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Abstract

This chapter provides an overview of the possibility to derive paddy rice plant heights
with spaceborne bistatic SAR interferometry (InSAR). By using the only available inter-
ferometer in space, TanDEM-X, an investigation of rice crops located in Turkey is
performed. Before analyzing the main outcomes, an introduction to the generation of
elevation models with InSAR is provided, with a special focus on the agricultural land
cover. The processing chain and the modifications foreseen to properly produce plant
elevations and a roadmap for the quality assessment are described. The results obtained,
with a very high interferometric coherence supporting an accurate estimation due to a
limited electromagnetic wave penetration into the canopy, support a temporal change
analysis on a field-by-field basis. For the purpose, an automatic approach to segment the
fields without external auxiliary data is also provided. The study is concluded with an
analysis of the impact of the wave polarization in the results.

Keywords: SAR, InSAR, DEM, TanDEM-X, agricultural remote sensing

1. Introduction

Remote sensing is a mature technology for the observation of natural environmental changes.

In terms of agricultural monitoring applications, radar sensors differ from optical, multispec-

tral, and thermal sensors for two main reasons: (1) radar systems can collect imagery indepen-

dent of solar illumination and cloud cover. This is particularly relevant for countries affected

by heavy precipitations during the plant growing stages. (2) The system measures amplitudes

and phases of the backscattered signal, yielding the joint derivation of absolute ranging and

backscattering coefficients. Both of them can be exploited to derive the plant height, as

explained in the following.

The investigation presented in this chapter is performed for paddy-rice fields, even though in

principle it can be generalized for other vertical-oriented vegetation crops. The relevance of the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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distribution, and reproduction in any medium, provided the original work is properly cited.



study comes from economical and geo-political aspects. According to the Food and Agricul-

tural Organization (FAO), rice is one of the most valuable livestock products in the world, with

a production of more than 700 million tons per year [1]. As a consequence, a big interest of

international agencies, insurance companies, and governments are posed on this staple food.

For instance, politicians and governments are particularly interested in the monitoring of

farming practices and land control, e.g., to check for hidden and/or spoofed markets. Insurance

companies are interested in forecasting coverage costs by knowing the status of crops at the

moment of possible flooding. Agencies would like to regulate the product import/export based

on the yield estimation and the current demand. The possibility to globally monitor paddies,

by providing the growth status and field borders, is then very relevant.

This global monitoring can be ensured with the utilization of synthetic aperture radar (SAR)

systems. SAR images have been already used for several campaigns for crop inspections (e.g.,

[2–6]). Many possible measures of rice growth such as canopy height, LAI, biomass, etc. are

considered in the works cited above. Among them, canopy height is the most direct measure-

ment and has direct relationship with growth rate, especially in the early growing stage. There

are three techniques that can be employed to derive the rice plant height with SAR data: single-

image backscatter analysis, SAR interferometry (InSAR), and Polarimetric SAR Interferometry

(PolInSAR).

1.1. Single-image backscatter analysis

A practiced strategy relies in finding the correlation between canopy height and backscattering

coefficients, although the scattering process is not a function depending only on crop height. In

fact, an indirect relationship can be assessed. The electromagnetic scattering of the plant is a

function of intricate interrelations among physical parameters of rice [7]. By taking into

account the different scattering mechanisms involved in the acquisition process, the system

parameters, and the physical properties of the plant, it is in principle possible to invert a

complex model and derive, among other parameters, also the plant height. Nevertheless, only

a few studies are reported in the literature for this purpose and they are based on experimental

data sets and locally selected thresholds, thus limiting their accuracy and not being suitable for

operational processors commanded to process various data sets [8].

1.2. SAR interferometry (InSAR)

Direct height information can be instead derived with the cost of two SAR images, by

employing the interferometric technique [9]. In contrast to the single-image backscattering

information, InSAR exploits the phase information embedded in the received signal. From an

agricultural application point of view, in the literature, interferometric phase information has

been employed by making use of the coherence as in Refs. [10, 11]. In these works, most of the

attention has been given on the accuracy of the interferometric phase for the C-band European

remote sensing (ERS) tandem data set. However, ERS data spatial resolution is very low, about

30 m, not being able to tackle the physical-based spatial heterogeneity problem in paddy-rice

fields. Two other limiting factors are the wave penetration at C-band, causing an underestima-

tion in volume deviations, and the nonzero temporal baseline, causing unreliable interferometric
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phase information. A promising SAR concept to attenuate these limitations is TanDEM-X. An

artist’s view of the mission is sketched in Figure 1. TanDEM-X is an innovative mission, started

in 2010 with the launch of a twin satellite (TDX-1) placed in close formation with the TerraSAR-X

satellite (TSX-1). The main mission objective is the generation of a global digital elevation model

(DEM) with HRTI-3 accuracy standards [12]. The mission acronym says just that: TerraSAR-X

add-on for Digital Elevation Measurement. By definition, the DEM renders the height of what lays

on the Earth at a given position, thus, also paddy-rice plants. A study about the accuracy of the

DEM for crops is the main objective of this chapter.

The standard TanDEM-X mode of operation is bistatic, i.e., established on a single signal

transmission and a dual reception. The chapter title term bistatic interferometry refers to this

technique. The satellite transmitting and receiving the signal is also named active satellite,

while the one only receiving the signal is named passive satellite. By doing so, strong DEM

error sources for agricultural mapping such as atmospheric artifacts or temporal changes are

avoided. Moreover, the wave penetration into the canopy is strongly limited with the

employed wavelength of about 3.1 cm (X-band). Among other possible operation modes, it is

worth mentioning the monostatic one, where the two satellites are run independently. This is

the case of repeat-pass acquisitions, i.e., acquisitions taking place at different times. The

potentials of TanDEM-X to render paddy-rice heights have been reported in [13, 14]. The

flexible commanding yields the acquisition of several DEMs over the same area in a short

revisit time, thus allowing a temporal study about the plant growth. This chapter takes

inspiration from these works and revisits the results with an extended introduction about the

uncertainty assessment of agricultural DEMs generated with bistatic interferometry.

Figure 1. Artist’s view of the TanDEM-X mission (©DLR).
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1.3. Polarimetric SAR interferometry (PolInSAR)

The last technique taken into consideration for plant height derivation is Polarimetric InSAR

(PolInSAR) [15]. PolInSAR requires multiple-polarized SAR images. Like the single-image

backscatter image analysis, the PolInSAR height estimation is also based on scattering models.

In particular, these models relate the crop height to the interferometric coherence, and they

vary depending on the physical structure of the plant [16]. A limitation of this technique is the

required geometrical configuration of the satellites. Indeed, to obtain the required sensitivity of

a few centimeters for plants growing to about 1 m, a spatial separation between satellites (also

called baseline) of some kilometers is required [16]. This limitation strongly impact on the

applicability to spaceborne systems. The first demonstration of usage has been reported with

an airborne system [17].

This chapter is organized in the following way: Section 2 presents the system employed for

the height derivation and provides an overview of bistatic interferometry. Section 3 applies

the technique to the mapping of paddy-rice and presents and discusses the results. Section 4

deals with the impact of the wave polarization in the results and Section 5 traces the

conclusions.

2. DEM generation with bistatic interferometry

A digital elevation model is a model describing the topographical variations of the Earth.

Terrain height is the main information. The elevation is generally given above a certain level,

e.g., a geodetic datum. For instance, TanDEM-X elevations are over the WGS84 ellipsoid.

DEMs can be generated with various sensors, such as optical, LiDAR (Light Detection and

Ranging), and SAR.

Stereo photogrammetry is the standard technique to generate DEMs with optical data. It refers

to the technique of measuring the position of Earth points from a set of photographs—mini-

mum two [18]. LiDAR (Light Detection and Ranging) is another popular system to produce

DEMs [19]. It is an active system based on a pulse/CW laser employed to determine the

distance between sensor and target. This technology reached its maturity in the 1990s and

nowadays several companies offer laser surveys with an airborne system. As for LiDAR, SAR

is an active system, i.e., based on the transmission and reception of signals. The whole process

is coherent, i.e., established on the use of both amplitude and phase information. Several

studies have been reported in the literature. For instance, successful usage of photogrammetry

and laser scanning for crop height monitoring can be found in Refs. [20, 21], respectively.

In contrast with LiDAR, which determines a 3D location from one range measurement and 2D

pointing angles, the InSAR 3D positioning relies on two antenna locations and on the measure

of the interferometric unwrapped phase. The processing from SAR raw data to DEM is shown

in Figure 2.

A complete description of the processing steps is out of the scope of this chapter and can be

found in several articles and books, e.g., [9, 22]. Instead, their main characteristics and modifi-

cation adapted to the mapping of agricultural crops are outlined in Section 2.1.
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2.1. InSAR processing steps

Agricultural crops are not a particularly difficult terrain to map and generally do not require

dedicated processing solutions (see also Section 2.2) or modification to nominal InSAR pro-

cessors. The processor used for the generation of the results presented in this chapter is the

integrated TanDEM-X processor (ITP) [23, 24]. ITP is the operational processor employed in

the German Aerospace Center (DLR) for the generation of TanDEM-X products. In the follow-

ing, a brief description of the processing stages shown in Figure 2 is provided with a special

focus on the crop elevation modeling.

Focusing. Focusing is the process to form a SAR image from raw data [25]. The SAR image is a

bidimensional complex array. The along-track dimension is named azimuth, while the across-

track is named range. The conversion from pixel value to physical backscatter is also called

radiometric calibration and is performed as:

σ0 ¼ ðkjxj2−βNÞsinθi (1)

where σ0, or Sigma Nought, is the measure of the radar return, k is a sensor-dependent calibra-

tion factor, x is the pixel value after SAR focusing, βN, or Noise Equivalent Beta Naught,

Figure 2. Flowchart of a typical InSAR processing chain finalized to DEM generation from SAR raw data.
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equivalent beta naught, represents the noise contribution into the signal and it is usually

annotated in the SAR product, and θi is the local incidence angle. Since rice paddies develop

in locally flat terrain, θi is equal to θl, the radar looking angle.

In the bistatic interferometric scenario, the focusing operation is performed for the active

channel, generating the master image, and for the passive channel, generating the slave image.

Coregistration. Coregistration has the objective to obtain a precise sample-overlap between

two SAR images. A typical algorithm employed for coregistering SAR data is the crosscor-

relation [23]. No peculiar algorithmic issues are expected for paddies.

Interferogram generation. The interferogram, generated by complex conjugate multiplication

of the two coregistered images, is the main product for the DEM generation, since its phase is

directly related to the terrain height. Typically, to reduce speckle noise, a multilooking process

is implemented. For the considered agricultural scenario, an efficient moving-average 2D

window is sufficient. The number of looks used in the processing defines an important DEM

parameter, the horizontal resolution.

Horizontal resolution (ΩrÞ: Ωr represents the minimum resolvable distance between two objects

at different height. It is determined as:

Ωr ¼
nazδ

gr
az þ nrgδ

gr
rg

2
(2)

where naz and nrg are the azimuth and range independent number of looks and δgraz and δgrrg

represent the single SAR pixel azimuth and range ground resolution. The independent number

of range and azimuth looks is a function of the looks used in the multilooking process [12]. Ωr

represents the average of the range and azimuth interferogram resolutions.

Absolute phase determination. The SAR interferometric technique is based on the exploita-

tion of the complex interferogram. The interferogram is defined through phase principal

values, with values ranging into the interval (-π,+π]. A critical stage of the interferometric

chain is the absolute phase retrieval given the wrapped interferogram phase. This process,

named phase unwrapping, is one of the most delicate of the whole processing chains. It consists,

for every interferogram pixel, in the estimation of the number of phase cycles to be added to

the wrapped value. The topographic phase φtop, also called absolute unwrapped phase, is

sensitive to the terrain height h through the relation

∂φtop

∂h
¼

2πB⊥
λr sinθl

¼
2π

ha
(3)

where B⊥ is the perpendicular baseline between satellites, λ is the wavelength, r is the slant

range, and ha is a useful derived parameter called height of ambiguity. The phase unwrapping

step defines the unwrapped phase from the (wrapped) interferometric phase by adding an

estimated integer number of cycles. The accuracy of this operation depends on ha. Indeed,

large heights of ambiguity data-takes are less prone to phase unwrapping errors that manifest
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in the DEM as height discontinuities of multiples of ha. In contrast, according to Eq. (3), small

heights of ambiguity yield better results in terms of height sensitivity. For rice paddies, consid-

ering that the plant height is very small, growing up to 1–1.5 m, a small height of ambiguity

would be preferred to obtain precise results. It has to be noticed that the unwrapping opera-

tion may even be not necessary for terrain height variation smaller than ha, thus dramatically

simplifying the overall InSAR processing. The nominal TanDEM-X ambiguity heights are

around 40–60 m.

Finally, the unwrapped phase must be properly calibrated before the final geocoding step. The

calibration involves the estimation of the absolute phase offset, which can be derived with

external ground control points, with an external DEM, or with the DEM derived with the

internal coregistration shifts, as in [24]. This DEM calibration is an important processing step

for a multi-temporal elevation study like the one proposed in this chapter, since uncalibrated

data provide misinterpretations of the geophysical outcomes. The method in [24], operation-

ally employed for TanDEM-X production, should be actually discarded for multitemporal

studies since every single absolute phase offset estimation is computed independently and is

based on the local InSAR geometry. Error sources, such as baseline inaccuracies, may vary

between geometries, thus producing absolute height differences between DEMs. For this

reason, the calibration with a common reference is a more favorable solution. Obviously, the

calibration points or region must be located outside the paddies and must consist of tempo-

rally stable elevations.

Geocoding. This processing step implies an absolute phase offset conversion in surface eleva-

tion and a georeference in a specific datum. It is a standard operation and no modifications are

foreseen for agricultural mapping.

Figure 3 shows exemplary outputs from these processing stages for the test site considered in

this chapter. Here, the master and slave amplitude channels in the top box reveal the changes

in backscatter for the different land cover in the scene. The flattened interferogram in the

second box, i.e., the interferometric phase compensated for the ellipsoidal height, shows the

topographical variations.

One fringe represents a height variation equal to ha, about 26 m in this case. The coherence

gives a picture of the output quality, with very low values for low-backscatter areas (e.g.,

water) and high values in the central portion of the scene, covered by crops (see Section 2.2).

The phase unwrapping, mandatory in this case due to the will to represent also the hilly

portions of the scene at the upper and lower portions of the scene, is not creating artifacts, as

can also be seen in the third box by the differential phase between the unwrapped phase and

the equivalent phase generated with a reference elevation model, in this case represented by

the Shuttle Radar Topography Mission (SRTM) [26] one. Finally, the generated DEM is

displayed in a 3D view at the bottom of Figure 3.

2.2. DEM error sources and investigation

Although in principle every terrain can be mapped in elevation with InSAR, the obtained

accuracy is strongly land cover dependent.
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Figure 3. Interferometric processing example for the test site considered in the chapter. From the top, coregistration stage,

with the master and slave amplitudes, interferogram generation, with the flattened interferometric phase, and the coher-

ence, absolute phase determination, with the unwrapped phase and the differential phase between SRTM and TanDEM-X,

and geocoding, with the final DEM.
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2.2.1. Local geomorphology impact

Since SAR is a side-looking sensor, terrain slope impacts in the elevation model, with slopes

that are even not representable due to the shadowing effect or to the multiple mapping in a

single resolution cell (layover) [27]. Since agricultural crops are usually settled over flat or

smooth terrains, the local geomorphology is not a source of error to take into account.

2.2.2. Plant structure impact

A relevant source of error for agricultural crops is instead the terrain itself. Being SAR an active

system, i.e., transmitting and receiving energy, it is affected by wave propagation phenomena.

Indeed, the wave propagates into the terrain depending on the material property [7, 31]. The

measured height, i.e., the measured scattering phase center, depends on this property and in

particular on the complex dielectric constant εr ¼ ε′r−jε
″
r . εr describes the medium characteris-

tics in relationship to the electric field, i.e., how its power decreases in the medium where it

travels. The loss of power density is described by the penetration depth

δp ¼
λ

2π

ffiffiffiffi

ε′r
p

ε″r
(4)

that is, the value for which the power density is reduced to 1/e. Deeper penetration is mea-

sured for low bandwidths and low moisture contents (ε″r is proportional to moisture). The

radar signal travels two times into the canopy, so that the equivalent penetration depth, or the

scattering phase center location, is actually at δp=2cosθi below the top of the surface. In reality,

the physical description of the electromagnetic interaction between the transmitted wave and

the paddy-rice field is much more complex than that. For instance, also inhomogeneities of the

inner portion of the plant and their integration into the SAR resolution cell contribute to the

total signal extinction. This yields an overall loss of the interferometric coherence, which is also

named volume decorrelation (see Section 2.2.3). Rather than inverting electromagnetic models

and estimate the physical characteristics of the plants, this study aims to experimentally

demonstrate the capabilities of the bistatic system in tracking the rice plant heights, thus

indirectly deriving the impact of the signal extinction into the estimate.

2.2.3. Interferometric coherence

As aforementioned, in InSAR processors, the random error is measured by the coherence

parameter. Coherence assesses the quantity of decorrelation that occurs between two SAR

signals. It is defined as the crosscorrelation between two complex SAR images x1 and x2 and

can be estimated as

γ ¼

�

�

�

�

�

∑ x1x2expf−jφknowng
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ jx1j
2∑ jx2j

2
q

�

�

�

�

�

: (5)

In Eq. (5), φknown is a deterministic phase value, representing the topography and other known

phase trends in the estimation window. This factor must be compensated to accomplish
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stationarity [28]. Given the coherence, the marginal probability density function for the inter-

ferometric phase φ can be first estimated and the standard deviation of the interferometric

phase σφðr, aÞ can be then derived by integrating it [9]. The DEM standard error for every range

and azimuth samples ðr, aÞ is then calculated, according to Eq. (3), as

herrðr, aÞ ¼ σφðr, aÞ
ha
2π

: (6)

The error is proportional with the height of ambiguity: higher heights of ambiguity yield

higher errors. To have an impression, for ha ¼ 50 m, a coherence value of 0.8 and 30 looks, the

standard relative error is about 0.8 m. This error is only 0.3 m for ha ¼ 20 m.

Coherence can be decomposed in several factors [12], among which the volume decorrelation

term, anticipated in Section 2.2.2, is the most relevant for rice paddies. To be noticed, coherence

provides an estimate of the relative height error, as in Eq. (6). Relative height error refers to the

error between two defined points in the elevation model, and sometimes it is specified as point-

to-point error. It must not be confused with the absolute height error, i.e., how close the elevation

cell is to the real height. A measure of the absolute error is described in the next section.

2.2.4. Difference with reference

The most straightforward way to evaluate the DEM quality is a direct comparison with

references, in form of another DEM or in form of ground control points. It is clear that the

reference must be originated from a different acquisition than the one under test. A typical

solution for agricultural monitoring, as performed for the inspection presented in this chapter,

is the setup of ground control points (GCPs) distributed in the field. More in detail, considering

the current study, reference data has been collected in cooperation with the Istanbul Technical

University (ITU). In particular, the state organization Trakya Agricultural Research Institute

collected detailed ground truth in 8 fields with 4 independent samples per field during the

growth cycle (May–October) of paddy-rice in 2013. Among the various gathered physical

parameters, height above ground and water are the one of interest for the demonstration. The

fieldwork dates are presented in Figure 4 with the pictures taken during the campaign. To

highlight the spatial variation in response to changes in agricultural practice, the first line in

Figure 4 shows the pictures taken from different fields on the same day. In this region, crops

Figure 4. Pictures taken for eight reference field during the ground truth data collection campaign [13]. The first line

shows portion of the fields acquired on May 30, 2013, also illustrating the differences in agricultural practice. The second

line shows the temporal evolution of field 8.
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are cultivated independently depending on the field owner's decision. Here, the sowing

method is direct seeding by broadcasting, implying a random seeding instead of a regular

straight-row one. This is a rather important point, since it highlights the expected randomness

of the scattering. Figure 5 shows the plots of the relationship between canopy height and day

of the year obtained during the field works. Most fields were homogeneous and crops reached

maximum height after flowering. Plant height ranges in between 0 and 140 cm.

The reference discrepancy needs quantification. In the mapping field, the standardized value

for the vertical and horizontal positional accuracy is the root mean square error (RMSE). It is

defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i ðxi−x
REF
i Þ2

n

s

(7)

where xi and xREFi are the ith sample of the DEM and the reference, respectively. RMSE is of

particular interest since it fully characterizes the error distribution, but just in case of normally

distributed errors with zero-mean. Another used statistical descriptor of the DEM error is the

standard deviation, which describes about the 68% of the normal population:

σ̂err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i ðxi−x
REF
i −éÞ2

n−1

s

(8)

where é is the mean error.

Figure 5. Relationship between the day of the year and the canopy height for the eight monitored fields [13].
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In this chapter, the validation is performed taking as reference the aforementioned ground

campaign. The measures in Eqs. (5) and (6) present statistics of the absolute elevation error.

2.2.5. TanDEM-X specifications

DEM standards usually define a confidence interval, e.g., 90%, in order to discard outlier

values. The positional accuracy is defined in the horizontal and vertical dimensions. The

horizontal dimension determines the absolute circular error, i.e., the radius of a circle in which

a specific feature must lie. The vertical dimension determines instead the absolute linear error, i.

e., the elevation discrepancy between measure and ground truth. The TanDEM-X specification

states a 90% absolute circular error of 10 m and a 90% absolute linear error of 10 m [12]. As for

the absolute specification, the relative circular error describes how well the distance between

two points in the model is represented. This horizontal error component has a 3 m specifica-

tion for TanDEM-X at a 90% confidence. Similarly, the relative linear error describes the eleva-

tion error in between two points. For TanDEM-X, always at 90%, it shall be smaller than 2 m

for slopes smaller than 20°, and smaller than 4 m for larger slopes.

3. Plant height derivation strategy and results

The test site chosen for the demonstration is the Lake Gala National Park, at the border

between Greece and Turkey. The park is a particular wetland environment that consists of

rivers, lakes, and agricultural fields (see Figure 6). In the last 50 years, topographical changes

caused by heavy rain and debris flow were measured. More recently, the region is controlled

by the Turkish government and made available for agricultural practice, in particular for

paddy-rice. Considering the regional risk of debris flow, agricultural fields have to be moni-

tored, controlling by this way the effect of flow. For instance, if the seeding has been affected

from flow and irrigation, farmers can do transplanting again before it is too late for seeding.

TanDEM-X monitoring is then particularly appealing for this test site.

3.1. Rice growth cycle

Before proceeding with technical details, the rice plant growth cycle shall be introduced. This

cycle, from panicle initiation to maturing, lasts 110 to 250 days and can be divided in three

stages: vegetative, reproductive, and maturation. Every stage is composed by different structural

differences for the rice plant, described by a special scale called Biologische Bundesanstalt,

bundessortenamt und CHemische industrie (BBCH) [29]. All the growing stages can be asso-

ciated with the BBCH-scale, as shown in Table 1.

3.2. TanDEM-X dataset

Nine dual-pol TanDEM-X acquisitions have been acquired over the Lake Gala region in 2012

at an incidence angle of 36.8°. The data stack is processed with the integrated TanDEM-X

processor [24]. The processor is commanded to generate HH (horizontal polarization in

transmission and reception) and VV (vertical polarization in transmission and reception)
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DEMs, for a total of 18 DEMs, with an output raster of 6 m. As shown in Table 2, all the rice

growing stages in Turkey are covered (May–October), allowing then a temporal study. The

height of ambiguity ha is ranging between about 20 and 30 m. As briefly mentioned in

Section 2.1, the relative error can be estimated given the number of looks used in the

processing, the coherence, and the ambiguity height. Assuming a coherence value of 0.8 (a

reasonable value at the crop locations, as explained in the following) and an independent

number of looks of 30, the standard error varies in between 15 cm, as displayed in the last

column of Table 2. To be noticed, these values refer to a single sample height estimate. The

Figure 6. Agricultural study area in Ipsala, Turkey (top-left). Four features are highlighted in the picture [14]. From left to

right, over the GoogleEarth image: backscatter in HH polarization, copolar phase difference, copolar coherence, and

backscatter in HH polarization. The selected fields for the polarization study performed in Section 4 are highlighted in

the coherence portion.
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independent number of looks of 30 comes from the actual data processing, where a total of

45 looks have been used in the interferogram generation stage (9 in the range and 5 in the

azimuth dimensions), and about 30% and 12% of the azimuth and range bandwidth has been

filtered out after the spectral shift filter operation [9]. The acquisition mode of the imagery is

the standard stripmap one, with a ground range pixel spacing of about 1.5 m and an azimuth

one of about 2.5 m. The resulting horizontal resolution, according to Eq. (2), is displayed in

the fourth column of Table 2. This multilooking operation is a necessary step to reduce

the phase noise and the standard height error to a decimetric level for the single pixel

Major stage BBCH Description

Vegetative 00 Germination

10 Leafing

20 Tillering

30 Stem elongation

40 Booting

Reproductive 50 Heading

60 Flowering

70 Fruiting

Maturation 80 Ripening

90 Senescence

Table 1. BBCH-scale of the rice plant.

Acquisition date

(DOY)

Perpendicular baseline

[m]

Height of ambiguity

[m]

Horizontal resolution

[m]

Standard error

[cm]

12.05.2012 (133) 253.7 23.1 10.2 36

14.06.2012 (166) 242.3 24.2 10.3 38

06.07.2012 (188) 234.3 25.1 10.2 40

17.07.2012 (199) 227.2 25.8 10.3 41

28.07.2012 (210) 222.7 26.3 10.2 42

19.08.2012 (232) 213.4 27.4 10.3 43

10.09.2012 (254) 204.4 28.7 10.3 46

13.10.2012 (297) 187.1 31.3 10.3 50

26.11.2012 (331) 181.3 32.3 10.3 51

Note: The standard error in the last column is computed for a fixed coherence value of 0.8 and an independent number of

looks of 30.

Table 2. Main parameters of the TanDEM-X data set.
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estimate. As aforementioned, due to the relatively smooth topography of the scenes, phase

unwrapping is not creating artifacts (even for small height of ambiguities), i.e., no

unwrapping errors have been detected. To ensure a straightforward temporal analysis, all

the DEMs have been generated using the same output grid and have been equally calibrated

using a corrected version of SRTM with ICESat data.

3.3. Field segmentation

In the context of precise farming it is substantial to define field borders that are usually

changing every cultivation period. Water management pattern is a further asset useful to

supplier. Thus, crop segmentation is mandatory for a field-by-field uncertainty assessment,

reasonably assuming a consistent growing within single fields. For this purpose, the interfero-

metric coherence is an important subproduct to exploit, supporting the segmentation algo-

rithm. The adopted strategy is to relate the field segmentation in a water detection problem.

Indeed, flooded parcels of land characterize the first phenological phase of the plant. During

this state, fields are covered by water and separated by a path network composed by soil or

rare grass, as visible also in Figure 7, representing the May acquisition. A gravel road network

is also present in the test site and separates parcel groups. This natural segmentation is visually

detectable by inspecting master channel amplitude in Figure 7(a), as well as the interferometric

coherence in Figure 7(b). This visibility relies on the water body dielectric properties.

Nonmoving water behaves like a mirror, reflecting the incident signal wave in a specular

direction, yielding a very low return to the SAR antenna. This phenomenon brings also a low

interferometric coherence. Moreover, it is also known that a water body decorrelates within

tens of milliseconds [9] (TanDEM-X small along-track time lags vary between 50 ms (equator)

and 0 ms (poles)). The technique proposed by Wendleder et al. [30], operationally employed

for the generation of water body mask as an auxiliary product of the official TanDEM-X DEM,

is adopted. Specifically, a threshold value of 40 for the amplitude digital number

(corresponding to σ0 ¼−20 dB (Eq. (1)) and 0.23 for the coherence (Eq. (5)) were selected. In

the study, this strategy is applied for scenes having flooded crops. In Figure 7, the May

amplitude and coherence data show the flooded parcels for that date with low values. As

visible, not all the fields were already flooded (see also Figure 4). To better cover the test site,

additional information is retrieved by using also two complementary acquisitions taken in

May 2013 over the same area.

The sole thresholding operation is not accurate enough to provide a precise segmentation,

since fields that are closer than the image resolution (about 10 m, Table 2) may result in a

single segmented field. Thus, a refinement is necessary. Among various filtering strategies, one

of the most straightforward and fast, binary morphology, is chosen [13]. More in detail, erosion

with a square (3×3) element is first performed to the binary water mask to remove artifacts,

followed by a shape fill to remove holes within the detections. Afterward, the segmentation is

performed. A total of more than 2000 fields are detected. The water detection, morphological

filtering, and segmentation are performed in the geocoded (geographical coordinates) domain,

in order to easily compare them with ground truth data.
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Figure 7. SAR master channel amplitude (a) and interferometric coherence (b) of the 12.05.2012 TanDEM-X acquisition,

used to extract field shapes.
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Figure 8. Temporal rice plant heights for the data stack derived with a difference between the DEM generated for the date

annotated at the bottom-right and the reference one. The heights are shown in a field-by-field basis, for fields having a

mean coherence value higher than 0.8 for both the analyzed and the reference acquisitions.
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3.4. Temporal analysis

Since the analysis is on the plant elevation, and the generated DEM is defined over the WGS84

ellipsoid, a reference height corresponding to the plant base must be considered. For that

purpose, the last acquisition, in late November, is taken as reference. Indeed, at this acquisition

date, the fields have been harvested and the DEM can then be considered as a digital terrain

model (DTM), i.e., representing the bare soil elevation. In the following, the November DEM is

called for brevity DTM, although this is strictly true only at crop locations. The height differ-

ence between the DEMs and the DTM, i.e. the plant heights, is displayed in Figure 8, with a

single average height value per field. The plant heights are here represented with an overlay

between the SAR amplitude and the mean height difference for detected fields, which have an

average coherence higher than 0.8 in both the analyzed and the reference acquisitions. A visual

analysis of the maps allows the evaluation of the rice plant growth on a field-by-field basis. For

instance, the first acquisition shows a limited number of crops since most of them were still

flooded. The height of crops is around 20 cm. The numbers of detections increases starting

from the second acquisition, i.e., the remaining fields are not flooded anymore, and a visual

height growth is noticeable. The growth continues in early July, with a quite homogeneous

result with plant heights around 70 cm. The following July maps reveal local changes among

fields, e.g., crops located at the northern part grow faster than the ones located at the south.

The August map reveals the growing of most of the plants, with doubled heights compared to

late June/early July. For some of the fields, the higher maturation level is reached about a

month later, as visible in the September map. The mid-October map shows the partial

harvesting of some field (to be reminded: a single averaged value is displayed per segmented

field), and the full growing for the fields located close to the lake northern coast. In general,

Figure 9. Mean temporal TanDEM-X elevation trend for all the 2012 detected fields over the specific date marked in the

plot (black) and corresponding standard deviation (purple). The reference fields are overplotted with colors in the legend.
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these maps can be used for the agricultural planning, in terms of production volume and

outcomes.

This qualitative inspection already demonstrates the capability to reach the centimetric accu-

racy necessary to track rice plants. To further highlight it, in Figure 9 the mean height for the

detected fields is shown in black and the standard deviation highlighted in purple. Although

crops exhibit variations due to the different seeding dates, the mean height trend exhibits a

good accordance with the reference, overplotted in this figure. The height deviation for the late

July acquisitions has to be linked to the different growing periods of the detected fields.

The quantitative inspection is performed for three out of eight fields (marked in Figure 7(b).

The analysis shall link the obtained accuracy derived through a comparison with reference

data with the physical characteristics of the plant. The framework is the one delineated in

Section 2.2.2. In particular, considering the interferometric analysis, the smaller the extinction,

the lower the scattering center (Eq. (4)). Consequently, the retrieved plant elevation will be

equal or smaller than the plant top depending on the actual effective dielectric constant of the

canopy and the ground, since in the proposed approach the canopy height is retrieved with a

difference between a plant growing phase and bare soil.

The differential-InSAR-based and the field-measurement-based canopy height are shown in

Figure 10 in form of scatterplot for three fields. Due to the growing height trend in time, this

plot can be easily interpreted. Generally, the elevation trend is well detected by the interferomet-

ric measure for the late vegetative phase, reproductive, and maturation stages. Instead, the early

vegetative phase represented by the May acquisition yields strongly biased elevation values due

to the noisy values originated by the water reflection and is not considered. The plotted heights

lie in between mid-June and mid-September (see second to seventh row in Table 2).

The June acquisition corresponds to the central vegetative stage (tillering, Table 1). At this

phase, plants emerge from water (see the second and the third picture in the second row in

Figure 4). In the SAR resolution cell different phenomena such as direct reflections from water,

direct reflections from the surface, and double reflections water-surface (and vice versa) com-

bine together. The interferometric elevation results underestimated due to this combination.

The mean difference with reference data results of 7.7 cm for the eight fields taken into

consideration in the ground truth campaign. A singular exception is measured for the field 5,

marked with blue circles in the scatterplot in Figure 10, with an overestimation of about 10 cm.

The overestimation has to be attributed to a low mean coherence value (about 0.5), yielding a

high phase noise. During this stage, double bounces between growing vegetation and standing

water should be the dominant part of the radar return. This implies a scattering phase center

located at the water elevation for the cardinal effect on corners—in this case represented by

quasi-vertical stems on calm water. However, the small measured height difference suggests

the partial presence of the phenomenon due to the use of a short wavelength (3.1 cm) at a

relatively high incidence angle (about 37°), yielding a limited penetration of the echo inside the

fresh vegetated volume [13]. For the three July measurements the plant elevation exhibits the

largest underestimation, with a mean difference of 26.5 cm. Also this discrepancy, at the end of

the vegetative stage and beginning of the reproduction (BBCH scale 40–50, Table 1), can be

explained with the radar wave interaction with the inner part of fresh canopy (see fourth
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picture in the second row in Figure 4) and a higher volume decorrelation. The difference in

growing can be appreciated for the three fields in the scatterplot, with three different growing

rates (higher for field 1, red circles). The August acquisition exhibits instead a generally good

matching, with a mean underestimation of 4.8 cm. Being at the beginning of the maturation

stage (see fifth picture in the second row in Figure 4), plants start to densely produce milky

grains at their surface which are the main source of reflection of the signal at X-band. Again,

every field should be considered independently due to the structural differences between

crops. For instance, field 1 is still in its reproductive stage and shows a scattering phase center

about 20 cm below the surface top. The last considered acquisition, in September, falls at the

end of the maturation (see seventh picture in the second row in Figure 4). The grain is dry and

mature, with a maximum height slightly smaller than the previous stage. On this date the

interferometric elevations result again underestimated on average, with a mean difference of

16 cm. In principle, at this stage, plant elements are more randomly oriented and drier than in

previous ones, hence making more similar the propagation for all polarizations. The afore-

mentioned values represent average values for the eight fields. Just considering the three fields

in the plot, the August acquisition reveals actually a higher mismatch than the mean one, while

the September acquisition exhibits instead a better match for all the three fields. Once more,

this is due to the discrepancies in seeding dates among the fields.

Figure 10. Comparison between interferometric height and ground truth in form of scatterplot for three fields.
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The best fit analysis in the form of y ¼ axþ b in Figure 10 is used for calculating the offset

between the two measurements [13]. As the data time sampling is not overlapping, a linear

interpolation for the reference at the InSAR locations is performed. The two sources result

highly correlated, with a correlation coefficient R equal to 0.88, 0.96, and 0.84 for the three

fields under analysis. The mean differences and root mean square errors are in the decimetric

level. In detail, the mean differences between reference and InSAR result 23.3, 11.1, and 14.3

cm and the RMSE (Eq. (5)) 19.7, 13.5, and 15.5 cm for field 1, 4, and 5, respectively. Even though

the scattering analysis and the quantitative evaluation performed on this section are useful to

understand the overall process, the focus shall be on the centimeter accuracy of the system for

this application, and its capability of temporarily tracking the elevation through most of all the

growing stages of paddy-rice fields.

Finally, the mean interferometric coherence, proportional to the relative height error (Section

2.2.3) is displayed in Figure 11. The mean coherence values for the selected fields are high,

with values above 0.8 for all the dates. The only exceptions are for May, when fields are

flooded, and for the late July acquisition, when the volume decorrelation reaches its maximum.

This contribution linearly increases in July, but is strongly diminished in August, when reflec-

tions at the surface top dominates. As a reference, the last column of Table 2 shows the height

error for a fixed coherence value of 0.8.

To characterize the final relative height accuracy, one must consider that the estimated plant

height is derived through a difference of two DEMs, implying a standard deviation equal to

the sum in quadrature of the standard deviations of the studied DEM and the DTM. Thus, in

principle, it is important to ingest an accurate as possible DTM for the algorithm proposed.

Considering the chapter case, the DTM, representing bare soil at field locations, is highly

accurate, with a mean coherence of about 0.9 (Figure 11) and a corresponding relative height

Figure 11. Interferometric mean coherence trend for the detected fields.
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error of about 30 cm. Actually, a single height value is derived per field, thus dramatically

reducing the overall relative height error of a factor depending on the number of samples

composing the crop (fields may span more than 1000 SAR pixels).

4. Impact of wave polarization

The results and discussion provided in the previous section have been derived using the

horizontal (HH) polarization and demonstrated the possibility of estimating the height (and

derive the phenological stage) of the fields from TanDEM-X data with no additional ground

measurements. In this section, the vertical (VV) polarization is studied, with the purpose to

study the differences and possibly recommend the best polarization for crop monitoring.

In Figure 12 the interferometric coherence is plotted for the HH and VV channels for the 30

randomly selected fields marked in Figure 6. An evident visual divergence appears for the late

vegetative-early reproductive stage (around mid-July). Here, the HH elevation accuracy is larger

than the VV one, since coherence values are higher (Section 2.2.3). Standard deviation is also

smaller for the horizontal polarization. Thus, when considering assessing crop elevation with

bistatic data for the central growing stage, it seems advantageous to privilege the HH channel.

The two other stages perform similarly: early vegetative has very low coherence and poor

elevation estimates for both channels, whereas late reproductive and maturation perform well.

To better characterize the polarization impact in the crop height estimates, the mean elevation

difference between differently polarized DEMs for the sample fields is displayed in Table 3,

together with the elevation standard deviation. For the first date, while fields are flooded, the

copolar elevation difference measurement is very large because of the noisy phase information.

For the other acquisitions the elevation differences are smaller, below 10 cm.

Figure 12. Multitemporal coherence measurements from TanDEM-X HH (a) and VV (b) channels along the plan growth

cycle for 30 different fields [14].
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The analysis of Table 3 allows an empirical evaluation of the effect of the extinction coefficient

in the vertical channel through almost all the phenological stages. Excluding the first date, the

temporal mean difference measurements increase monotonically until late July, i.e., the hori-

zontally polarized signal penetrates more into the canopy compared to the vertically polarized

one. The penetration discrepancy is in average of only 1 cm when the plant starts leafing, of 3

cm during tillering, and of 9 cm around the end of the vegetative stage. After, they decrease

monotonically until when the plant starts to collapse and to lose its vertical structure. In

particular, the measured discrepancy is still close to the maximum while reproduction and

slowly decrease while flowering and finally maturing. The sample standard deviations for

each acquisition date show the variability of the outcomes for each phenological stage. Values

are nearly stable through maturation stage, but in vegetative and reproductive stages they are

relatively high considering also the differences in growing rate.

Concluding, horizontal polarization yields digital elevation models with lower crop heights,

up to about 10 cm differences. Vertical polarization yet yields higher elevation models, i.e.,

close to the true top canopy elevation. As aforementioned, horizontal polarization provides, on

the average, more accurate elevation results for the central growing stage. So, which is the best

polarization for crop elevation monitoring? Generally, if the objective is the determination of

the crop elevation, local field coherence should be the final trigger. Nevertheless, for more

reliable phenological stage estimation simply based on height, the VV channel can be preferred

since it yields higher phase centers, therefore, better modeling the top of the canopy.

5. Conclusions

This chapter underlined the potential of TanDEM-X in paddy-rice elevation mapping. The

outcomes can also be an input for the production estimation in terms of volumetric changes.

Acquisition date (DOY) Sample mean [cm] Sample STD [cm]

12.05.2012 (133) +84 204

14.06.2012 (166) −1 23

06.07.2012 (188) −3 8

17.07.2012 (199) −3 11

28.07.2012 (210) −9 19

19.08.2012 (232) −8 7

10.09.2012 (254) −5 10

13.10.2012 (297) +2 7

26.11.2012 (331) 0 6

Table 3. Copolar height difference statistics between HH and VV channels. The second column displays the mean height

difference for 30 randomly selected fields, while the third column displays the standard deviation of the crop elevations

for the two polarizations.
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This is particularly remarkable, considering that the plant tracking requires a centimetric

accuracy level and the TanDEM-X specifications are in the order of meters. The uncertainty

study demonstrated three major points:

1. For the first time, plant growing has been directly measured from a spaceborne SAR

system. As outlined in the introduction, previous demonstrations (e.g., ERS in TanDEM

configuration) indirectly derived the elevation from coherence decomposition. The pro-

duction of elevation models with InSAR has been reviewed with a special focus on the

mapping of agricultural crops. An important point for the study is the presence of a DTM,

in order to precisely derive plant heights. In this study, it has been shown how a

postharvesting acquisition, and consequently a generated DEM, can serve for the purpose.

A straightforward technique to derive field borders, with a simple thresholding operation

followed by a refinement with morphological operators, has also been proposed. This

refinement can be further improved for future works, for instance with more complex

filtering strategies, such as unsupervised active contours techniques.

2. Also the impact of differential extinction on the crop height estimation by differential

interferometry has been first experimentally studied with spaceborne SAR data. Although

polarization differences are widely used for PolInSAR/PolSAR studies, and precise phe-

nological stage derivation can be extracted by using different polarizations, it has been

here demonstrated how the impact in the DEM is rather small, though still present in

the DEMs.

3. Keeping the general view, it is important to carry out uncertainty studies in the temporal

dimension. In particular, it has been demonstrated how the accuracy level varies

depending on the plant phenological stage. Excluding the early stages, when the fields

are flooded and the resulting DEM is not accurate, it has been shown how the accuracy

level decreases for the late-vegetative stage, when the volume decorrelation is at its

maximum, and increases for the following phenological stages, when reflections from the

milky grains at the plant top dominates. An interesting and unexpected result comes from

the early stages, when the plant can be assumed as a vertical and thin cylinder and the

electromagnetic scattering should be dominated by double-bounces, thus with a scatter-

ing phase center at the water/soil level. Instead, the derived DEMs have showed a higher

phase center, in between the plant top and the soil, suggesting a limited and not dominant

double-bounce effect at X-band for rice paddies seeded by broadcasting, i.e., randomly

and not in rows.
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