 3/2kBT for a monatomic
system). It can be shown that for a quantum system, the IA spectrum preserves the Gaussian
shape; however, its variance deviates from the classically expected values being instead simply
determined by the quantum value of K .E . . Since the latter is in general unknown, a useful
application of extremely high Q measurements is to achieve a direct determination of its value
(see, e.g., Ref. [30]). Another interesting application is the determination of actual shape of the
momentum distribution, e.g., in intriguing quantum system as Bose condensates [31].

The study of the spectrum of simple fluids in the IA regime [32] has been for decades an
essentially exclusive domain of deep inelastic neutron scattering (DINS). The first deep
inelastic X-ray scattering (DIXS) investigations of the IA spectrum of liquids were pioneered
by a work on liquid neon at the onset of the new millennium [33].

In this work, it was found that the single particle kinetic energy extracted from the spectral
shape provided clear evidence for quantum deviations.

An example of the gradual evolution of the IXS spectrum toward the single particle Gaussian
shape predicted by Eq. (6) is illustrated in Figure 8.

DIXS experiments are not common in the literature since this technique suffers from major
intensity penalties due to the high Q decay of the form factor. Furthermore, these studies often
deal with samples having a light atomic mass (as He, D2 and H2, and Ne), as better suited to
observe quantum effects. Unfortunately, these systems have also a small atomic number which
makes their IXS cross-section rather weak. Finally, the highest Q’s reachable by DIXS are still
below typical values covered by DINS measurements by more than an order of magnitude.
These intrinsic and practical difficulties explain why DIXS experiments are still sporadic and
this technique is still in its “infancy.”
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Figure 8. The gradual Q-evolution of the IXS spectrum of Ne [33] toward the Gaussian shape characteristic of the sin‐
gle particle regime.

It is important to stress that the IA regime is only joined asymptotically at extremely high Qs.
Before this limit is fully reached, the struck atom cannot be considered as a freely recoiling
object and first neighbor interactions need to be taken into account explicitly. It is usually
assumed that the latter influence only the final (after scattering) state of the struck particle,
while its initial state being still essentially “free.” Among various recipes to handle theoreti‐
cally these “final state effects,” the so-called additive approach [34], is the one used in the very
few extremely high Q IXS measurements available [33, 35, 36]. This approach stems from an
expansion of the intermediate scattering function in time cumulants, in which only the first
few lower order term are retained. As a results of this perturbative treatment, deviations from
a perfect Gaussian shape can be easily linked to the lowest order (n) spectral moments and
contain valuable information on meaningful physical parameters as, e.g., the mean force acting
on the atom and the mean square Laplacian, both providing a meaningful and unique
characterization of quantum effects (see, e.g., [33]).

5.1. The case of molecular systems

After the work of Monaco et al. on a monoatomic fluid [33], a successive DIXS work [35] aimed
at investigating the next simplest case of a diatomic homonuclear system as liquid iodine. In
this work, no signature of quantum effects was reported due to both the larger molecular mass
and the higher temperature of the sample.

Even in the absence of quantum deviations, the interpretation of the IXS spectrum of a
molecular fluid is overly complex, owing to the coupling of the spectroscopic probe with all
molecular degrees of freedom [37] as well as their mutual entanglement. In the simplest
assumption that all degrees of freedom are decoupled and belong to very disparate energy
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windows, the observed response strongly depends on how the exchanged energy, E compares
not only with centers of mass translational energies, Et, but also with intramolecular rotational
and vibrational quanta, ℏωr  and ℏωv, respectively.

Specifically, three complementary IA regimes can be identified:

• When Et < < E < <ℏωr ,ℏωv the struck molecule is “seen” by the probe as an object with
spherical symmetry experiencing a merely translational recoil induced by the collision with
the probe. The energy of such a recoil energy is ℏ2Q 2 / 2M , with M being the molecular mass.
Here the scattered intensity carries direct insight into the merely translational momentum
distribution of the molecular centers of mass.

In an intermediate window ( Et ,ℏωr < < E < <ℏωv), usually referred to as the Sachs −Teller(ST)
regime [38], the molecule behaves as a freely recoiling rigid roto-translator. In this Sachs-
Teller regime, the rotational component of the recoil can be written as ℏ2Q 2 / 2MST , in which
the effective, or Sachs-Teller mass, MST, is determined by the eigenvalues of the molecular
tensors of inertia. In this regime, the spectral density becomes proportional to the distribu‐
tion of roto-translational momenta of the molecules. The DIXS work in Ref. [35] demon‐
strated that the Sachs-Teller theory provides a consistent interpretation of the spectral shape
of iodine at the largest Q values covered by state-of-art IXS spectrometers.

• Eventually, when the E > >ℏωr ,v condition is matched, the exchanged energy becomes
overwhelmingly stronger than any intramolecular and intermolecular interaction, there‐
fore, the nucleus inside the molecule is for short-time freed from its bound state experiencing
a recoil as a free particle. Under these conditions, the scattering intensity becomes propor‐
tional to the single proton initial momentum distribution.

In principle, at higher exchanged energies and momenta higher-level IA regimes can be
probed. This happens when energies transferred in the scattering event are much larger than
intranuclear interaction and, correspondingly, subnuclear particle start experiencing free
particle recoils. These phenomena belong to a domain of physics complementary to
condensed matter Physics and rather fitting in the fields of high energy and particle physics.

6. Summarizing the state of the art of IXS technique

In conclusion, the relevant phenomenology of the spectral evolution from the hydrodynamic
to the single particle regime discussed in this chapter is summarized in Figure 9. There, the
whole crossover of the spectral shape from the hydrodynamic Brillouin triplet to the single
particle Gaussian is reported as determined in separate inelastic measurements. The corre‐
sponding Q window are indicated in reference to the various regions of the diffraction profile
S(Q), reported in the center of the figure. It can be readily noticed that, while “climbing” the
wings of the first diffraction peak, the sharp Brillouin triplet (Panel A) gradually transforms
into a more complex shape in which the side peaks appear as broad features (Panels B). When
Q values become comparable or higher than the position of the dominant S(Q) peak (Panel C),
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these shoulder can no longer be resolved due to their intrinsic overdamping. The best-fit
components of the spectrum, also reported for the spectra in Panel C, can help to better identify
the presence of these “generalized hydrodynamic” modes. Upon further increasing Q,
“coherent” oscillations of S(Q) gradually damp out and correspondingly the shape of the
spectrum transforms into a Gaussian centered at the recoil energy (Panel D). This gradual
evolution can be readily captured by comparing the measured shape with the Gaussian profile
in Eq. (6).

Great expectations are raised by the advent of new generation IXS spectrometers further
reducing the dynamic gap separating IXS from Brillouin light scattering [39]. This will possibly
revitalize the dream of entire generations of condensed matter physicists: a single inelastic
spectrometer covering the relevant portion of the crossover from the hydrodynamic to the
single particle regimes. Parallel advances in the theory of the spectrum of fluids and the
empowering of simulation methods are deemed to improve our understanding of this
crossover and all dynamical phenomena happening in a fluid from macroscopic to microscopic
scales.

Figure 9. Overview of experimental spectra measured in several Q windows across the transition from the hydrody‐
namic to the single particle regime in monatomic fluids. Panel A reports Brillouin light scattering spectra of liquid Ar
[40]. Panel B displays INS measurements on supercritical Ne [18] with the red line roughly indicating the linear disper‐
sion of side peaks. Panel C shows IXS spectra on liquid Ne [24]) with corresponding best-fitting line shapes and indi‐
vidual spectral components. Finally, Panel D displays IXS spectra of liquid Li from [41] along with the single particle
Gaussian shape (red line) predicted by Eq. (9).
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