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Abstract

The characteristics  of  water  in the Turawa reservoir,  one of  the important  storage
reservoirs in Poland, were thoroughly studied. The reservoir and also the rivers flowing
into the reservoir were monitored in the period 2004–2006 with respect to the basic
physico-chemical parameters determining the quality of water such as water tempera-
ture,  specific  conductance,  pH,  biochemical  oxygen demand (BOD5)  and chemical
oxygen demand (CODMn), water hardness, content of typical ions (sodium, potassium,
sulphates, phosphates and chlorides), heavy metals, and so on. The observed seasonal
and long-term changes of the parameters measured were discussed and the processes
responsible for the changes suggested. The causes of the observed deterioration of the
ecological  status  of  the  Turawa reservoir  were  given and the  remedial  operations
proposed. The latter included improvement in the management of solid wastes and
wastewater in the area, reducing the runoff of nutrients in the catchment, decrease in
discharge of pollutants into the rivers flowing into the reservoir, removal of bottom
sediments and also increasing the average water table and decreasing its fluctuations.
The effect of the remedial operations will be further studied.

Keywords: Turawa reservoir, physico-chemical parameters, changes of water charac-
teristics, remediation propositions, pollution sources
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1. Introduction

The resources of surface waters in Poland are relatively low, not equally distributed and
characterized by seasonal variability. The total annual runoff is about 57 km3 of water, which
is equal to 1600 m3/person—this is a third of the European average runoff per person (statistic
data). In order to improve the availability of water, quite a number of storage water reservoirs
have been built in different parts of the country. Generally, water storage behind large dams
is applied whereby the water is used for power generation, municipal water supply and flood
control. Large storage reservoirs with controlled discharge provide larger amounts of water
for periods of drought or low flow in the streams. In Poland, there are about 100 reservoirs
characterized by a capacity of over 1 million m3 each. The total storage capacity of the Polish
reservoirs is about 4000 million m3, which constitutes about 6% of the annual runoff (statistic
data). Unfortunately, this storage capacity has not been sufficient up to now. Moreover, the
strong anthropopressure still observed makes that the water quality is not satisfactory in many
cases. So, the efforts are being undertaken to increase water retention and eliminate or, at least,
strongly decrease water pollution.

One of the larger water reservoirs in Poland is the Turawa reservoir, operated since 1948. It is
used to drive a hydroelectric power plant, as a source of water for municipal water supply
systems, and also for recreation.

The Turawa reservoir is situated between 50°42′27″ and 50°44′32″ north latitude and 18°04′51″
and 18°10′59″ east longitude in Mała Panew Valley, which is the part of Równina Opolska
(Opole Plain) (Figure 1).

Figure 1. Localization of the Turawa reservoir in Poland (Terra/Modis NASA).

It is situated on the Mała Panew river 16 km away from where it flows into the Odra river. The
two other smaller rivers supplying the reservoir with water are the Libawa and the Rosa. The
participation of these rivers in the surface water inflow to the Turawa reservoir is 87, 9 and 4%,
respectively.

Morphometrical parameters of the Turawa reservoir are as follows: capacity, 95.5 hm3; surface
area, 20.9 km2; length, 7.4 km; maximum width, 3.45 km; average width, 2.26 km; length of the
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shore line, 29.5 km; maximum depth, 13.68 m and average depth, 4.70 m. The water turnover
time in the Turawa reservoir in the years 1996–2005 was 59 days on average: the shortest 37
days in 2001 and the longest 87 days in 2003. The turnover time was calculated as the quotient
of the sum of water evaporating, water exchanged with catchment and water that flows out of
the reservoir divided by the annual average capacity of the reservoir. The water turnover time
is the theoretical value, which allows for the approximate assessment of the process. On the
basis of this parameter, the Turawa reservoir can be classified as a high-flow water body.

The Turawa reservoir plays an important role in Poland, but due to the strong agricultural and
industrial anthropopressure its water quality in the studied period was rather poor. The quality
of water in the Turawa reservoir is determined by the composition of the water of the rivers
flowing into the reservoir, that is, the Mała Panew river, the Libawa river and the Rosa river
and also by the processes proceeding in the reservoir itself. The Mała Panew is the most
polluted of the above-mentioned rivers; it carries industrial, municipal and agricultural
pollutants. The largest amounts of wastewater are discharged from the several cities in the
neighbourhood of the reservoir [1, 2].

The main source of nitrogen and phosphorous compounds is the application of fertilizers in
arable land in the catchment of the Mała Panew and the Libawa rivers.

Any pollution prevention and remedial programmes need the determination of the large
number of physico-chemical parameters characterizing water quality and the dynamics of the
changes of these parameters.

2. Measured parameters and sampling points

All typical parameters generally used to classify surface waters were measured, mostly in the
recognized laboratories of water analysis by means of recommended procedures and some on-
site using specialized measuring instrumentation. Laboratory-measured parameters are
given in Table 1 (parameters typical for water purity classification).

The measurements were made for 20 sampling points situated in the selected sites of the
reservoir, the rivers flowing into the reservoir, namely the Mała Panew, the Libawa and the
Rosa, the river flowing out of the reservoir, that is, the Mała Panew, and the small lakes in the
neighbourhood of the reservoir. The points for on-site measurements and for collecting
samples for laboratory analysis are presented in Figure 2.

Specific conductance was measured on-site using conductance metre whose accuracy was 0.1
μS cm−1. For oxygen content in water, the oxygen metre, enabling to carry out measurements
up to the depth of 20 m, was used. Temperature was measured with the use of a mercury
thermometer and also thermometers being integral parts of pH, oxygen and conductance
metres. To determine water transparency, Secchi disk was applied. Bathymetric measurements
were performed by means of a Lowrance sonar and an acoustic Doppler current profiler.
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Parameter Parameter (AAS)

Chemical oxygen demand (CODMn) Magnesium (Mg)

Biochemical oxygen (BOD5) Manganese (Mn)

Total hardness (TH) Iron (Fe)

Calcium (Ca2+) Cobalt (Co)

Magnesium (Mg2+) Nickel (Ni)

Alkalinity (HCO3
−) Copper (Cu)

Chloride (Cl−) Zinc (Zn)

Sulphate (SO4
3−) Cadmium (Cd)

Phosphate (PO4
3−) Lead (Pb)

Nitrate (NO3
−)

Sodium (Na+) Parameter

Potassium (K+) Cyanides

Escherichia coli PAH (total)

Total organic carbon Total Phosphorous

Ammonia nitrogen Total dissolved matter

Nitrogen by Kjeldahl Phenol index

Total nitrogen Anionic surfactants

Fluorides Mineral oil index

Total alkalinity

Table 1. Laboratory-measured parameters.

Figure 2. Location of the points for collecting samples for physico-chemical measurements: Geographical features: 1,
water reservoirs: Jez. - lake and Zbiornik Turawski—the Turawa reservoir; 2, forests; 3, rivers; 4, roads; 5, dam.
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Bathymetric measurements have shown that the reservoir is the deepest in the vicinity of the
dam and the shallowest at the inflows of the rivers into the reservoir: the Mała Panew, the
Libawa and the Rosa (Figure 3).

Figure 3. Bathymetric chart of the Turawa reservoir.

3. Water temperature in the reservoir

The water temperature and its fluctuations are important characteristics of storage reservoirs.
In the areas characterized by well-defined cyclic temperature changes, the diurnal and seasonal
temperature changes of surface water are typical. Thermal conditions of water reservoir are
determined by climate (temperature of air, insolation, direction and speed of wind) and
reservoir morphology, subsoil type and vegetation [3]. Water temperature can also be
influenced by anthropogenic factors.

In the case of the Turawa reservoir, the water temperature changes in a wide range. It depends
mainly on air temperature. In 2004–2006, the average water temperature was relatively well
correlated with the changes of average monthly air temperature (correlation coefficient of 0.9).

In a year cycle, there are two periods of relatively stable temperature, winter season and
summer season, and also two periods characterized by large water temperature changes,
spring and winter seasons. The monthly minimum temperatures in the range of 0.6–0.8°C were
observed in the period from December to February. The maximum temperatures ranging from
23.1 to 25.4°C were measured in July and August. In the period discussed, the lowest temper-
ature was 0.3°C (January 2004) while the highest was 26.7°C in July 2006.

The changes of the limits of thermal layers and periods of water circulation and stagnation
were also studied. Spring circulation starts after ice melts off and is characterized by temper-
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ature increase (from 0°C). Heavier water moves downwards while colder water from the
bottom layer moves up resulting in water mixing and constant temperature in a vertical profile
[4].

The period of summer water stagnation is characterized by temperature drop with depth. This
is typical water stratification whereby the upper layer of the highest temperature close to air
temperature is epilimnion and the coldest bottom layer is hypolimnion. The water between
these two layers is metalimnion. Due to the small depth of the reservoir (in summer rarely
more than 10 m in the deepest point) and intensive wind mixing in summer stagnation period
thermal stratification was not observed—vertical temperature difference did not exceed 4°C
(Figure 4).

Figure 4. Changes in water temperature in the Turawa reservoir in the hydrological year 2004—vertical profile:
50°44′10.28″N, 18°05′30.22″E.

At the beginning of September, the period of autumn circulation starts in the Turawa reservoir.
Due to cooling of surface layer, wind and convective mixing, the difference between the water
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temperature of epilimnion and hypolimnion in storage reservoirs decreases [5]. In the case of
the Turawa reservoir, the process of decreasing difference in temperature was accelerated by
intensive water outflow in the period from September to December. The water level dropped
by 2.5 m and the water volume approximately by 30 million m3. The process of water cooling
ended when the temperature dropped to 4°C in the whole thermal profile, what for the Turawa
reservoir was at the turn of November and December. From December to February (hydro-
logical year 2004) or to March (hydrological years 2005 and 2006), winter stagnation occurred.
In the deepest parts of the Turawa reservoir, water temperature was in the range of 2–2.7°C,
while directly under ice layer it was 0.8°C.

In fact, summer stratification did not occur in the Turawa reservoir—the average water
temperature was high and ranged from 20 to 21.8°C, whereas in winter it was in the range of
0.8–2.0°C. The annual average water temperature for the whole reservoir changed from 10.1
to 10.7°C. Thermal variability of the reservoir or the ratio of maximum temperature to
minimum temperature reached the value of 26. In the hydrological years 2004–2006, the
thermal conditions of the reservoir were strongly influenced by fluctuations of water level and
the corresponding large changes of the volume of water from about 16 to 91 million m3. The
relatively small average depth of the Turawa reservoir favours wind mixing.

The interesting characteristics of the Turawa reservoir are water-freezing phenomena. The
earliest time ice cover appeared was the end of November while the latest time its disappear-
ance was the beginning of April; on average, it was the second half of December and the middle
of March, respectively. The ice cover disappeared first in the coastal zone, most likely due to
higher absorption of heat by land masses and intensive supply of surface and ground water.

The annual length of time the Turawa reservoir was covered with ice varied within a wide
range. In the studied period, it changed from 18 days in 1994 to 106 days in 1984, on average
61 days. There were also large differences in the thickness of ice cover, an annual average cover
ranged from 6 cm in 1988 to 26 cm in 1996. Due to the formation of ice cover, anthropogenic
storage reservoirs, including the Turawa reservoir, can be used for recreation, too.

4. Oxygen saturation

The oxygen dissolved in surface water comes mainly from the atmosphere and photosynthesis
processes; its content is one of the most important parameters characterizing the quality of
water. Oxygen is necessary for the life of fishes and other water animals. The oxygen content
depends on the physical (temperature) parameters and on biological processes. Water
pollution generally results in drop of oxygen content. In the hydrological years 2004–2006, the
Turawa reservoir water saturation with oxygen was typical (60–100%) from autumn to spring
with the highest values in winter (Figure 5). In that period, the average oxygen saturation in
vertical profile ranged from 58 to 102%.

Processes and the Resulting Water Quality in the Medium-Size Turawa Storage Reservoir after 60-Year Usage
http://dx.doi.org/10.5772/66226

383



Figure 5. Oxygen saturation (in %) of the Turawa reservoir in the hydrological year 2004—vertical profile:
50°44′10.28″N, 18°05′30.22″E.

Due to increase of nutrients in limnic waters in summer, the oxygen saturation profiles are
highly modified. In the Turawa reservoir, epilimnion water was oversaturated with oxygen
(from 104 to 164%) because of intensive growth of phytoplankton which produces oxygen in
the process. In hypolimnion, phytoplankton growth is limited and oxygen is consumed by
decaying organic matter which results in drop of oxygen content. The oxygen deficit (satura-
tion smaller than 60%) occurred from June to September. In July and August, the bottom layer
of up to 6–7-m thick was completely depleted of oxygen. In fact, every year the oxygen

Water Quality384



saturation conditions of water in the Turawa reservoir were getting worse in summer period
due to intensification of eutrophication processes. This is very unwanted process since oxygen
deficiency is detrimental for the river fauna. With respect to oxygen content, water in the
reservoir was classified to purity class III [6].

5. Conductance of water in the reservoir

Surface waters show large differences in water-specific conductance: from as low as 1μS cm−1

to 3000 μS cm−1. Surface water conductance is strongly influenced by discharged wastewater,
mainly industrial wastewater whose specific conductance can be as high as 10,000 μS cm−1.

The concentration of mineral substances dissolved in water, which are responsible for wa-
ter conductance, changes with time. The changes are caused by primary production, which
diminishes the content of salts in water and also by the transfer of biogenic substances
from bottom sediments to water which increases conductance. In the period 2004–2006, the
monthly average specific conductance of water in the Turawa reservoir changed from 285
to 425 μS cm−1 (Figure 6). In the whole period studied, the lowest measured specific con-
ductance was 272 while the highest was 495 μS cm−1 (average 339 μS cm−1).

Figure 6. Changes in the average monthly specific conductance of the Turawa reservoir in the hydrological years 2004–
2006.

In the season of snow melting (January and February), the conductance was the highest due
to transfer to surface waters of inorganic compounds formed in the process of decay of organic
matter present at the bottom and also due to runoff from spatial sources. The lowest specific
conductance was measured in spring-summer season—most probably this resulted from
maximum water level in the reservoir at that time. Statistically significant dependence (R2 =
0.37) was found between the reservoir water level and conductance—the higher water level
the lower the specific conductance. According to the regulations in force at that time, water in
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the Turawa reservoir was classified to purity class I with respect to that parameter in all
measuring periods, in the hydrological years 2004–2006.

6. Water hardness

Water hardness is generally defined as the content of divalent cations, mainly calcium and
magnesium in water. Hardness is divided into three categories: total hardness, temporary or
bicarbonate hardness, and permanent or non-bicarbonate hardness. The total hardness or the
total content of calcium and magnesium ions, generally expressed as mg CaCO3 dm−3, is most
often used in the classification of surface water. Depending on geological characteristics of the
catchment, it changes in a wide range, from several mg CaCO3 dm−3 to several hundred mg
CaCO3 dm−3. High hardness can be generally disadvantageous if water is to be used in
household and industry. On the other hand, very low (smaller than 30 mg CaCO3 dm−3)
hardness can be harmful for humans.

In the studied period, the monthly average total hardness in the surface water of the Turawa
reservoir ranged from 106 to 191 mg CaCO3 dm−3. The lowest measured value of the total
hardness was 95 mg CaCO3 dm−3 while the highest was 210 mg CaCO3 dm−3; the monthly
average hardness was 141 mg CaCO3 dm−3 (Figure 7).

Figure 7. Changes in the average monthly total water hardness of the Turawa reservoir in the hydrological years 2004–
2006.

In the studied period, the difference in the total hardness was relatively small. The water could
be classified as soft or medium hard. Since the total hardness is determined by the concentra-
tion of calcium and magnesium, the changes of the monthly average concentrations of these
ions were also measured. They are shown in Figures 8 and 9, respectively.
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Figure 8. Changes in the average monthly calcium concentration in the waters of the Turawa reservoir in the hydrolog-
ical years 2004–2006.

Figure 9. Changes in the average monthly magnesium concentration in the waters of the Turawa reservoir in the hy-
drological years 2004–2006.

Seasonal changes of calcium content were much higher than those of magnesium, which can
be related to difference in solubility. The calcium content in non-polluted natural waters is
generally four times higher than magnesium content. In the Turawa reservoir, it was about six
times higher. The total hardness of water in the reservoir was the highest in winter, most
probably due to mineralization of dead organic remains at that period.
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7. Salinity changes

Water salinity is generally defined as the total content of the salts dissolved in water. In the
case of storage reservoirs, usually the contents of chlorides, sulphates, potassium and sodium
ions are determined in water. High salinity can be harmful to the environment and it should
be monitored.

7.1. Chlorides and sulphates

The occurrence of chloride ions is common in the environment, including water. Their content
in natural non-polluted water ranges from trace level to several hundred mg dm−3. They are
also present in vegetation and in animals. The presence of chlorides in water is responsible for
the increased rate of corrosion. Chlorides are also harmful to fresh water vegetation [7].

In the hydrological years 2004–2006, the monthly average concentration of chlorides in the
reservoir was in the range from 13.88 to 53.00 mg dm−3 (Figure 10). The concentration distri-
bution was characterized by relatively low dispersion. The highest concentrations were found
in early spring during snow cover melting. In winter, snow from roads was discharged into
the neighbourhood of the reservoir and in the valley of the Mała Panew river. Generally, snow
from the roads contains increased amounts of chlorides used in winter road maintenance.
Chlorides with water from snow melting could reach the reservoir.

Figure 10. Changes in the average monthly chloride concentrations in the waters of the Turawa reservoir in the hydro-
logical years 2004–2006.

The sulphates occur in natural waters in a wide range of concentrations. They are present at
especially high concentrations, even up to 6000 mg dm−3, in mine waters. The Turawa reservoir
is surrounded by coniferous forests which assimilate larger amounts of SO2 than deciduous
forests. Sulphur in needle trees is in the form of sulphate ions, which can be leached out from
fallen needles. However, anthropogenic factors had the most critical influence on the content
of sulphates in the reservoir water. In the period studied, the average monthly concentration
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of sulphates in the reservoir water ranged from 28.9 to 76.7 mg dm−3 (Figure 11); the average
for all the studied period was 52.2 mg dm−3.

Figure 11. Changes in the average monthly sulphate concentrations in the waters of the Turawa reservoir in the hydro-
logical years 2004–2006 (own elaboration).

The highest sulphate concentrations were found in winter due to decay of organic matter rich
in sulphur compounds. In summer time, sulphate concentration dropped because living
organisms were taking in sulphates and because, in anaerobic conditions in the benthic layer,
they were reduced to hydrogen sulphide.

7.2. Sodium and potassium

The presence of sodium and potassium in natural waters is related to weathering of igneous
rock and their leaching from sedimentary rock [8, 9]. Sodium salts are present in nearly all
natural waters at the concentrations from several to 30 mg dm−3. Similar to chlorides, sodium
ions can come from rock salt and also from sea aerosols. There are also several anthropogenic
sources of sodium, mainly wastewater from soda producing and processing industry, and from
dye industry.

Potassium is usually present in natural waters in small quantity, generally at the level of several
mg dm−3. Strongly polluted industrial effluents and runoff water from fertilized arable land
contain much higher concentration of potassium. Also in the leachate from municipal solid
waste sites, potassium can be found at considerable concentrations.

In the Turawa reservoir, the average concentrations of Na+ and K+ ions were 12.4 and 4.5 mg
dm−3, respectively. In the period studied, the monthly average concentrations of sodium and
potassium were in the range of 7.3–17.0 and 3.5–6.6 mg dm−3 (Figures 12 and 13), respectively.
Fluctuations of Na+ concentrations can be related to water level in the reservoir—the highest
were in autumn-winter season when the water level was the lowest while the lowest were
measured in spring during maximum filling of the reservoir. Seasonal changes of potassium
concentration are not so distinct.
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Figure 12. Changes in the average monthly sodium concentration in the waters of the Turawa reservoir in the hydro-
logical years 2004–2006.

Figure 13. Changes in the average monthly potassium concentration in the waters of the Turawa reservoir in the hy-
drological years 2004–2006.

8. Concentration changes of organic substances

8.1. Classes of organic compounds

Surface waters can contain a wide spectrum of organic compounds belonging to different
classes. The most important are carbohydrates, proteins, amino acids, esters, fats, organic acids,
surfactants, soaps, ketones, alcohols, hydrocarbons, phenols, and also humic and fulvic
substances. Most organic substances are of natural origin. Many are produced by animals and
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vegetation. They are also formed in the process of decay of dead remains of animal and
vegetation. However, presently many organics found in surface waters come from anthropo-
genic sources. Except from humic substances, natural origin substances undergo biodegrada-
tion to simple inorganic compounds. Their presence is responsible for the deterioration of
water smell and taste and can be harmful for living organisms. The presence of many anthro-
pogenic compounds in surface water can disturb biological balance and make self-purification
difficult [10].

Different human activities can really be a source of a large group of organic water pollutants.
Chlorobenzenes are widely used in industry, in organic synthesis, and also as fungicides and
insecticides. Some chlorophenols have fungicide and herbicide properties and some are used
in producing other chemicals. Dioxins (polychlorodibenzodioxins and polychlorodibenzofur-
ans), which are dangerous chemicals, are not produced on purpose, but they are contaminants
of some chemical products. They are also formed in combustion of organic matter. Ethylene-
diaminetetraacetic acid is applied in steam generators to avoid precipitation of metals, in
nuclear industry for surface treatment (decontamination), and so on. Glycols are used as
hydraulic fluids and antifreeze agents. Polycyclic aromatic hydrocarbons are formed during
forest fires, coal burning, and so on. Benzene, toluene, ethylbenzene and xylenes (BTEX) and
aliphatic-chlorinated hydrocarbons are utilized as solvents. Volatile thiols can be present in
the wastewater of petroleum industry. Anthropogenic phthalates are as common as natural
chloride and sodium ions and presently can be found nearly everywhere; they are found in
paints, inks, lacquers and solid organic polymers. Styrene can be found in plastics, synthetic
rubber, copolymers; vinyl chloride is a residual monomer in polyvinyl chloride (PVC). Volatile
organochlorinated compounds (VOX), mainly trihalomethanes (water chlorination), ethylene
and ethane derivatives (solvents) can easily enter the environment. Some VOXs are produced
by algae biomass in the process of chlorination. Pesticides include organochlorinated com-
pounds (DDT, lindane, deldrin, etc.), organo-phosphorous compounds (parathion, malathion,
etc.), sulphonates, carbamates and chlorophenoxy acetic acids. Phenols are formed in decom-
position of vegetable products, can be present in industrial cellulose-containing wastewater,
and were used as wood preservatives (pentachlorophenol). Sources of polychlorinated
biphenyls (PCBs), pollutants widespread in the environment, are industrial wastes and leakage
from transformers. PCBs undergo bioaccumulation easily. Being produced and applied or used
in the production of other chemicals, organic compounds can enter the environment, including
the surface water whereby they can be harmful in many ways.

8.2. Basic organic pollution parameters

Organic compounds differ greatly in physico-chemical properties and in threat to living
organisms so they should be determined as groups or individual compounds. This could be
and is costly and also labour- and time-consuming activity, and therefore as the first step of
the determination of organic pollution, the total organic pollution parameters are used. The
most typical and delivering important information on water quality are biochemical oxygen
demand (BOD5) and chemical oxygen demand (COD). The former is a measure of content in
water of organic matter that can be decomposed biologically, while the latter shows the amount
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of organic matter which can be oxidized by strong oxidizer as potassium permanganate
(CODMn) or potassium chromate (CODCr), respectively.

The basic water quality indicators mentioned above were monitored for the Turawa reservoir.
In hydrological years 2004–2006, the monthly average BOD5 for the whole studied period was
5.2 mg O2 dm−3; it was changing in a wide range from 0.6 to 16.7 mg O2 dm−3 (Figure 14). The
annual average BOD5 increased from 3.6 mg O2 dm−3 in 2004 to 8.6 mg O2 dm−3 in 2006.
Occasionally, very high concentrations were found. In the period from June to September 2006,
the maximum BOD5 values exceeded 40 mg O2 dm−3.

Figure 14. Changes in the average monthly BOD5 concentration in the waters of the Turawa reservoir in the hydrologi-
cal years 2004–2006.

In the above-measuring period, the monthly average CODMn parameter was 9.2 mg O2 dm−3

and changed from 5.2 to 9.2 mg O2 dm−3 (Figure 15). Occasionally, very high values of CODMn

were measured, for example, from September to October 2006 the maximum CODMn values
exceeded 25 mg O2 dm−3.

Both BOD5 and CODMn values were season dependent; in winter were the lowest while in
summer the highest (Figures 14 and 15) due to intensive eutrophication and resulting growth
of algae and green algae during hot season. These organisms emit considerable amounts of
organic compounds in metabolic processes and during decaying.

If water contains neither toxic substances nor organic matter resistant to biodegradation, the
good correlation between BOD5 and CODMn can be expected. For the water of the Turawa
reservoir, correlation coefficient was 0.79.

In October 2006, a series of other pollution parameters were determined. They included total
organic carbon (TOC), and indicators of industrial pollution such as free cyanides, phenolic
index, anionic surfactants, mineral oils and polycyclic aromatic hydrocarbons. Fortunately, the
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indicators of industrial pollution were found quite low. This shows that the water in the Turawa
reservoir was polluted mainly with organic matter of natural origin, which is caused by
increasing eutrophication.

Figure 15. Changes in the average monthly CODMn concentration in the waters of the Turawa reservoir in the hydro-
logical years 2004–2006.

9. Eutrophication processes

Eutrophication is a system response to the addition of nutrients, mainly phosphates, resulting
in the ‘bloom’ or great increase of phytoplankton in a water body. Oversupply of nutrients,
inducing explosive growth of phytoplankton and algae, results in the consumption of oxygen
when these species die. The oxygen depletion level may lead to fish kills and a number of other
effects reducing biodiversity. Generally, low oxygen content has many negative consequences
[11, 12].

The eutrophication of the Turawa reservoir was mainly of anthropogenic origin. Nutrients
were delivered by inflowing rivers, mostly the Mała Panew river; they come mainly from
municipal wastewater, from arable land and forests surrounding the reservoir, and from tourist
resorts. Considerable participation in eutrophication had nutrients released from bottom
sediments gathering in the reservoir for tens of years. In 2004–2006, intensive release of
phosphates from bottom sediments was observed during spring periods caused by water
mixing. Phosphates in the form of compounds with iron or with aluminium were also released
during summertime due to anaerobic conditions in the benthic layer. The intensive eutrophi-
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cation in summer is favoured by hydrological and meteorological conditions such as small
stream flow of inflowing rivers, low water level and high water temperature.

10. Content of heavy metals

There is no widely agreed criterion-based definition of heavy metals. Quantitative criteria used
to define heavy metals included density, atomic mass and atomic number. Often applied
density criteria range from above 3.5 g cm−3 to above 7 g cm−3. In aquatic environment, heavy
metals occur as micro-pollutants. Their natural sources include rock weathering, volcano
eruptions, sea aerosols, forest fires and geological processes. Most important anthropological
sources are transport, power industry, chemical industry, solid waste sites, fertilizers, flue
gases, and so on. Heavy metals are stable pollutants and once introduced into a given envi-
ronment can remain there for a long time [9].

In aquatic environment, heavy metals can be in the form of ions and dissolved complexes, and
bonded to inorganic suspended matter and also to dead remains of vegetation and animals.
Heavy metals are toxic species, even at rather low concentrations, and toxicity is strongly
dependent on the metal. Their presence can influence the bloom of green algae.

In 2004–2006, the quarterly measurements of such heavy metals as manganese (Mn), iron (Fe),
cobalt (Co), nickel (Ni), zinc (Zn), lead (Pb) and cadmium (Cd) in the water of the Turawa
reservoir were conducted. They included the following: 12 measuring series were performed,
130 determinations of each metal in each series. The measurements were made for different
reservoir filling to achieve the most reliable results. The program of sampling must have been
precisely planned since heavy metals undergo multiple processes of desorption and adsorp-
tion during turbulent movement of water. The main source of heavy metals in the reservoir
was the Mała Panew river. In the catchment of this river, zinc and lead ores were mined for
about 100 years in the sixteenth/seventeenth century. At the end of the eighteenth century,
mining and metallurgy of heavy metals were developed in the area again. Mines and numerous
processing plants were discharging polluted industrial effluents into the Mała Panew river and
its tributaries resulting in heavy pollution of river water and bottom sediments in which heavy
metals accumulate resulting in steady increase in concentration. The heavy metals accumu-
lated in sediments in the past can re-enter the liquid phase of the river water. Both forms of
the pollutants, that is, dissolved in water and bonded to sediments, can be transported to the
Turawa reservoir. In the years studied, there were 46 point sources discharging the pollutants
to the Mała Panew river, 36 (26 industrial) of which were situated in the catchment of the
reservoir. Due to the tendency to accumulate, the heavy metals were present at high concen-
trations in the sediments deposited in the reservoir, for example, the permissible level for
cadmium was exceeded 10 times and for lead and zinc seven times. The heavy metals present
in sediments can be reintroduced into the liquid phase during water rippling and flow which
enhance the fluctuation of water level and hence uncovering the reservoir bottom.
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10.1. Manganese (Mn)

The occurrence of manganese in surface water is quite common. It is leached out of rocks and
soil. According to some researchers, the concentration of 6 μg dm−3 is taken as a background
for river water. The main anthropogenic sources include Mn metallurgy and burning coal and
petrol. In small amounts, manganese is needed and present in vegetation and animals. It plays
the role of catalyst in biochemical processes.

In the Turawa reservoir, the average content of manganese was 0.0590 mg dm−3 and changed
from below detection limit to 0.2043 mg dm−3. The highest concentration was determined in
winter due to advantageous conditions of leaching from subsoil. In summer, the content
dropped due to adsorption on suspended matter.

According to surface water classification, the reservoir water, with respect to Mn content, was
classified most often as the second class of purity, and occasionally as the first class in summer
and as the third in winter.

10.2. Iron (Fe)

Iron is quite common in the lithosphere; its content is about 5%. It is present in mineral waters
due to the process of leaching out of rocks and soil. Considerable amounts are released into
surface water with wastewater from the plants processing iron and with mine water. Its typical
concentration in surface water is on the level of several mg dm−3. Depending on the content of
organic matter, oxygen, carbon dioxide, microorganism activity and pH, iron can be present
in water in a dissolved form, as colloids and suspended mater. Some iron compounds can be
assimilated by aquatic organisms.

In the water of the Turawa reservoir, the average iron concentration was 0.1338 mg dm−3 and
changed in the range of 0.009–0.4145 mg dm−3. According to surface water classification in the
years the studies were conducted, the reservoir water with respect to Fe content was classified
as purity class I in summertime, as class II in autumn-winter period when, at the low level of
water and the increased bottom exposure, iron compounds are leached out of sediments.

10.3. Cobalt (Co)

Cobalt concentration in surface water is quite small, most often single to several μg dm−3. The
main anthropogenic sources are industrial waste and coal burning. In non-polluted surface
waters, its typical concentration is 0.05 μg dm−3 while the natural average content is about 0.02
μg dm−3. Cobalt undergoes the process of bioaccumulation in phytoplankton and accumulates
in bottom sediments.

In the water of the Turawa reservoir, the average cobalt concentration was about 12.0 μg dm−3

and ranged from below detection limits to 62.6 μg dm−3.

10.4. Nickel (Ni)

In water, nickel can be present in dissolved form as a two-valent cation, or in the complexes,
most often as cyanide complex or in undissolved form as cyanide, sulphide, carbonate or
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hydroxide. In pure waters, its concentration is about 5 μg dm−3, while in strongly industrialized
areas, surface waters can contain up to about 0.020 mg dm−3. Considerable amounts of nickel
are emitted during combustion of diesel fuel [13].

In the water of the Turawa reservoir, the average cobalt concentration was about 6 μg dm−3 and
ranged from below detection limits to 16.5 μg dm−3. According to surface water classification
in force in the years studied, the reservoir water with respect to Ni content was classified as
purity class I. Only occasionally, the limiting concentration for class I was slightly exceeded.

10.5. Copper (Cu)

Copper is quite common in the earth crust; its content is about 0.02%. In water, it is in the form
of quite mobile complexes with humic and fulvic acids. Copper compounds are easily bonded
to sediments. Copper is present in mineral waters due to the process of leaching out of rocks
and soil. The natural concentration of copper in surface waters is about 0.002 mg dm−3. The
main anthropogenic sources of copper are metallurgy, copper-processing factories, corrosion
of products made out of this metal and its numerous alloys. Copper compounds are used as
biocides to kill blooming algae [14].

In the water of the Turawa reservoir, copper concentration ranged from non-detectable to
0.0202 mg dm−3 with an average of 0.0111 mg dm−3. According to surface water classification
in force in the years studied, the reservoir water with respect to Cu content was classified as
purity class I. The highest concentration was found in summertime during intensive water
blooming since algae are capable to accumulate heavy metals, including copper. Algae were
able to assimilate up to 90% of copper present in the reservoir.

10.6. Zinc (Zn)

Zinc in the earth is present in the form of minerals though its occurrence is not common. Small
amounts of zinc can be found in water due to leaching from soil. However, the main sources
of zinc in surface water are effluents of zinc smelters, zinc processing factories, chemical
industry and coal burning. Pipe corrosion can also be a source of zinc in water, especially in
drinking water. Polluted waters contain zinc at a concentration of 0.005–0.015 mg dm−3.

In the water of the Turawa reservoir, the average zinc concentration was about 35.4 μg dm−3

and ranged from below detection limits to 169 μg dm−3. According to surface water classifica-
tion obligatory in the years studied, the reservoir water with respect to Zn content was
classified as purity class I.

10.7. Lead (Pb)

Despite common occurrence in the earth crust, lead content in natural waters is low. However,
due to common pollution of surface waters with lead, it is rather difficult to assess its natural
content. Lead is present at 0.003 mg dm−3 in non-polluted waters. The main anthropogenic
sources of lead are chemical industry, mining and ore-processing industry. In industrial areas
whereby non-ferrous metal smelters are present, atmospheric precipitation can be a source of
lead in surface waters [14].
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In the water of the Turawa reservoir, the average lead concentration was 0.0116 mg dm−3; it
changed from non-detectable to 0.412 mg dm−3. According to surface water classification
obligatory in the years studied, the reservoir water with respect to Pb content was most often
classified as purity class III and occasionally as class IV. The high concentration resulted from
the fact the Mała Panew river delivering 87% water to the reservoir was strongly polluted with
heavy metals, including lead. Most lead in water bodies collects in bottom sediments where
from it can later move back to water.

10.8. Cadmium (Cd)

Cadmium, in the free form, is not present in the earth crust, but occurs in ores of other heavy
metals, mainly zinc. It is very toxic and accumulates in living organisms. It is one of the most
dangerous substances on the earth. The main sources of surface water pollution with cadmium
are industrial effluents from cadmium mining and metallurgy and corrosion of galvanic
covers. It is also present in some phosphate fertilizers. In non-polluted waters, it is present at
0.02 μg dm−3. Cadmium remains in water for relatively long time, then precipitates as carbonate
and undergoes adsorption on suspended matter and sediments. In the process of bonding to
sediments, bacteria participate converting cadmium compounds to CdS [14].

In the water of the Turawa reservoir, the average Cd concentration was 0.0025 mg dm−3; it
changed from non-detectable level to 0.0164 mg dm−3. According to surface water classification,
the reservoir water with respect to Cd content was most often classified as purity class IV and
occasionally as class V. The high concentration in the water of the reservoir resulted from the
process of chemical denudation of this element in the catchment area of the Mała Panew river.
Cadmium present at high concentration in bottom sediment did not re-enter water layer since
it is sparingly soluble in neutral and alkaline solution. Leaching of cadmium took place only
at the lower level of water (in winter) when some part of the reservoir bottom is uncovered.
The additional reason of cadmium pollution is runoff from arable land whereby phosphate
fertilizers and dolomite fertilizers produced out of waste of lead and zinc mining and metal-
lurgy are applied. Lower concentration of cadmium was observed during intensive blooming
of algae which can absorb up to 80% of cadmium in the reservoir. It was found out that
vegetation and animals take in cadmium at the rate proportional to its content.

11. Conclusions

Conducting the studies on the conditioning and effects of physico-chemical properties of the
water in the Turawa reservoir in the hydrological years 2004–2006 confirmed the hypothesis
that its ecological status was deteriorating due to strong agricultural and industrial anthro-
popressure.

The changes of physico-chemical properties of the reservoir were determined by the quality
of inflowing river water, mainly the Mała Panew river, and inflow of pollutants from localities
and resorts without the appropriate sewage systems. Moreover, the biological and chemical
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processes proceeding in the reservoir resulted in the changes of physico-chemical properties
of water.

According to the guidelines of monitoring programme of lakes, the Turawa reservoir is
characterized by moderate susceptibility for anthropopressure according to morphometric,
hydrological and basin characteristics. However, the water of the reservoir could have been
classified as the third class of purity, that is, as water strongly polluted.

According to the qualitative classification of surface water, the reservoir was classified as
unsatisfying (class IV) or bad (class V) with respect to oxygen-related parameters (BOD5 and
CODMn,), total organic carbon, microbiological parameters and also to the concentration of
heavy metals such as lead and cadmium.

In 2004–2006, due to strong eutrophication the following physico-chemical parameters of water
worsened: colour, odour, oxygen saturation, transparency, pH, BOD5 and CODMn. Positive
tendency of decreasing water hardness and concentrations of calcium, magnesium and
sulphates took place.

One of the largest threats of ecological status of the reservoir was water eutrophication which
threatens ecosystem operation. The most important threats were oxygen deficit in deep areas
of the reservoir which is dangerous for aerobic organisms, oxygen oversaturation of epilimn-
ion, decrease in water transparency, pH increase, accumulation of organic matter, reservoir
overgrowing, deterioration of taste and smell, and release of phosphorous compounds in
anaerobic conditions. Progressing degradation of aquatic environment decreases the usable
value of water, lowers the aesthetics of the environment and management of all the water
bodies.

Deteriorating ecological status of the Turawa reservoir was required to take immediate
comprehensive measures to prevent it from total degradation. Remedial propositions were as
follows:

• Proper management of solid wastes and wastewater and building sewage system around
water body.

• Reduction of runoff of nutrients out of the catchment to the reservoir (building of wastewater
treatment plant).

• Increase in year average water table elevation.

• Reducing fluctuations of water table level.

• Decreasing the content of phosphorous and heavy metals in bottom sediments.

• Removal of bottom sediments.

After 10 years, the physico-chemical parameters are being measured again to assess the results
of remedial actions.
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