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1. Introduction 

Brusilovsky (1999) envisaged Web-based adaptive courses and systems as being able to 
achieve some important features including the ability to substitute teachers and other 
students support, and the ability to adapt to (and so be used in) different environments by 
different users (learners). These systems may use a wide variety of techniques and methods. 
Among them, curriculum sequencing technology is “to provide the student with the most 
suitable individually planned sequence of knowledge units to learn and sequence of 
learning tasks […] to work with”. These methods derive from the adaptive hypermedia field 
(Brusilovsky, 1996) and rely on complex conceptual models, usually driven by sequencing 
rules (De Bra et al., 1999; Karampiperis, 2006). E-learning traditional approaches and 
paradigms, that promote reusability and interoperability, are generally ignored, thus 
resulting in (adaptive) proprietary systems (such as AHA! (De Bra et al., 2003)) and non-
portable courseware.  
On the other side, traditional approaches promote standards usage to ensure 
interoperability but they lack of flexibility which is in increasing demand. “In offering 
flexible [e-learning] programmes, providers essentially rule out the possibility of having 
instructional designers set fixed paths through the curriculum” (van den Berg et al., 2005). 
But offering personalized paths to each learner will impose prohibitive costs to these 
providers, because sequencing process is usually performed by instructors. So, “it is critical 
to automate the instructor’s role in online training, in order to reduce the cost of high quality 
learning” (Barr, 2006) and, among these roles, sequencing seems to be a priority. 
In this chapter an innovative sequencing technique that automates teacher´s role is 
proposed. E-Learning standards and the learning object paradigm are encouraged in order 
to promote and ensure interoperability. Learning units’ sequences are defined in terms of 
competencies in such a way that sequencing problem can be modelled like a classical 
Constraint Satisfaction Problem (CSP) and Artificial Intelligent (AI) approaches could be 
used to solve it. Particle Swarm Optimization (PSO) is an AI technique and it has proven 
with a good performance for solving a wide variety of problems. So, PSO is used to find a 
suitable sequence within the solution space respecting the constraints. In section 2, the 
conceptual model for competency-based learning object sequencing is presented. Section 3 
describes the PSO approach for solving the problem. Section 4 presents the results obtained 
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from the intelligent algorithm implementation and testing in a real world situation (course 
sequencing in an online Master in Engineering program). And finally, in Section 5 
conclusions are summarized and future research lines are presented. 

2. Competency-based sequencing 

Within e-learning, the learning object paradigm drives almost all initiatives. This paradigm 
encourages the creation of small reusable learning units called Learning Objects (LOs). 
These LOs are then assembled and/or aggregated in order to create greater units of 
instruction (lessons, courses, etc) (Wiley, 2000). 
LOs must be arranged in a suitable sequence prior to its delivery to learners. Currently, 
sequencing is performed by instructors who do not create a personalized sequence for each 
learner, but instead they create generic courses, which are targeted to generic learner 
profiles. Then, these sequences are coded using a standard specification to ensure 
interoperability. The most commonly used specification is SCORM (ADL, 2004). Courseware 
that conforms to SCORM´s Content Aggregation Model is virtually portable among a wide 
variety of Learning Management Systems (LMSs). Though, SCORM usage hinders the 
automatic LO sequencing due to its system-centered view. Other metadata-driven 
approaches offer better possibilities i.e. just LO metadata will enable automatic sequencing 
process to be performed, and the appropriate combination of metadata and competencies 
will allow personalized and automatic content sequencing. This section describes how to 
overcome these problems by defining a conceptual data model for learning object 
sequencing through competencies. 

2.1 Competency definition 

As for many other terms, there are a wide variety of definitions that try to catch the essence 
of the word competency in the e-learning environment. The confusion has even been 
increased by the work developed, often independently, in the three main fields that are 
nowadays primarily concerned with competencies, namely, pedagogy, human resources 
management and computer science. Anyway, we consider competencies as 
“multidimensional, comprised of knowledge, skills and psychological factors that are 
brought together in complex behavioural responses to environmental cues” (Wilkinson, 
2001). This definition emphasizes that competencies are not only knowledge but a set of 
factors and that competencies are employed (bring together) in real or simulated contexts 
(or environments). Conceptual models for competency definitions also use to consider this 
multidimensionality. As an example, RDCEO specification (IMS, 2002a) describes a 
competency as four-dimensional element (fig. 1). 
The competency ‘Definition’ is the record that contains general information about the 

competency. Each competency can be exhibited in one or more different ‘Contexts‘. And a 

set of factual data must be used to ‘Evidence’ that an individual has or has not acquired a 

particular competency. Finally ‘Dimensions’ are used to relate each context with its 

particular evidence and to store relation information such as the proficiency level. 

Some e-learning trends (RDCEO have just been mentioned) are trying to formalize 

competency definitions. It is worth quoting the following specifications: (1) IMS "Reusable 

Definition of Competency or Educational Objective” (RDCEO) specification (IMS, 2002b), (2) 

IEEE Learning Technology Standards Committee (LTSC) “Draft Standard for Learning 
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Technology - Standard for Reusable Competency Definitions " specification (currently an 

approved draft) (IEEE, 2008), (3) HR-XML Consortium "Competencies (Measurable 

Characteristics) Recommendation" (HR-XML, 2006) and (4) CEN/ISSS “A European Model 

for Learner Competencies” workshop agreement  (CEN/ISSS, 2006). 

 

 

Fig. 1. RDCEO competency conceptual model (from (IMS, 2002a)) 

Every specification offers its own understanding of what a competency is (i.e. the definition 

of competency) plus a formal way to define competencies (i.e. competency definitions) so 

that they can be interchanged and processed by machines. A deeper analysis of these 

recommendations shows that, although they do not present great differences in its own 

definition of competency, great dissimilarities arise when the information that must conform 

a competency definition are confronted. In this way, it could be said that IMS and IEEE 

specifications are minimalist recommendations that define a small set of fields that the 

competency definitions should contain (in fact, only an identifier and a name are required 

for a conformant record). Deeper definitions of some dimensions that concern competencies 

(namely evidence and context) are left without specification or free to developers’ 

interpretation. On the other hand, HR-XML specification provides competency users with a 

huge set of entities, fields and relations that they must fulfil in order to get conformant 

competency records (although many of them are optional too). 

For the purpose of our study we just needed a universal way to define, identify and access 

to competency definitions and that is exactly what RDCEO specification offers. Moreover, 

RDCEO is also the oldest specification and so the most used (and the most criticized). These 

factors lead us to employ RDCEO records for our competency definitions. Code fragment 1 

shows a sample RDCEO competency record. 
 

<?xml version="1.0" encoding="utf-8"?> 
<rdceo xsi:schemaLocation="http://www.imsglobal.org/xsd/imsrdceo_rootv1p0" 
xmlns="http://www.imsglobal.org/xsd/imsrdceo_rootv1p0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
   <identifier>  
     http://www.uah.es/cc/comps/CompsTaxon.xml#1IntroWeb 
   </identifier> 
   <title> 
      <langstring xml:lang="en"> 
        Web, Internet and Distributed Systems Introduction 
      </langstring> 
   </title> 
</rdceo> 

Code 1. Sample Competency Record. 
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2.2 Competencies for interoperable learning object sequencing 

According to RDCEO and IEEE nomenclature, a competency record is called ‘Reusable 
Competency Definition’ (or RCD). RCDs can be attached to LOs in order to define its 
prerequisites and its learning outcomes. We have used this approach to model LO 
sequences. By defining a competency (or a set of competencies) as a LO outcome, and by 
identifying the same competency as the prerequisite for another LO (fig. 2), a constraint 
between the two LOs is established so that the first LO must precede the second one in a 
valid sequence. 
Meta-Data (MD) definitions are attached to LOs, and within those definitions references to 

competencies (prerequisites and learning outcomes) are included. LOM (IEEE, 2002) records 

have been used for specifying LO Meta-Data. LOM element 9, ‘Classification’, is used to 

include competency references as recommended in by IMS (2002a). So, LOM element 9.1, 

‘Purpose’, is set to ‘prerequisite’ or ‘educational objective’ from among the permitted 

vocabulary for this element; and LOM element 9.2 ‘Taxon Path’, including its sub-elements, 

is used to reference the competency. Note that more than one ‘Classification’ element can be 

included in one single LO in order to specify more than one prerequisite and/or learning 

outcome. In code fragment 2 it is shown a sample LO metadata record that holds two 

competency references, a prerequisite relation and a learning outcome relation. 

 

 

Fig. 2. LO sequencing through competencies 
 

<?xml version="1.0" encoding="iso-8859-1"?> 
    <lom:lom xmlns:lom="http://ltsc.ieee.org/xsd/LOM"> 
      <lom:general> 
        <lom:title> 
          <lom:string language="en">HTML</lom:string> 
        </lom:title> 
        <lom:language>en</lom:language> 
        <lom:description> 
          <lom:string language="en">HTML Course</lom:string> 
        </lom:description> 
      </lom:general> 
      <lom:lifeCycle> 
        <lom:version> 
          <lom:string language="en">1.0</lom:string> 
        </lom:version> 
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        <lom:contribute> 
          <lom:date> 
            <lom:dateTime>2007-01-10</lom:dateTime> 
          </lom:date> 
        </lom:contribute> 
      </lom:lifeCycle> 
      <lom:educational> 
        <lom:difficulty> 
          <lom:value>easy</lom:value> 
        </lom:difficulty> 
        <lom:typicalLearningTime> 
          <lom:duration>PT50H</lom:duration> 
        </lom:typicalLearningTime> 
        <lom:language>en</lom:language> 
      </lom:educational> 
      <lom:classification> 
        <lom:purpose>prerequisite</lom:purpose> 
        <lom:taxonPath> 
          <lom:source> 
            <lom:string language="en"> 

              http://www.uah.es/cc/comps/CompsTaxon/ 
            </lom:string> 
          </lom:source> 
          <lom:id>1IntroWeb</lom:id> 
        </lom:taxonPath> 
      </lom:classification> 
      <lom:classification> 
        <lom:purpose>educational objective</lom:purpose> 
        <lom:taxonPath> 
          <lom:source> 
            <lom:string language="en">  
              http://www.uah.es/cc/comps/CompsTaxon/ 
            </lom:string> 
          </lom:source> 
          <lom:id>3HTML</lom:id> 
        </lom:taxonPath> 
      </lom:classification> 

    </lom:lom> 

Code 2. Sample LO metadata record containing competency references 

Simple metadata (i.e. LOM records) is enough to model LOs’ sequences in a similar way. 

Then, Why use competencies? Competency usage is encouraged, besides its usefulness for 

modelling prerequisites and learning outcomes, because competencies are also useful for 

modelling user current knowledge and learning initiatives’ expected outcomes (future 

learner knowledge).We are proposing a wider framework (fig. 3) in which learner (user) 

modelling is done in terms of competencies, which are also used to define the expected 

learning outcomes from a learning program. Both sets of competencies constitute the input 

for a gap analysis process. This process performs a search in local and/or distributed remote 

repositories in order to identify the set of learning objects that fill the gap between learner 

current knowledge and the learning objectives. Gap analysis process returns a set of 

unordered LOs that must be assembled and structured in a comprehensive way, so that 

basic units (LOs) are presented to the learner previously to advanced lessons. These actions 

will be performed by the LO sequencing process depicted in figure 3.  
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Fig. 3. Competency-driven content generation model 

3. Competency-based intelligent sequencing 

Given a random LOs’ sequence modelled as described above (with competencies 
representing LOs prerequisites and learning outcomes), the question of finding a correct 
sequence can be envisaged as a classical artificial intelligent Constraint Satisfaction Problem 
(CSP). In this way, the solution space comprises all possible sequences (n! will be its size, 
total number of states, for n LOs), and a (feasible) solution is a sequence that satisfies all 
established constraints. LO permutations inside the sequence are the operations that define 
transitions among states. So we face a permutation problem, which is a special kind of CSP. 
PSO is an AI evolutionary computing technique that can be used to solve CSP problems 
(among other kind of problems). This section presents a mathematical characterization of 
the learning object sequencing problem so that a PSO implementation can be formally 
specified. Then this PSO implementation is presented and some improvements over the 
original algorithm are proposed. 

3.1 Mathematical characterization 

According to (Tsang, 1993) a CSP is a triple (X,D,C) where X = {xo, x1,…,xn-1}   is finite set of 
variables, D is a function that maps each variable to its corresponding domain D(X), and 
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Ci,j⊂  Di x Dj is a set of constraints for each pair of values (i, j) with 0 ≤  i < j < n . To solve 
the CSP is to assign all variables xi  in X a value from its domain D, in such a way that all 
constraints are satisfied. A constraint is satisfied when (xi, xj)∈Ci,j and (xi ,xj) it is said to be a 

valid assignment. If(xi ,xj)∉  C i,j then the assignment (xi , xj) violates the constraint. 

If all solutions from a CSP are permutations of a given tuple then it is said that the problem 
is a permutation CSP or PermutCSP. A PermutCSP is defined by a quadruple (X,D,C,P) 
where (X,D,C) is a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values. A solution S of a 
PermutCSP must be a solution of (X,D,C) and a complete permutation of P. 
The learning object sequencing problem could be modeled as a PermutCSP. For example, 
considering five learning objects titled 1,2,3,4 and 5, the PermutCSP which only solution is 
the set S = {1,2,3,4,5} (all learning objects must be ordered) can be defined as: 

 X = {x1, x2, x3, x4, x5} 

 D (Xi) = {1,2,3,4,5} ∀ xi ∈X 

 C = {xi+1 – xi > 0 : xi ∈X , i∈ {1,2,3,4}} 

 P= <1,2,3,4,5>  

As it will be demonstrated later a good definition of the constraint set C critically affects the 
solving algorithm performance and even its completeness. 

3.2 Particle swarm optimization 

Particle Swarm Optimization (PSO) is an evolutionary computing optimization algorithm. 
PSO mimics the behaviour of social insects like bees. A random initialized particles’ 
population (states) flies through the solution space sharing the information they gather. 
Particles use this information to dynamically adjust its velocity and cooperate towards 
finding a solution. Best solution found: (1) by a particle is called pbest, (2) within a set of 
neighbour particles is called nbest, (3) and within the whole swarm is called gbest. Goodness 
of each solution is calculated using a function called fitness function. A basic PSO 
procedure, adapted from (Hu et al., 2003), is showed in code fragment 3. PSOs have been 
used to solve a wide variety of problems (Hinchey et al., 2007). 
The original PSO (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) is intended to 

work on continuous spaces, and velocity is computed for each dimension xi ∈  x  . 

Particles’ initial position and initial velocity are randomly assigned when the population 
(swarm) is initialized. A discrete binary version of the PSO was presented by Kennedy and 
Eberhart (1997). This version uses the concept of velocity as a probability of changing a bit 
state from zero to one or vice versa. A version that deals with permutation problems was 
introduced by Hu et al., (2003). In this latter version, velocity is computed for each element 
in the sequence, and this velocity is also used as a probability of changing the element, but 
in this case, the element is swapped establishing its value to the value in the same position 
in nbest. Velocity is updated using the same formula for each variable in the permutation set 
(xi∈X), but it is also normalized to the range 0 to 1 by dividing each  xi by the maximum 
range of the particle (i.e. maximum value of all xi∈X). The mutation concept is also 
introduced in this permutation PSO version; after updating each particle´s velocity, if the 
current particle is equal to nbest then two randomly selected positions from the particle 
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sequence are swapped. Hu et al., (2003) have also demonstrated that permutation PSO 
outperforms genetic algorithms for the N-Queens problem. So we decided to try PSO, before 
any other technique, for the LO sequencing problem. 
 

initialize the population 
do { 
  for each particle { 
    calculate fitness value 
    if (new fitness > pBest) 
      set pbest = current value 
  } 
  nbest = particle with the best fitness value of all the topological neighbors 
  for each particle { 
    Calculate new velocity as 

      V new=w x V old + c1 x rand () x (P best - X ) + c2 x rand() x (P nbest- X ) 

    Update particle position 

      X new= X old + V new 

  } 
} until termination criterion is met 

Code 3. PSO Procedure Pseudo-code 

rand() is a function that returns a random number between 0 and 1. Each instance of rand() in 
the algorithm represents a new call to the function, i.e. a new random number is computed 
and returned. 
Each particle shares its information with a, usually fixed, number of neighbor particles to 
determine nbest value. Determining the number of neighbor particles (the neighbor size) and 
how neighborhood is implemented has been a subject of deep research in an area that has 
been called sociometry. Topologies define structures that determine neighborhood relations, 
and several of them (ring, four cluster, pyramid, square and all topologies) have been 
studied. It has been proved that fully informed approaches outperform all other methods 
(Mendes et al., 2004). The fully informed approach prompts using an ‘all’ topology and a 
neighborhood size equal to the total number of particles in the swarm (i.e. every particle is 
connected with all other particles when nbest values are calculated, hence gbest is always 
equal to nbest). 

3.3 PSO for learning object sequencing 

Discrete full-informed version of the PSO was implemented in order to test its performance 
for solving the LO sequencing problem. Code fragment 4 shows the basic procedure for LO 
sequencing pseudo code. Several other issues concerning design and implementation have 
to be decided. In the rest of this section each of these issues is discussed and the selection 
criteria are explained. 
Fitness Function. It is critical to choose a function that accurately represents the goodness of 
a solution (Robinson & Rahmat-Samii, 2004). In PSO, like in other evolutionary techniques 
algorithms and meta-heuristics search procedures, there is usually no objective function to 
be maximized. A common used fitness function when dealing with CSP problems is a 
standard penalty function (Schoofs & Naudts, 2000): 
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initialize the population 
do { 
  for each particle { 
    calculate fitness value 
    if (new fitness < gBest) 
      set gbest = currentValue 
    if (new fitness < pBest) 
      set pbest = currentValue 
    Calculate new velocity as 

      V new = w x V old +  c1 x rand() x (P pbest  - X ) + c2 x rand() x (P gbest - X ) 

    Normalize Velocity as 

     V norm = V new /max (V new)  
    Update particle value 

      for each v[i] in V norm { 

        if(rand() < v[i]) 
          swap currentValue[i] for indexOf(currentValue, gBest[i]) 
      } 
    Check Mutation 
      if (currentValue = gBest) swap two random positions from currentValue 
  } 
} until termination criterion is met 

Code 4. PSO Procedure for LO Sequencing 

The standard penalty function returns the number of constraints violated, so PSO objective 
is to minimize that function (sentence if (new fitness > pBest) was changed to if (new fitness 
< pBest)). When a particle returns a fitness value of 0, a sequence that satisfies all constraints 
has been found and the algorithm processing is finished. 
This fitness function works well if the constraint set C for the PermutCSP has been 
accurately defined. In the example presented in section 3.1 that represents a 5 LO sequence 
with only one feasible solution, the restriction set was defined as C={xi+1–xi > 0: xi∈X, 
i∈ {1,2,3,4}}. A more accurate definition will be C= {xi-xj>0: xi∈  X, xj∈ {x1,…,xi}}. If we 
consider the sequence {2,3,4,5,1} the standard penalty function will return 1 if the first 
definition of C is used, while the returned value will be 4 if the second definition is used. 
The second definition is more accurate because it returns a better representation of the 
number of swaps required to turn the permutation into the valid solution. Moreover, the 
first definition of C has additional disadvantages because some really different sequences (in 
terms of its distance to the solution) return the same fitness value. For example sequences 
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{2,3,4,5,1}, {1,3,4,5,2}, {1,2,4,5,3} and {1,2,3,5,4} will return a fitness value of 1. Fortunately, the 
accurate constraint definition problem could be solved programmatically. A function that 
recursively processes all restrictions and calculates the most precise set of restrictions 
violated by a given sequence was developed and called over the input PSO sequence. This 
process was called the ‘real’ constraint calculator. The user (instructor, content provider,…) 
will usually define the minimum necessary number of constraints and the system will 
compute real constraints in order to ensure algorithm convergence, so user obligations are 
lightened simultaneously. 
PSO Parameters. One important PSO advantage is that it uses a relatively small number of 
parameters compared with other techniques like genetic algorithms. However, much 
literature on PSO parameter selection has been written. Among it, Hu et. al. (2003) 
established the set of parameters in such a way that PSO works properly for solving 
permutation problems. So we decided to follow their recommendations, and parameters 
were set as follows: Learning rates (c1, c2) are set to 1.49445 and the inertial weight (w) is 
computed according to the equation (3). 

 w= 0.5 + (rand()/2) (3) 

where rand() represents a call to a function that returns a random number between 0 and 1. 
Population size was set to 20 particles. As the fully informed was used, it was not necessary 
to make any consideration concerning the neighborhood size. 
Initialization. The algorithm receives an initial sequence I as an input. This input is used to 
initialize the first particle. All other particles are initialized randomly by permuting I. Initial 
velocity for each particle is also randomly initialized as follows: Each vi ∈ V is randomly 
assigned a value from the range {0,|I|}, where|I|  is the total number of learning objects in 
the sequence. 
Termination criteria. Agent processing stops when a fitness evaluation of a particle returns 
0 or when a fixed maximum number of iterations is reached. So the number of iterations was 
also defined as an input parameter. It was used as a measurement of the number of calls to 
the fitness function that were allowed to find a solution. It should be noted that some 
problems may not have a solution, so the number of iterations setting can avoid infinite 
computing. 
Proposed improvements. During the initial agent development we found that in some 
situations the algorithm got stuck in a local minimum, and it was not able to find a feasible 
solution. For that reason, two enhancements were envisaged in order to improve algorithm 
performance for LO sequencing. First improvement was to decide randomly whether the 
permutation of a particle’s position was performed from gbest or from pbest (p=0.5). In the 
original version all permutations were done regarding gbest.  The second improvement was 
consisted in changing pbest and gbest values when an equal or best fitness value was found 
by a particle. In other words all particle’s comparisons concerning pbest and gbest against the 
actual state were set to less or equal (<=) because the fitness function is to be minimized. The 
original algorithm determines that pbest and gbest only change if a better state is found 
(comparisons strictly <). Code fragment 5 presents the final sequencing algorithm pseudo 
code that includes these improvements. Changes respecting the basic procedure are showed 
underscored. 
These changes resemble to be quite logical ways for increasing particles’ mobility and for 
avoiding quick convergence to local minimums. And they were tested later in the results 
phase. 
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initialize the population 
do { 
  for each particle { 
    calculate fitness value 
    if (new fitness <= gBest) 
      set gbest = currentValue 
    if (new fitness <= pBest) 
      set pbest = currentValue 
    Calculate new velocity as 

     V new = w x V old + c1 x rand() x (P pbest - X ) + c2 x ran() x (P gbest - X )       

    Normalize Velocity as 

    V norm = V new /max (V new) 

    Update particle value 

      for each v[i] in V norm  { 

        if(rand() < v[i]) 
          if(rand() < 0.5) 
            swap currentValue[i] for currentValue[indexOf(currentValue, pBest[i]]) 
          else 
            swap currentValue[i] for currentValue[indexOf(currentValue, gBest[i]]) 
      } 
    Check Mutation 
      if (currentValue = gBest) swap two random positions from currentValue 
  } 
} until termination criterion is met 

Code 5. Improvements on PSO Procedure 

4. Experimental results and discussion 

The PSO algorithm for LOs sequencing described above was designed and implemented 
using the object oriented paradigm. We wanted to test its performance in a real scenario so a 
problem concerning course sequencing for a Master in Engineering (M.Eng.) program in our 
institution, the Computer Science School from the University of Alcalá in Madrid (Spain), 
was chosen for testing. The (web engineering) M.Eng, program comprises 23 courses 
(subjects) grouped in: 

• Basic courses (7) that must be taken before any other (kind of course). There may be 
restrictions between two basic courses, for example ‘HTML’ course must precede 
Javascript course. 

• ‘Itinerary’ courses (5) that must be taken in a fixed ordered sequence. 

• Compulsory courses (5). There may be restrictions between two compulsory courses. 

• Elective courses (6). Additional constraints with respect to any other course may be set. 
All courses have an expected learning time that ranges from 30 to 50 hours. They are 
delivered online using a LMS, namely EDVI LMS (Barchino et al., 2005), and every course 
has its metadata record. Competency records were created to specify LOs’ restrictions, and 
LOM metadata records were updated to reflect prerequisite and learning outcome 
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competencies as detailed in section 2. A feasible sequence must have 23 LOs satisfying all 
constraints. The graph showing all LOs and constraints is very complex, and so it is to 
calculate the exact number of feasible solutions. Some estimations have been used, we have 
estimated that the relation among feasible solutions and total solutions order is 8,9x1012. 
This number reflects the number of states (non-feasible solutions) for each feasible solution. 
Once the problem was established, PSO agent parameters were set to test four different 
configurations that reflect all possibilities concerning proposed improvements introduced in 
Section 3. These configurations are: 

• Configuration 1. Permutation of the particle position is randomly selected from gbest or 
from pbest. Comparison for changing particle pbest and gbest values is set to less or equal 
(<=). 

• Configuration 2. Permutations from gbest/pbest. Comparison set to strictly less (<). 

• Configuration 3. All permutations are performed from gbest. Comparison set to less or 
equal (<=). 

• Configuration 4. Permutations from gbest. Comparison set to strictly less (<). 
Figure 4 shows the results. Each configuration was run 1000 times allowing 20, 30, 40, 50, 75, 
100, 150, 200, 300 and 500 iterations, and the succeed ratio was observed. From the results, it 
can be seen that all configurations converge to a feasible solution, but configuration 4 
(original settings) outperform all others. Figure 4 also shows that original settings need less 
fitness evaluations. This argument is supported by table 1 results, where it is showed the 
mean number of evaluation function calls required for each configuration to find a solution 
(1000 runs) if the number of iterations parameter is set to a number high enough (i.e. a 
number of iterations that ensures a success ratio of 1 for each configuration). 
 

 

Fig. 4. PSO Configurations Comparison 

An example of the PSO sequencing agent execution for the test case is shown in figure 5. The 

input is a random sequence of learning objects and the output is a valid sequence (i.e. a 

sequence that satisfies all restrictions). In the output sequence (1) all basic courses are placed 
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in the initial positions of the sequence, (2) itinerary courses are properly ordered, and (3) 

compulsory, itinerary and elective courses are intercalated respecting all constraints. Output 

is also complemented by the number of fitness function calls required to find the solution. 

The tested scenario may seem to have many feasible solutions that would make doubtful 

PSO performance in not-so-kind scenarios, so PSO agent was tested in ‘more’ difficult 

situations. Test sequences containing 5, 10, 20, 30, 40, 50, 60, 75 and 100 learning objects with 

only one feasible solution in the solution space were designed. Configuration 4 was used 

because it showed the best performance for the above test case and unlimited iterations were 

allowed to find the solution. Fitness evaluation means were observed for 100 runs (fig. 6). 

Although fitness evaluations does not increase linearly to the number of learning objects, it 

should be noted that learning objects increment entails an exponential explosion of solution 

space size (remember that solution space size for n learning objects will be n!). For example, 

the solution space with 100 learning objects will be 1048 times bigger than the solution space 

with 75 learning objects, but the number of fitness evaluations required for finding a 

solution is only twice bigger. In other words, X-axis could also be interpreted as the solution 

space size expressed in a logarithmic scale. Therefore, the intelligent agent also handles 

reasonably the combinatorial explosion inherent to many AI problems. 
 

 Fitness Evaluations 

Configuration 1 1412 

Configuration 2 1817 

Configuration 3 1237 

Configuration 4 1158 

Table 1. Number of Fitness Evaluations 
 

 

Fig. 5. PSO Agent Execution Example 

www.intechopen.com



 Tools in Artificial Intelligence 

 

90 

5. Conclusions 

Automated LO sequencing is a recurring problem in the e-learning field that could be 
undertaken employing models that ensure interoperability and artificial intelligent 
techniques. The purpose of the study was to design, develop and test a PSO agent that 
performs automatic LO sequencing through competencies. A model that employs 
competencies as a mean for defining constraints between learning object has been presented, 
so that a sequence of LOs is defined by relations among LOs and competencies. New 
sequences can be derived if permutation operations are allowed between LOs in the 
sequence. Hence the sequencing problem is turn into a permutation problem, and the aim is 
to find a sequence that satisfies all restrictions expressed in the original model. The PSO for 
permutation problem has been extended to LO sequencing problem. Testing two envisaged 
improvements was also performed. Results show that: (1) PSO succeeds in solving the 
problem, and (2) the original configuration is the best one. 
 

 

Fig. 6. Number of fitness evaluations required for different number of LOs 

Further implications arise from the model proposal and from the study conclusions: (1) E-
learning standards are promoted. XML records and bindings are used, so elements will be 
easily interchanged and processed by compliant systems. (2) Instructor’s role is automated 
reducing costs. Sequencing process works even in complex scenarios where humans face 
difficulties. Instructors could spend saved time in performing other activities within the 
learning action. And (3), the model can be extended to an automated intelligent system for 
building personalized e-learning experiences. But this third implication is linked to future 
work. This model has been envisaged and it was depicted in figure 3 (Section 2.2). 
Sequencing process can be complemented with gap analysis process and competency 
learner modelling techniques to build personalized courses. These courses could also be 
SCORM (ADL, 2004) compliant, so they could be imported to current LMSs. 
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