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Abstract

Many factors render multimodal affect recognition approaches appealing. First, 
humans employ a multimodal approach in emotion recognition. It is only fitting that 
machines, which attempt to reproduce elements of the human emotional intelligence, 
employ the same approach. Second, the combination of multiple-affective signals not 
only provides a richer collection of data but also helps alleviate the effects of uncer-
tainty in the raw signals. Lastly, they potentially afford us the flexibility to classify emo-
tions even when one or more source signals are not possible to retrieve. However, the 
multimodal approach presents challenges pertaining to the fusion of individual signals, 
dimensionality of the feature space, and incompatibility of collected signals in terms of 
time resolution and format. In this chapter, we explore the aforementioned challenges 
while presenting the latest scholarship on the topic. Hence, we first discuss the various 
modalities used in affect classification. Second, we explore the fusion of modalities. 
Third, we present publicly accessible multimodal datasets designed to expedite work 
on the topic by eliminating the laborious task of dataset collection. Fourth, we analyze 
representative works on the topic. Finally, we summarize the current challenges in the 
field and provide ideas for future research directions.

Keywords: affect recognition, multimodal, machine learning, sensor fusion

1. Introduction

Humans employ rich emotional communication channels during social interaction by mod-
ulating their speech utterances, facial expressions, and body gestures. They also rely on 
emotional cues to resolve the semantics of received messages. Interestingly, humans also 
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communicate emotional information when interacting with machines. They express affects 
and respond emotionally during human-machine interaction. However, machines, from 
the simplest to the most intelligent ones devised by humans, have conventionally been 
 completely oblivious to emotional information. This reality is changing with the advent of 
affective computing.

Affective computing advocates the idea of emotionally intelligent machines. Hence, these 
machines can recognize and simulate emotions. In fact, over the last decade, we have 
witnessed a steadily increasing interest in the development of automated methods for 
human-affect estimation. The applications of such technologies are varied and span several 
domains. Rosalind Picard, in her 1997 book Affective Computing, describes various appli-
cations, such as a computer tutor that personalizes learning based on the user’s affective 
response, affective agent that assists autistic individuals navigate difficult social situations, 
and a classroom barometer that informs the teacher of the level of engagement of the stu-
dents [1]. Numerous other applications have been proposed over the years. For instance, 
many researchers suggest the creation of emotionally intelligent computers to improve the 
quality of the human-computer interaction (HCI) [2–4]. Other affective computing applica-
tions abound in the literature. For example, Gilleade et al. [5] propose the use of affective 
methods in video gaming. Al Osman et al. [6] present a mobile application for stress man-
agement. However, regardless of the application, all researchers in the field are faced with 
the following questions: How can a machine classify human emotions? What should the 
machine do in response to the recognized emotions? In this chapter, we are solely concerned 
with the first question.

Various strategies of affect classification have been successfully employed under restricted 
circumstances. The primary modalities that have been thoroughly explored pertain to facial-
expression estimation, speech-prosody (tone) analysis, physiological signal interpretation, 
and body-gesture examination. In this chapter, we explore affect-recognition techniques that 
integrate multiple modalities of affect expression. These techniques are known in the litera-
ture as multimodal methods.

Although, today, most of the affective computing applications are unimodal, the multimodal 
approach has been advocated by numerous researchers [4, 7–14]. There are many reasons that 
render the multimodal approach appealing. First, humans employ a multimodal approach 
in emotion recognition. It is only fitting that machines, which attempt to reproduce elements 
of human emotional intelligence, employ the same approach. Second, the combination of 
multiple-affective signals not only provides a richer collection of data but also helps alle-
viate the effects of uncertainty in the raw signals. After all, these signals are collected by 
imperfect sensors with numerous possible sources of error between the signal producer and 
processor. Lastly, it potentially gives us the flexibility to classify emotions even when one 
or more source signals are not possible to retrieve. This can happen in situations where the 
face or body is partially or fully occluded, which disqualifies the visual modality, or when 
the user is not speaking which eliminates the vocal modality from consideration. However, 
the multimodal approach presents challenges pertaining to the fusion of individual signals, 
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dimensionality of the feature space, and incompatibility of collected signals in terms of time 
resolution and format.

Before we proceed, we clarify a potential source of confusion. The terms affect and emotion 
can have different meanings in various fields. For instance, according to Shouse, a researcher 
in communication, an emotion refers to the display of a feeling, whether it is genuine or 
feigned [15]. However, an “affect is a non-conscious experience of intensity” [15]. Some 
 psychologists consider affect as the experience of emotion [16]. In this chapter, we consider 
the terms emotion and affect to be synonymous since a sizable amount of works in affective 
 computing use them interchangeably.

The remainder of this chapter is organized as follows: Section 2 summarizes the modalities 
of affect recognition, Section 3 describes pertinent modality-fusion techniques, Section 4 pres-
ents publicly available multimodal emotional databases, Section 5 surveys representative 
multimodal affect-recognition methods, and Section 6 discusses the challenges in the field 
and future research directions.

2. Modalities of affect recognition

In this section, we explore the various modalities of emotional channels that can be used 
for the automated resolution of human affect. The fundamental question that this section 
addresses is the following: What measurable information the machine needs to retrieve and 
interpret to estimate human affect?

When it comes to judging expressive behaviors, humans rely in general on verbal and nonver-
bal channels [17]. The verbal channels correspond to speech, while nonverbal channels include 
the eye gaze and blink, facial and body expression, and speech prosody. Note that speech cor-
responds to the semantics of the communicated message while speech prosody is concerned 
with the tonal content of voice regardless of the meaning of spoken phrases. Facial expression 
and speech prosody are believed to be the most relied upon by humans for emotions’ interpre-
tation [18]. Hence, these channels are likely rich in informational cues about the affective state. 
Social psychologists have interestingly remarked that expressive behaviors can be consciously 
regulated to convey a calculated self-presentation. However, nonverbal channels tend to be less 
vulnerable to deliberate manipulation. Moreover, when verbal behavior conflicts with nonver-
bal comportment, nonverbal expressions may be more reflective of the true affective status [17]. 
In fact, researchers have found speech prosody to be the least consciously controllable modality 
[19]. The latter finding can inform the development of affective applications for lie detection. In 
the following subsections, we detail the commonly used modalities of affect recognition.

2.1. Visual modalities

The visual modality is rich in relevant informational content and includes the facial expres-
sion, eye gaze, pupil diameter, and blinking behavior, and body expression. We explore these 
affective sources in this section.
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2.1.1. Facial expression

The most studied nonverbal affect-recognition method is facial-expression analysis [20]. 
Perhaps, that is because facial expressions are the most intuitive indicators of affect. Even as 
children, we draw simplistic faces that convey various emotions by manipulating the fore-
head creases, eyebrows, and mouth. We also find it instinctive to use emoticons in digital 
textual communications that convey emotions through simple facial-expression depictions.

2.1.1.1. Facial muscle movement coding

Facial expressions result from the contraction of facial muscles resulting in the temporary 
deformation of the neutral expression. These deformations are typically brief and last mostly 
between 250 ms and 5 s [21]. Darwin [22] is one of the early researchers to explore the evo-
lutionary foundation of facial-expressions display. He argues that facial expressions are uni-
versal across humans. He contends that they are habitual movements associated with certain 
states of the mind. These habits have been favored through natural selection and inherited 
across generations. Ekman and Fiesen [23] built on the idea of facial-expression universal-
ity to conceive the facial action coding system (FACS) that describes all possible perceivable 
facial muscle movements in terms of predefined action units (AUs). All AUs are numerically 
coded and facial expressions correspond to one or more AUs. Although FACS is primarily 
employed to detect emotions, it can be used to describe facial muscle activation regardless 
of the underlying cause. Inspired by FACS, other facial expression coding systems have been 
proposed, such as the emotional facial action coding system (EMFACS) [24], the maximally 
descriptive facial movement coding system (MAX) [25], and the system for identifying affect 
expressions by holistic judgment AFFEX [26]. The latter systems are solely directed at emo-
tion recognition.

The Moving Pictures Experts Group (MPEG) defined the facial animation parameters (FAPs) 
in the MPEG-4 standard to enable the animation of face models. MPEG-4 describes facial 
feature points (FPs) that are controlled by FAPs. The value of the FAP corresponds to the 
magnitude of deformation of the facial model in comparison to the neutral state. Though the 
standard was not originally intended for automated emotion detection, it has been employed 
for that goal in various works [27, 28]. These coding systems inspired researchers to develop 
automated image or video-processing methods that track the movement of facial features to 
resolve the affective state [29].

2.1.1.2. Facial-expression detection

Facial-expression detection algorithms involve the following three steps: (1) face detection (or 
face tracking across video frames), (2) feature extraction, and (3) affect classification. We will 
not discuss face detection or tracking in this chapter, the reader can refer to the plethora of 
existing literature on the topic (e.g., [30–32]).

Feature extraction is an essential aspect of expression recognition. Jiang et al. [33] divide the 
feature extraction methods into two types: geometric-based and appearance-based meth-
ods. Geometric features typically correspond to the distances between key facial points or 
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the velocity vectors of these points as the facial expression develops. However, appearance 
features reflect the changes in image texture resulting from the deformation of the neutral 
expression (e.g., facial bulges and creases) [33]. We detail few feature extraction schemes 
employed across many works. Each technique listed represents a set of methods that apply 
the same basic idea in feature extraction:

• Motion estimators: They are geometric-based feature extraction methods. They estimate 
the motion between two images. The most commonly used algorithm is optical flow [34]. 
When the latter is used for facial feature extraction, the camera is usually assumed to be 
stationary and the nonrigid motion resulting from facial deformation is tracked across 
video frames. The output is a series of vectors that represent motion. This technique has 
been used in numerous works, either alone [35–37], or in combination with other feature 
extraction techniques [38].

• Point trackers: They are geometric-based feature extraction methods. They track feature 
points across an image sequence. A typical algorithm, known as the Kanade-Lucas-Tomasi 
(KLT) tracker [39, 40], computes the spatial translation or affine transformation of features 
between consecutive video frames. Spatiotemporal vectors can be obtained from the move-
ment of tracked features.

• Gabor wavelets: They are appearance-based feature extraction methods. They typically 
use a set of Gabor filters at different scales and orientation for feature extraction. Gabor 
filters are a type of band-pass filters that act in a similar manner to the human cortical cells 
by mostly resolving edges of objects present in an image. This technique usually involves 
training a machine-learning model using Gabor features extracted from a database of facial 
expression and running the model to classify emotions from images.

For classification, numerous techniques have been proposed such as support vector machine 
(SVM), neural network (NN), and hidden Markov models (HMMs) [29, 35, 41–45].

In addition to facial-expression analysis, eye-based features such as pupil diameter, gaze dis-
tance, and gaze coordinates, and blinking behavior have been used in multimodal systems 
[10, 12]. In fact, Panning et al. [10] found that in their multimodal system, the speech para-
linguistic features and eye-blinking frequency were the most contributing modalities to the 
classification process.

2.1.2. Body expression

The importance of body expressions for affect recognition has been debated in the literature, 
with conflicting opinions. McNeill [46] maintains that two-handed gestures are closely associ-
ated with the spoken verbs. Hence, they arguably do not present new affective information; 
they simply accompany the speech modality. Consequently, some researchers argue that ges-
tures may play a secondary role in the human recognition of emotions [4, 13]. This suggests 
that they might be less reliable than other modalities in delivering affective cues that can be 
automatically analyzed. However, increasingly, there is more evidence toward the viability 
of this method in affect recognition, at least for a subset of affective expressions [20, 47–51]. 
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In fact, Lhommet and Marsella [52] contend that body expressions are harder to control con-
sciously than facial expressions, and therefore might reflect more genuine emotions.

Affect recognition using body expression involves tracking the motion of body features in 
space. Many works rely on the use of three-dimensional (3D) measurement systems that 
require markers to be attached to the subject’s body [11, 53–56]. However, some markerless 
solutions involving video cameras [57, 58] and wearable sensors [59] have been proposed. 
Once the motion is captured, a variety of features are extracted from body movement. In 
particular, the following features have been reliably used: velocity of the body or body part 
[11, 53, 55, 60–64], acceleration of the body or body part [11, 55, 60, 61, 64], amount of move-
ment [11, 64], joint positions [62], nature of movement (e.g., contraction, expansion, and 
upward movement) [11], orientation of body parts (e.g., head and shoulder) [54, 56, 63, 64], 
and angle or distance between body parts (e.g., distance from hand to shoulder and angle 
between shoulder-shoulder vectors) [54, 56, 61, 63]. Using these features, a variety of classifi-
cation models have been suggested, such as decision tree [11], multilayered perceptron (MLP) 
[53, 59], SVM [55, 61, 63], naïve Bayes [63], and HMM [62].

2.2. Audio modality

Speech carries two interrelated informational channels: linguistic information that express the 
semantics of the message and implicit paralinguistic information conveyed through prosody. 
Both of these channels carry affective information. Hence, in this section, we briefly describe 
the general mechanisms of extracting affect from these channels.

2.2.1. Linguistic speech channel

Humans often explain how they feel during social interaction. Hence, building an understand-
ing of the spoken message provides a straightforward way of assessing affect. This technique 
of affect recognition falls under the wider topic of sentiment analysis and opinion mining 
using natural language processing. Typically, an automatic speech recognition algorithm is 
used to convert speech into a textual message. Then, a sentiment analysis method interprets 
the polarity or emotional content of the message. However, this approach for affect recogni-
tion has its pitfalls. First, it is not universal, and therefore a natural language speech processor 
has to be developed for each dialect; second, it is vulnerable to masking since humans are not 
always forthcoming about their emotional status [17].

In this section, we only discuss sentiment analysis. We will not cover automatic speech rec-
ognition. The readers can consult the survey of Benzeghiba et al. [65] for a thorough treat-
ment of this topic. Sentiment analysis methods can broadly be divided into two categories: 
lexicon-based techniques and statistical-learning approaches. Lexicon-based techniques clas-
sify affect based on the presence of unambiguous affect words or phrases in the text. Numeric 
values are tied to these words or phrases. Hence, overall sentiment can be extracted through a 
scoring system that results from the aggregation of these values. Statistical-learning methods, 
in turn, generate a bag of words whose elements are used as features in machine-learning 
algorithms. Hybrid approaches that propose a combination of these techniques have also 
been studied [66, 67].
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2.2.2. Paralinguistic speech-prosody channel

Sometimes, it is not about what we say, but how we say it. Therefore, speech-prosody analyz-
ers ignore the meaning of messages and focus on acoustic cues that reflect emotions. Before 
the extraction of tonal features from speech, preprocessing is often necessary to enhance, 
denoise, and dereverberate the source signal [68]. Then, using windowing functions, low-
level descriptor (LLDs) features are extracted at usually 100 frames per second with segment 
sizes between 10 and 30 ms. Windowing functions are usually rectangular for time-domain 
features and smooth for frequency or time-frequency features. Numerous LLDs can be 
extracted, and we list a few: pitch (fundamental frequency F0), energy (e.g., maximum, mini-
mum, and root mean square), linear prediction cepstral (LPC) coefficients, perceptual linear 
prediction coefficients, cepstral coefficients (e.g., mel-frequency cepstral coefficients, MFCCs), 
formants (e.g., amplitude, position, and width), and spectrum (mel-frequency and FFT bands) 
[68–72]. Linguistic LLDs can also be retrieved, such as word and phoneme sequences [68, 69]. 
Recently, speech-modulation spectral features were also shown to contain complementary 
information to prosodic and cepstral features [73].

For classification, global statistics features are classified using static classifier such as SVM 
[69, 74–76]. Short-term features are processed though dynamic classifiers, such as HMM 
[68, 76]. Due to the large number of possible features, researchers have proposed the use 
of dimension-reduction schemes such as principal component analysis (PCA) [69] or linear 
discriminant analysis (LDA) [68]. More recently, with the burgeoning of deep-learning prin-
ciples, deep neural networks have also been explored for speech emotion recognition, with 
very promising results (e.g., [77–79]).

2.3. Physiological modality

Physiological signals can be used for affect recognition through the detection of biological 
patterns that are reflective of emotional expressions. These signals are collected through typi-
cally noninvasive sensors that are affixed to the body of the subject. However, brain imaging 
[80] and remote physiological monitoring schemes [81, 82] have been proposed.

There are a multitude of physiological signals that can be analyzed for affect detection. 
Typical physiological signals used for the assessment of affect are electrocardiography (ECG), 
electromyography (EMG), electroencephalograph (EEG), skin conductance (also known as 
galvanic skin response, and electrodermal activity), respiration rate, and skin temperature. 
ECG records the electrical activity of the heart. Conventionally, 12 electrodes are connected 
to various parts of the body to conduct this measurement. However, in affective computing, 
most systems use the Lead I configuration that requires only two electrodes [6]. From the ECG 
signal, the heart rate (HR) and heart rate variability (HRV) can be extracted. HRV is used in 
numerous studies that assess mental stress [6, 83–85]. EMG measures muscle activity and is 
known to reflect negatively valenced emotions [86]. EEG is the electrical activity of the brain 
measured through electrodes connected to the scalp and possibly forehead. There is little 
agreement on the number of electrodes to use or features to extract from EEG. EEG features 
are often used to classify emotional dimensions of arousal [87–90], valence [88–90], and domi-
nance [90, 91]. Skin conductance measures the resistance of the skin by passing a negligible 
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current through the body. The resulting signal is reflective of arousal [86] as it corresponds 
to the activity of the sweat glands. The latter are controlled by the autonomous nervous sys-
tem (ANS) that regulates the flight or fight response. Finally, respiration rate tends to reflect 
arousal [92], while skin temperature carries valence cues [93].

3. Multimodal fusion techniques

With multimodal affect-recognition approaches, information extracted from each modality must 
be reconciled to obtain a single-affect classification result. This is known as multimodal fusion. 
The literature on this topic is rich and generally describes three types of fusion mechanisms: 
feature-level fusion, decision-level fusion, and hybrid approaches. In this section, we present the 
general principles behind these techniques and describe key ideas related to each type.

3.1. Feature-level fusion

A common method to perform modality fusion is to create a single set from all collected fea-
tures. A single classifier is then trained on the feature set. This method is advocated by Pantic 
et al. [4, 13] as it mimics the human mechanism of tightly integrating information collected 
through various sensory channels. However, feature-level fusion is plagued by several chal-
lenges. First, the larger multimodal feature set contains more information than the unimodal 
one. This can present difficulties if the training dataset is limited. Hughes [94] has proven that 
the increase in the feature set may decrease classification accuracy if the training set is not 
large enough. Second, features from various modalities are collected at different time scales 
[13]. For example, frequency domain HRV features typically summarize seconds or minutes’ 
worth of data [6], while speech features can be in the order of milliseconds [13]. Third, a large 
feature set undoubtedly increases the computational load of the classification algorithm [95]. 
Finally, one of the advantages of multimodal affect recognition is the ability to produce an 
emotion classification result in the presence of missing or corrupted data. However, feature-
level fusion is more vulnerable to the latter issues than decision-level fusion techniques [96].

3.2. Decision-level fusion

Typically, a classifier makes errors in some area of the feature space [97]. Hence, combining 
the results of multiple classifiers can alleviate this shortcoming. This is especially true when 
each classifier is operating on a different modality that corresponds to a separate feature space.

Using decision-level fusion, modalities can be independently classified using separate models 
and the results are joined using a multitude of possible methods. Therefore, this approach is 
said to employ an ensemble of classifiers. Ensemble members can belong to the same family 
or different families of statistical classifiers. In fact, static and dynamic classifiers can both be 
employed in such a multimodal system.

3.2.1. Combination strategies based on voting

The simplest and one of the oldest methods to achieve decision-level fusion is to use a voting 
mechanism [98]. Hence, the classification reached by the majority of the ensemble members is 
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adopted as the outcome. However, a tie in the votes can be reached if the number of classifiers 
is odd. This disqualifies bimodal affect-recognition systems. Furthermore, even for an odd 
number of classifiers, a definite decision cannot be guaranteed if more than two classes are 
being considered [95] (e.g., the six prototypical emotions). The classification of a single affect 
is a typical binary problem that can be solved using this approach. A system that monitors a 
single affect such as stress or frustration can use this approach as long as an odd number of 
modalities are supported.

3.2.2. Combination strategies based on prior knowledge

In many cases, it is crucial to assess the performance of each classifier to inform decision mak-
ing during the combination process. For instance, using the training dataset, we can calculate 
the confusion matrix for each classifier. Given an ensemble of C classifiers, the confusion 
matrix of classifier c

i
, where i = 1..C, is described by
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where njki corresponds to the number of times c
i
 classified an observed sample x as belonging 

to class rj while in reality it belongs to class rk, and M is the total number of classes. The diago-
nal of the confusion matrix where j = k represents the times where the classifier was correct.

To overcome the limitations of the voting approach, a weighted majority voting scheme 
can be used. In this approach, classifiers are not treated as equal peers and their votes are 
weighted to reduce the probability of a tie. The weights can be calculated based on the per-
formance of the classifier in terms of recognition and error rates retrieved from the confusion 
matrix during training or using a test dataset after training [95, 98, 99]. Lam and Suen [99] 
propose an optimization process that uses a genetic algorithm to compute the voting weights. 
They observe that there is often a trade-off between recognition, rejection, and error rates. 
Therefore, they attempt to maximize objective function (1):

 
recognition errorF β= − ×

 (2)

where β is a constant that can take on different values depending on the accuracy and reliabil-
ity desired [99]. Hence, in the genetic algorithm, F is used as the fitness value.

Beyond the use of voting schemes, Huang and Suen [100] use a lookup table during training 
to keep track of the combinations of classifier outputs along with the correct class and number 
of occurrence of this combination. The number of occurrence reflects the confidence level that 
the corresponding combination produces the recorded correct class. When the latter combi-
nation is observed, the outcome with the highest confidence level, as recorded in the lookup 
table, is chosen. Gupta et al., in turn, proposed a quality-aware decision fusion scheme, where 
classifiers were developed for several physiological modalities (i.e., EEG, ECG, GSR, and facial 
features) and their individual decisions were weighted by the measured quality of each raw 
signal [101]. Experimental results showed that system failure rates due to noisy segments were 
drastically reduced, and improved affect-recognition performance could be achieved [101].
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Kim and Lingenfelser [102] introduce an ensemble combination strategy that accounts for the 
capability of some ensemble members to classify certain classes better than others. Therefore, 
they rank the classes according to the accuracy of their classification across all ensemble mem-
bers using the confusion matrices produced from the training data. To reach an ensemble 
decision for an observed sample, the classifier corresponding to the highest-ranked class 
performs the classification. We refer to that class as the test class. If the classification result 
matches the test class, then that result is taken to be the ensemble decision. If not, then the 
next class in the ranked list becomes the test class and the procedure is repeated. If we do not 
obtain a match for any of the classes, then the classifier with the best overall performance on 
the training data is tasked with the classification on behalf of the ensemble.

Lastly, Gupta, Laghari, and Falk have made use of a variant of the SVM called relevance vec-
tor machines (RVMs) for affect recognition. RVMs have the same functional form of SVMs but 
are embedded into a Bayesian framework [103]. Therefore, for classification, RVMs compute 
the probabilities of class membership rather than the point estimates. These class membership 
probabilities can be seen as a measure of classifier "confidence" and were used as weights for 
decision-level fusion [90]. While the work in [90] focuses only on a single modality, EEG, it 
fused the decisions of classifiers trained on different classes of EEG features (power spectral, 
asymmetry, and graph theoretic), and thus the observed advantages could also be seen for 
multimodal setups.

3.2.3. Combination strategies for continuous output classifiers

For the ensemble decision of continuous output problems, the probabilities for each class over 
all classifiers can be used for fusion. Lingenfelser et al. [95] refer to this probability as support 
and we adopt this terminology. Using these probabilities, several decision-level combination 
rules are conceived. We detail only a subset of these rules. The maximum rule stipulates that 
the ensemble decision for an observed feature vector corresponds to the class with the largest 
support. The sum rule sums the total support for each class chosen by any of the classifiers. 
Then, the class with the largest support is chosen as the ensemble decision. Similarly, the 
mean rule calculates the mean support for each chosen class as opposed to the sum. Instead 
of calculating the mean, a weighted average of total support for each chosen class can also be 
calculated. Finally, the product rule is similar to the sum rule, except for the use of the multi-
plication operation instead of the addition for the calculation of the total support.

3.3. Hybrid fusion

When a fusion technique combines feature and decision-level fusion, it is referred to as a 
hybrid-fusion scheme. For instance, we can achieve fusion in two stages. In the first stage, 
a classifier can perform feature-level fusion. For example, a single classifier can handle fea-
tures from audio and video signals. In the second stage, decision-level fusion can be used to 
combine the results of that classifier with another one operating on physiological (e.g., HRV) 
features.

Ref. [104] proposes a simple hybrid-fusion approach where the result from the feature-level 
fusion is fed as an additional input to the decision-level fusion stage. Lingenfelser et al. [95] 
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propose two variants of one method called the one versus rest. This approach creates an 
ensemble composed of classifiers trained on each feature set (i.e., features from a modality). 
However, these classifiers model a two-class problem. That is, each one of them is special-
ized in classifying a single class. One last multiclass classifier is added to the ensemble and is 
trained on the merged feature set (i.e., features from all modalities). For the first variant, dur-
ing classification, for an observed sample, the support for a class obtained from its two-class 
classifiers is multiplied with the support of the multiclass classifier to obtain an accumulated 
support. The class with the highest accumulated support is chosen as the ensemble decision. 
The second variant is similar, except that it chooses the best two-class classifier for each class 
and uses it to calculate accumulated support.

3.4. Dimensionality problem

Affective information tends to be highly dimensional. It is not unusual for a feature set to con-
tain thousands of variables. Valstar and Pantic [105] model the facial action temporal dynam-
ics by extracting 2520 features from each facial video frame. The problem can be further 
exasperated when multiple modalities are considered. Feature-level fusion techniques are 
especially vulnerable to this problem. For instance, Kim and Lingenfelser [102] extract 1280 
speech and 26 physiological features to classify affect. Two strategies are generally adopted 
to reduce the feature space dimension. First, feature-selection techniques that choose a subset 
of the feature set for model construction are widely used [7, 12, 28, 104]. Second, dimension-
reduction methods such as principal component analysis and linear discriminant analysis are 
commonly employed [7, 10, 106].

4. Multimodal datasets

One of the challenges in developing multimodal affect-recognition methods is the need to 
collect multisensory data from a large number of subjects. Also, it is difficult to compare the 
obtained results with other studies given that the experimental setup varies. Therefore, it is 
essential to use databases to streamline research efforts on the topic and produce repeatable 
and easy-to-compare results. Very few multimodal affect databases are publicly available. We 
divide these databases into three types: posed, induced, and natural-emotional databases. 
For the posed databases, the subjects are asked to act out a specific emotion while the result is 
captured. Typically, facial and body expression and speech information are captured in posed 
databases. However, posed databases have their limitations, as they cannot incorporate bio-
signals; it cannot be guaranteed that posed emotions trigger the same physiological response 
as spontaneous ones [107]. For the induced databases, the subjects are exposed to a stimulus 
(e.g., watching a video) in a controlled setting, such as laboratory. The stimulus is designed 
to evoke certain emotions. In some cases, following the stimulus, the subjects are explicitly 
asked to act out an emotional expression. The eNTERFACE’05 [108] is an example of such 
database. These databases combine aspects of induced and posed emotions. For the natural 
databases, the subjects are exposed to a real-life stimulus such as interaction with human or 
machine. Data collection mostly occurs in a noncontrolled environment. The AFEW database 
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[109] presents annotated video clips from movies. Therefore, although the emotional expres-
sions are acted out by professional actors, they take place in real-world environments (or at 
least simulated ones). Since these expressions are likely to be as subtle as naturally occurring 
ones, as actors strive to mimic realistic behavior, we categorize this database as a natural one. 
We concede that it does not perfectly fit in any of the three presented types.

For the induced and natural databases, the measured sensory information is labeled with 
the emotional information. The label is usually obtained through subject self-assessment, 
observer/listener judgment, or FACS coding (manually coded facial expressions). Self-
assessment is performed using tools such as self-assessment Manikin (SAM) [110] or feel-
trace [111]. Table 1 shows a list of publicly accessible multimodal emotional databases. Most 
of the databases address the visual and audio modalities, while few recent ones introduce 
 physiological channels.

Reference DB type # Subjects Modalities Affects Labeling

GEMEP (2012) [112] Posed 10 Visual and audio Amusement, pride, joy, 
relief, interest, pleasure, 
hot anger, panic fear, 
despair, irritation, anxiety, 
sadness, admiration, 
tenderness, disgust, 
contempt, and surprise

N/A

SAL (2008) [113] Induced 24 Visual and audio Dimensional and 
categorical labeling

Feeltrace

Belfast (2000) [114] Natural 24 Visual and audio Dimensional and 
categorical labeling

Feeltrace

MIT (2005) [83] Natural 17 Physiological (ECG, 
EMG, skin conductance, 
and respiration)

Low, medium, and high 
stress

Observers’ 
judgment

HUMAINE 
(2007) [115]

Induced and 
natural

Multiple 
databases

Visual, audio, and 
physiological (ECG, 
skin conductance 
and temperature, and 
respiration)

Varies across databases Observers’ 
judgment 
+ self-
assessment

VAM (2008) [116] Natural 19 Visual and audio Dimensional labeling SAM

SEMAINE 
(2010) [117]

Induced 20 Visual and audio Dimensional labeling and 
six basic emotions

Observers’ 
judgment

DEAP (2012) [118] Induced 32 Visual for (22 subjects) 
and physiological (EEG, 
ECG, EMG, and skin 
conductance)

Dimensional labeling SAM

MAHNOB-HCI 
(2012) [12]

Induced 27 Visual (face + eye 
gaze), audio, and 
physiological (EEG, 
ECG, skin conductance 
and temperature, and 
respiration)

Dimensional and 
categorical labeling

Self-
assessment 

(SAM for 
arousal and 

valence)
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5. Multimodal affect detection

Humans display emotions through a variety of behaviors that are difficult for a machine to 
fully appreciate. They modulate their facial muscles, eye gaze, body gestures, gait, and speech 
tone among other channels of expression to convey emotions. Therefore, the understanding 
of these emotional cues requires a multisensory system that is able to track several or all of 
these channels.

Many multimodal affect-recognition schemes have been proposed. They generally differ in 
terms of the modalities, classification method, and fusion mechanism used, and emotions rec-
ognized. In Table 2, we survey several representative multimodal affect-recognition studies. 
Facial-expression analysis features prominently in these studies, followed by speech prosody. 
However, there seems to be little agreement on the nature and number of the features to be 
extracted for each modality.

All of the reviewed works consider a subset of possible features that can be extracted from the 
dataset. Therefore, effective feature selection is required to simplify the classification models, 
and reduce training time and overfitting. Hence, diverse automated techniques are employed 
for that purpose, such as the wrapper method [28], analysis of variance (ANOVA)-based 
approach [12], sequential backward selection [7], minimum redundancy maximum relevance 
[121], and correlation-based feature selection [104]. Some works rely on expert knowledge [27, 
106] as an effective feature-selection scheme. Furthermore, several works elect to reduce the 
dimensionality of the feature space using PCA [7, 10, 106].

Table 1. Summary of the characteristics of publicly accessible multimodal emotional databases.

Reference DB type # Subjects Modalities Affects Labeling

eNTERFACE’05  
(2006) [108]

Posed + 
induced

42 Visual and audio Six basic emotions Observers’ 
verification

RECOLA  
(2013) [119]

Natural 46 Visual, audio, and 
physiological (ECG and 
skin conductance)

Dimensional labeling Observers’ 
judgment

PhySyQX  
(2015) [120]

Natural 21 Audio and 

physiological (EEG 
and near-infrared 
spectroscopy, NIRS)

Dimensional labeling SAM (valence, 
arousal, 
dominance) 
plus nine 
other quality 
metrics (e.g., 
naturalness, 
acceptance)

AFEW (2012) [109] Natural N/A(1426 
video clips)

Visual and audio Six basic emotions + 
neutral

Expressive 
keywords 
from movie 
subtitles + 
observers’ 
verification
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Reference Modalities Classifier** Features Affects DB type Overall 

recognition rate*

Castellano 
et al. [28]

Visual (face, 
body) and  
audio

BN Face: statistical values 
from FAPs and their 
derivatives

Body: quantity of motion 

and contraction index of the 
body, velocity, acceleration, 
and fluidity of the hand’s 
barycenter 

Speech: intensity, pitch, 
MFCC, Bark spectral 
bands, voiced segment 
characteristics, and pause 
length (377 features in total)

Anger, despair, 
interest, 
pleasure, 
sadness, 
irritation, joy 
and pride

Posed FLF: 78.3%

DLF: 74.6%

Panning 
et al. [10]

Visual (face 
and body) 
and audio

PCA+MLP Face: eye blink per minute, 
mouth deformations, 
eyebrow actions

Body: touch hand to face 
(binary)

Speech: 36 features 
(12 MFCCs, their deltas and 
accelerations, and the zero-
mean coefficient)

Frustration Natural FLF: 40–90%

Busso 

et al. [7]
Visual (face) 
and audio

SVM Face: Four-dimensional 
feature vectors

Speech: mean, standard 
deviation, range, maximum, 
minimum, and median of 
pitch and intensity

Anger, sadness, 
happiness, 
neutral

Posed FLF: 89.1%

DLF: 89.0%

Kapoor 
et al. [123]

Visual (face, 
posture) and 
physiological

GP Face: nod and shakes, 
eye blinks, mouth 
activities, shape of eyes and 
eyebrows

Posture: pressure matrices 
(on chair while seated)

Physiological: skin 
conductance

Behavioral: pressure on 
mouse

Frustration Natural FLF: 79%

Soleymani 
et al. [12]

Physiological + 
eye gaze

SVM (RBF 
Kernel)

Physiological: 20 GSR, 63 
ECG, 14 respiration, 4 skin 
temperature, and 216 EEG 
features

Eye gaze: pupil diameter, 
gaze distance, gaze 
coordinates

Arousal and 

valence
Induced DLF: 72%
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Reference Modalities Classifier** Features Affects DB type Overall 

recognition rate*

Kapoor and 
Picard [9]

Visual (face, 
and posture) 
and context

MGP Face: Five features from 
upper face and two features 
from lower face

Posture: current posture and 
level of activity

Context: level of difficulty, 
state of the game

Student interest 
level

Natural FLF: 86%

Paleari 
et al. [14]

Visual (face) 
and audio

NN Face: 24 features 
corresponding to 12 pairs of 
feature points + 14 distance 
features

Speech: 26 features, F0, 
formants (F1–F3), energy, 
harmonicity, LPC1 to LPC9, 
MFCC1 to MFCC10)

Six basic 
emotions

Induced + 
posed

DLF: 75%

Kim 
et al. [104]

Audio and 

physiological
LDF Physiological: EMG at the 

nape of the neck, ECG, skin 
conductance, and respiration 
(26 features in total)

Speech: pitch, utterance, 
energy, and 12 MFCC features

Positive/high, 
positive/low, 
negative/high, 
and negative/
low

Induced DLF: 57%
FLF: 66%
HF: 60%

Lin  
et al. [27]

Visual (face) 
and audio

C– HMM, 
SC-HMM, 
and EWSC- 
HMM

Face: FAPs calculated from 68 
feature points on eyebrows, 
eyes, nose, mouth, and facial 
contour

Speech: pitch, energy, and 
formants (F1–F5)

Joy, anger, 
sadness, and 
neutral

Posed FLF: 75%
DLF: 80%
HF: 83–91%

Valence 

and arousal 

quadrants

Induced FLF: 64%
DLF:69%
HF: 66–78%

Ringeval 
et al. [106]

Visual (face), 
audio, and 
physiological

SVR + NN Face: 84 appearance based 
features (after PCA based 
reduction) obtained from 
local Gabor binary patterns 
from three orthogonal planes 
+ 196 geometric features based 
on 49 tracked facial landmarks

Speech: One energy, 25 
spectral (e.g., MFCC, spectral 
flux), and 16 voicing (e.g., F0, 
formants, and jitter) features

Physiological: ECG (HR + 
HRV) and skin conductance

Valence and 

arousal

Natural DLF: average 
correlation with 
self-assessment 
of 42%

Gupta  
et al. [101]

Visual (face/
head-pose) and 
physiological

SVM, NB Face/Head-pose: lips  
thickness, spatial ratios (e.g., 
upper to lower lip thickness, 
eye brows to lips width)

Physiological: ECG (power 
spectral features over ECG 
and HRV), skin conductance 
(power spectral, zero-crossing 
rate, rise time, fall time), 
EEG (band powers for δ-, 
θ-, α-, β-, and γ-bands)

Valence, 
arousal, and 
liking of 
multimedia 

content

Natural DLF: F1-score of 
59% (SVM) and 
57% (NB)
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Three modality-fusion techniques are commonly employed. There seems to be somewhat 
conflicting results concerning the most effective class of modality-fusion methods. For 
instance, Kapoor and Picard [9] obtain better results using feature-level fusion. Conversely, 
Busso et al. [7] fail to realize a discernible difference between the two methods. Beyond 
the latter two approaches, Lin et al. [27] propose three hybrid approaches that use coupled 
HMM, semi-coupled HMM, and error-weighted semi-coupled HMM based on a Bayesian 
classifier-weighing method. Their results show improvements over feature-and decision-level 
fusion for posed and induced-emotional databases. However, Kim et al. [104] were not able 
to improve over decision-level fusion with their proposed hybrid approach. The presence of 
confounding variables such as modalities, emotions, classification technique, feature selec-
tion and reduction approaches, and datasets used limits the value of comparing fusion results 
across studies. Consequently, Lingenfelser et al. [95] conducted a systematic study of several 
feature-level, decision-level, and hybrid-fusion techniques for multimodal affect detection. 
They were not able to find clear advantages for one technique over another.

Various affect classification methods are employed. For dynamic classification where the 
evolving nature of an observed phenomenon is classified, HMM is the prevalent choice of 
classifier [27]. For static classification, researchers use a variety of classifiers and we were 
not able to discern any clear advantages of one over another. However, an empirical study 
of unimodal affect recognition through physiological features found an advantage for SVM 
over k-nearest neighbor, regression tree, and Bayesian network [122]. Yet, a systematic inves-
tigation of the effectiveness of classifiers for multimodal affect recognition is needed to 
address the issue.

The database type seems to have an effect on the overall affect-recognition rate. We notice that 
studies that use posed databases generally achieve higher levels of accuracy compared to ones 
that use other types (e.g., [7, 27]). In fact, Lin et al. [27] perform an analysis of recognition rates 
using the same methods on two database types: posed and induced. They achieve significantly 
better results with the posed database. Natural databases result in typically lower recognition 
rates (e.g., [10, 101, 106, 121]) with the exception of studies [9, 123] that classify a single affect.

Reference Modalities Classifier** Features Affects DB type Overall 

recognition rate*

Kaya and 
Salah [121]

Visual (face) 
and audio

ELM Face: image is divided into 
16 regions. 177 dimensional 
descriptors are extracted 
from each region using a local 
binary pattern histogram

Audio: 1582 features such as 
F0, MFCC (0–14), and line 
spectral frequencies (0–7)

Six basic 
emotions + 

neutral

Natural DLF: 44.23%

*FLF: Feature-Level Fusion, DLF: Decision-Level Fusion, HF: Hybrid Fusion.
**HMM: Hidden Markov Mode, C-HMM: Coupled HMM, SC-HMM: Semi-Coupled HMM, EWSC-HMM: Error 
Weighted SC-HMM, SVR: Support Vector Regression, LDF: Linear Discrimination Function, NN: Neural Networks, GP: 
Gaussian Process, MGP: Mixture of Gaussian Processes, MLP: Multilayer Perceptron, BN: Bayesian Network, NB: Naïve 
Bayes. ELM: Extreme Learning Machine.

Table 2. Representative multimodal affect-recognition studies.
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6. Discussion and conclusion

In this chapter, we have reviewed and presented the various affect-detection modalities, 
multimodal affect-recognition schemes, modality-fusion methods, and public multimodal-
emotional databases. Although the work on multimodal human-affect classification has been 
ongoing for years, there are still many challenges to overcome. In this section, we detail these 
challenges and describe future research directions.

6.1. Current challenges

Numerous studies found multimodal methods to perform as good as or better than unimodal 
ones [9, 14, 27, 28, 104, 106]. However, the improvements of multimodal systems over uni-
modal ones are modest when affect detection is performed on spontaneous expressions in 
natural settings [124]. Also, multimodal methods introduce new challenges that have not been 
fully resolved. We summarize these challenges as follows:

• Multimodal affect-recognition methods require multisensory systems to collect the rel-
evant data. These systems are more complex than unimodal ones in terms of the number 
and diversity of sensors involved and the computational complexity of the data-interpret-
ing algorithms. This challenge is more evident when data are collected in a natural setting 
where user movement is not constrained to a controlled environment. Most physiological 
sensors are wearable and sensitive to movement. Therefore, additional signal filtering and 
preparation are required. Audio and visual data quality depends heavily on the distance 
between the subject and sensors and the presence of occluding objects between them.

• Multimodal affect-recognition methods necessitate the fusion of the modal features 
extracted from the raw signals. It is still unclear which fusion techniques outperform the 
others [95]. It seems that the performance of the fusion technique depends on the number 
of modalities, features extracted, types of classifiers, and the dataset used in the analysis 
[95]. While the first steps toward a quality-aware fusion system have been proposed [101], 
more research is still needed in order to gauge the true benefit of such an approach.

• It is still not understood what type and number of modalities are needed to achieve the 
highest level of accuracy in affect classification. Also, it is unclear how each modality con-
tributes to the effectiveness of the system. Very few studies attempt to test the effect of 
single modalities on the overall performance [10] and a systematic study of the issue is still 
required.

• It is well established that context affects how humans express emotions [125, 126]. 
Nonetheless, context is disregarded by most work on affect recognition [127]. Therefore, we 
still need to address the challenge of incorporating contextual information into the affect 
classification process. Some attempts have been done in this regard [9, 123, 128–131]. For 
instance, Kim [128] suggests a two-stage procedure, where in the first stage, the affective 
dimensions of valence and arousal are classified, and in the second stage, the uncertain-
ties between adjacent emotions in the two dimensional-affective space are resolved using 
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contextual information. However, more work is needed to validate this method and pro-
pose other similar methods that incorporate a rich set of contextual features.

• Although we have had major improvements in terms of the availability of public multi-
modal affect datasets over the past few years, many of the works in the area still use private 
datasets [127]. The use of nonpublic datasets makes results across studies challenging to 
compare and progress in the field difficult to trace.

• Multimodal-affective systems collect potentially private information such as video and 
physiological data. Special care needs to be afforded to the protection of such sensitive 
data. To the best of our knowledge, no work has specifically addressed this issue yet in the 
context of affective computing.

• In addition to the abundant technical challenges, the ethical implications of designing 
emotionally intelligent machines and how this can affect the human perception of these 
machines must be queried.

Despite these challenges, the results achieved in the last decade are very encouraging and the 
community of researchers on the topic is growing [124].

6.2. Future research directions

Several streams of research are still worth pursuing in the domain. For instance, more inves-
tigation is required on the usefulness and applicability of fusion techniques to different 
modalities and feature sets. Existing studies did not find consistent improvement in the accu-
racy of affect recognition between feature- and decision-level fusion. However, decision-level 
fusion schemes are advantageous when it comes to dealing with missing data [96]. After all, 
multisensory signal collection systems are prone to lost or corrupted segments of data. The 
introduction of effective hybrid-fusion techniques can further improve accuracy of classi-
fication. An empirical and exhaustive study of classifiers in multimodal emotion detection 
systems is still needed to gain a better understanding about their effectiveness. Although we 
have seen a flurry of new multimodal emotional databases in the last few years, there is still 
a need to create richer databases with larger amounts of data and support for more modali-
ties. Moreover, new sensors and wearable technologies are emerging continuously, which 
may open doors for new affect-recognition modalities. For example, functional near-infrared 
spectroscopy (fNIRS) has been recently explored within this context [132]. fNIRS, much like 
functional magnetic resonance imagining (fMRI), measures cerebral blood flow and hemo-
globin concentrations in the cortex, but at a fraction of the cost, without the interference of 
MRI acoustic noise, and with the advantage of being portable. Moreover, recent studies have 
explored the extraction of physiological information (e.g., heart rate and breathing) from 
face videos [81, 82], and thus may open doors for multimodal systems, which, in essence, 
would require only one modality (i.e., video). Notwithstanding, the biggest research chal-
lenge that remains is the detection of natural emotions. We have seen in this chapter that the 
accuracy of detection method decreases when natural emotions are classified. This is mainly 
due to the subtlety of the natural emotions (compared to exaggerated posed ones) and their 
dependence on the context [126]. Therefore, we expect that a considerable amount of future 
research will be dedicated for this effort.
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