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Abstract

Raman mapping is a noninvasive, label-free technique with high chemical specificity
and high potential to become a leading method in biological and biomedical
applications. As opposed to Raman spectroscopy, which provides discrete chemical
information at distinct positions within the sample, Raman mapping provides
chemical information coupled with spatial information. The laser spot scans the
investigated sample area with a preset step size and acquires Raman spectra pixel by
pixel. The Raman spectra are then discriminated from each other by chemometric
analysis, and the end result is a false color map, an image of the sample that contains
highly precise structural and chemical information. Raman imaging has been
successfully used for label-free investigations at cellular and subcellular level. Cell
compartments, cell responses to drugs and different stages of the cell cycle from the
stem cell to the completely differentiated cell were successfully distinguished. This
technique is also able to differentiate between healthy and cancer cells, indicating
great potential for replacing conventional cancer detection tools with Raman detection
in the future.

Keywords: Raman spectroscopy, Raman mapping, Raman imaging, cells, tissues,
medical diagnosis, plants, algae

1. Introduction

1.1. Basic concept and working principle

Various techniques are being currently used for imaging of cells and tissues. Individually,
each technique is able to address some aspects of the system under study. For example,
optical microscopy is very often used for cell and tissue analysis; it is a cost-effective method
which gives morphological information, but is unable to provide molecular and structural

I NT E C H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.



60 Raman Spectroscopy and Applications

information. Electron microscopy and atomic force microscopy are high spatial resolution
techniques, able to image subcellular compartments; however, they lack chemical specificity.
In most cases, fluorescence microscopy, for example, confocal scanning fluorescence micro-
scopy, is used for cellular visualization. Fluorescence microscopy requires fluorescent labels
specifically bound to the substrate under study. Subcellular structures can be visualized, but
since each fluorescent label is excited by a different wavelength, the number of structures
that can be visualized is limited. The need to introduce fluorophores and their limited sta-
bility and photo bleaching are drawbacks of using confocal microscopy. Nonetheless, the
technique is largely used for cell imaging and imaging of cellular uptake of micro and
nanoparticles. There is great need for techniques that provide chemically specific informa-
tion coupled to spatial information for the visualization of, for example, cellular uptake and
localization of biologically active molecules, cellular transport pathways, molecular changes
in cancer vs healthy tissues, etc.

Raman mapping (Raman imaging, Raman scanning or Raman micro-spectroscopy) has recent-
ly become an emerging imaging technique in biological and biomedical research and applica-
tions. The Raman effect is based on inelastic scattering of photons when electromagnetic waves
interact with atoms or molecules. The small fraction of incident photons scattered inelastically
have different frequencies compared to the incident photons. The phenomenon is called Ram-
an scattering, and the difference in frequency between the incident photons and scattered pho-
tons is the so-called Raman shift (cm™). The Raman shift is related to the vibrational levels of
each specific molecule, being used as a fingerprint for molecular identification [1].

In contrast to Raman spectroscopy, which provides discrete chemical information at distinct
positions within the sample, Raman mapping provides chemical information coupled with
spatial information [2]. Raman mapping is a noninvasive, label-free technique, with high
chemical specificity. In Raman mapping, the laser spot scans the investigated sample area with
a preset step size and acquires Raman spectra at every set point. The Raman spectra are then
discriminated from each other by chemometric analysis, and the end result is an image of the
sample that contains highly precise structural and chemical information. Excitation wave-
lengths in the visible and near-infrared range give high spatial resolution (<1 um), making
Raman spectroscopy combined with microscopy an ideal tool for biological samples imaging,
and especially for cell and tissue imaging. In this latter case, Raman mapping has important
advantages over conventional biological assays: it is a rapid, noninvasive, label-free technique,
which does not damage the cells if using suitable laser wavelengths and power.

1.2. Instrumentation and data analysis

The most important parameters to ensure the success of a Raman imaging measurement on
biological samples are the wavelength and power of the laser, the resolution of the images, and
the sample preparation and fixation. The intensity of the scattered radiation is proportional to
the wavelength at the power of -4 (~A~*), meaning that shorter (blue) wavelengths are scattered
more strongly than longer (red) wavelengths. Thus, shorter wavelengths generate more
photons scattered inelastically, giving thus higher Raman intensities. However, shorter
wavelengths typically lead to stronger auto-fluorescence from the samples, which can mask
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the Raman signal arising from the molecules of interest. Therefore, a compromise is needed.
Hamada et al. studied the influence of 488, 514.5, 532 and 632.8 nm laser excitation wavelengths
on the Raman signal yield and background signal for the imaging of living cells [3]. The authors
found that the 532 nm excitation is a good compromise between Raman signal intensity and
auto-fluorescence background because it generates strong Raman scattering signals and
suppresses auto-fluorescence. Photodamage caused by light absorption of the biological
samples is another important parameter to be considered for choosing the appropriate laser
excitation. Puppels et al. [4] found that a 660 nm laser induces no photodamage to cells and
chromosomes compared to the 514.5nm (visible) laser. Even though Raman scattering
efficiency decreases with increasing wavelength, recent advances in the design of Raman
spectrometers with high optical throughput and highly sensitive CCD (charge-coupled device)
detectors allow measuring spectra and obtaining reasonably high signal strength. Notingher
et al. used a 785 nm laser for their measurements on live cells and tissues [5-7]. In one study,
they compared the 488, 514 and 785 nm lasers with respect to photodamage of cells and found
that the 488 and 514 nm lasers induce photodegradation and reduce the number of living cells;
with the 785 laser, cell degradation and auto-fluorescence were low and the signal intensity
was reasonably high [8]. Even though going higher than 785 nm (e.g., 1064 nm) in the laser
wavelength would decrease the photodamage of the cells, it would also dramatically decrease
the Raman scattering efficiency. The recent literature mentions mostly the use of 785 and 532
nm lasers for cellular mapping [6, 9]. However, when using near-infrared (NIR) lasers for
Raman excitation, cooled deep depletion back-illuminated CCD detectors are preferred [6]
instead of standard back-illuminated, visible-optimized CCDs, because of their higher
quantum efficiencies (QE) in the near-infrared (NIR) spectral region (up to 95% with the new
Low Dark Current Deep-Depletion (LDC-DD) Technology.

In some cases, for samples that cannot be detected by regular Raman scattering, signal
enhancement can be induced. In some situations, it is possible to obtain resonance Raman
effects. Such effects take place when the laser excitation wavelength overlaps with the absorp-
tion band of the molecules due to electronic transitions, and this can lead to increase the Raman
intensity by a factor of 103-105 [1]. The phenomenon is called resonant Raman scattering.
Consequently, Raman imaging of a resonant molecule can be significantly improved by
choosing an excitation laser wavelength in the absorption band region of the molecule. For
example, cytochrome C absorbs light at around 520 nm and shows a strong resonance Raman
effect when analyzed using a 532 nm laser. This property can be used to image its intracellular
distribution. Other examples of molecules that can benefit from strong Raman resonance
effects are the carotenoids, chlorophylls, vitamin B12 and heme proteins [3, 10].

Another way to obtain signal enhancement in Raman spectroscopy is to use surface-enhanced
Raman spectroscopy (SERS) or coherent anti-Stokes Raman scattering (CARS). In SERS, it is
possible to reach high enhancements of the Raman intensity (by a factor of 107 or more) when
the molecule of interest is adsorbed onto or in the very close vicinity of plasmonic metallic
nanostructures such as silver and gold [11]. This effect significantly lowers the detection limit
of molecules. CARS is a nonlinear optical effect in which two lasers, a pump laser and a Stoke
laser, are overlapped and strongly focused onto the sample to generate the CARS signal. When
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the difference in frequency between the pump and the Stoke lasers is tuned to the exact value
of a vibrational frequency within the sample, strong enhancements of the CARS signal can
occur [1].

The instrumental resolution is very important for cell and tissue mapping, in order to be able
toimage cellular and subcellular structures. The lateral resolution is limited by the wavelength
of the laser and the numerical aperture of the objective used for the experiment, while the axial
resolution is given by the instrument aperture (slit or pinhole) and the refractive index of the
immersion medium. Currently available Raman spectrometers can go down to 200 nm for the
lateral resolution and 500 nm for the axial resolution [2].

Cells and tissues could be fixed on specific substrates for usage over longer periods of time.
The most important requirements for a substrate suitable for Raman imaging are as follows:
(a) transparency in the visible and near-infrared region of the light spectrum; (b) low back-
ground signal to avoid overlapping with the Raman signals from the sample; and (c) suitability
for cell culture growth or tissue fixation. Calcium and magnesium fluoride (CaF, and MgF,)
and quartz are the preferred substrates for Raman imaging. Glass and plastic substrates are
not recommended because of high background signals [2, 12]. Zinc selenide (ZnSe) has the
disadvantage of weak cell adherence [12]. A variety of cell fixation methods has been so far
reported can be used: paraformaldehyde, methanol, methanol:acetone, formalin, air-drying
and cytocentrifugation [2, 6, 13]. For live cell imaging, special instrument setups, in which cells
are confined in a sterile chamber and kept at 37°C and a 5% CO, atmosphere to ensure viability
[14, 15], have been reported.

After taking the pixel-by-pixel Raman spectra, the raw dataset needs to be processed in order
to identify the key molecules in the sample and based on their spectral fingerprint, to generate
the false color Raman images. Since no label is used, the pixel-to-pixel spectral variations are
small and multivariate methods of analysis need to be employed to get the Raman images from
the dataset. Several approaches are currently used: principal component analysis (PCA), self-
modeling curve resolution (SMCR), K-means cluster analysis (KMCA), hierarchical cluster
analysis (HCA), divisive correlation cluster analysis (DCCA), vertex component analysis
(VCA), fuzzy C-means cluster analysis (FCCA) and linear discriminant analysis (LDA) [6, 16—
20].

Here we aim to highlight the recent advances of Raman mapping and provide an overview on
its emerging applications, which range from single cell and tissue imaging to medical diag-
nosis, including cancer detection. Some applications that will be discussed include:

* Stem cell research, especially stem cell differentiation [6, 21-23]

* Single cell and microorganism imaging [2, 18, 24, 25], including evidentiation of subcellular
compartments [23]

* Identification of cell cycle phase [26]
* Monitoring of cell death [27, 28]

* Cellular responses to drugs [9]
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* Imaging of intracellular localization of bioactive molecules and drug carriers such as
colloidal nanostructures, liposomes and polymeric particles [2, 29, 30]

* Imaging of tissue physiology [31, 32]

* Medical diagnosis, including cancer detection based on the capacity of Raman mapping to
detect molecular changes in cells, tissues or biofluids, that are either the cause or the effect
of diseases [7, 33, 34]

* Intraoperative detection of tumor margins [7, 35]

* Cancer detection based on the ability to discriminate between normal and cancer cells [36]

2. Raman mapping for cell imaging

Several Raman peaks are used as fingerprints for the intracellular identification of nucleic
acids, proteins and lipid-rich structures. In terms of chemical information, the richest part in
a Raman spectrum is the region below 1800 cm™, also called the fingerprint region. Some
representative Raman bands from the fingerprint region, characteristic for nucleic acids,
proteins and lipids, are given in Table 1 [6, 37, 38]. The region between 1800 and 2800 cm™ is
the so-called silent region, since no Raman cellular vibrations arising from functional groups
appear in this region, excepting triple-bond vibrations. Finally, the high-frequency region
above 2800 cm™ is dominated by C-H stretching vibrations (CH, CH,, CH,).

Stem cells are attractive to be studied in the biomedical field because they have the ability to
differentiate into any cell phenotype, and they can proliferate indefinitely [39]. Differentiation
of stem cells could be used in stem cell therapy and tissue engineering. The differentiation
process of stem cells needs identification of specific markers; currently, this involves the use
of immunolabeling or fluorescence. Both methods have the disadvantage of being invasive. In
contrast, using Raman-specific intrinsic fingerprints would be advantageous, being noninva-
sive, nonlabeling approach, and able to provide accurate and highly specific information. The
method would be suitable also for cells that lack specific markers for separation by conven-
tional means [21] such as cardiomyocytes.

The intracellular distribution and concentration of nucleic acids were used by Ghita et al. [6]
to distinguish between undifferentiated and differentiated stem cells, more precisely from
undifferentiated neural stem cells and the glial cells derived from them. They manage to
differentiate with 89.4% sensitivity and 96.4% specificity. The spectral fingerprint of the nu-
cleic acid backbone was used to detect DNA- and RNA-rich regions. The Raman spectrum
of B-DNA shows a strong band at 788 cm™ and a shoulder at 835 cm™, characteristic to the
symmetric O-P-O stretching vibrations of the phosphate groups and to the asymmetric O-P-
O vibrations, respectively. In case of RNA, the symmetric O-P-O vibrations appear shifted to
813 cm™, while the shoulder corresponding to the asymmetric O-P-O stretching disappears.
Based on the spectral differences between DNA and RNA, it was found that undifferentiat-
ed neural cells have higher concentration of nucleic acids compared to glial cells. The Ram-
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Raman peak position (cm™) Assignments

Nucleic acid bands

684 Guanine ring breathing
729 Adenine ring breathing
751 Thymine ring breathing
782 Uracil ring breathing
785 Cytosine ring breathing
788 Symmetric O-P-O stretching in 3-strands DNA
835 Asymmetric O-P-O stretching in 3-strands DNA
813 Symmetric O-P-O stretching in RNA and a-strands DNA
1095-1098 O-P-O vibrations (DNA, RNA)

Protein bands
938 Backbone C=C stretching
1005 Phenylalanine symmetric ring breathing
1033 Phenylalanine in plane C-H vibrations
1200-1300 Amide III band (CH, NH deformations)
1655-1662 Amide I (C=0O stretching)

Lipid bands
980 =C-H bending
1093 C—C stretching
1257 =C-H bending
1450 C-H deformation
1658 C=C stretching

Table 1. Some of the most representative Raman peaks for nucleic acids, proteins and lipids in cells.

an band at 813cm™ was the indicator of the differentiation status, and this allowed
distinguishing between the two cell types. Undifferentiated neural stem cells have high con-
centration of RNA in the cytoplasm (as high as 4 mg/ml), while below the instrument detec-
tion limit (<1 mg/ml) in the glial cells. Based on Raman mapping, it was possible to image
RNA- and DNA-rich structures in the stem cells. The RNA-rich structures, representing the
stem cells cytoplasm, were imaged using the 813 cm™ Raman band, and the DNA-rich part
related to the stem cells nucleus was imaged using the 788 cm™ Raman band. Similar results
were reported by the same research group regarding the differentiation status of embryonic
stem cells [22]. The differentiated cells had 75% less RNA, as monitored by the decrease in
intensity of the 813 cm™ peak. Basically, most prominent Raman peaks of embryonic stem
cells are the ones of proteins (amide I band at 1660 cm™, amide III at 1200-1300 cm™, 1005
cm™ vibration of phenylalanine and C=C stretching at 938 cm™) and nucleic acids. Dental
follicle mesenchymal stem cells were also imaged using Raman mapping; several compo-
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nents, and especially a high concentration of cytoplasmic RNA, were found to be a good
indicator to the undifferentiated status of the cells [40].

Raman mapping was also used inside a bioreactor culture system, where human embryonic
stem cells were grown and differentiated into cardiomyocytes [41]. The purpose was to monitor
the cardiac differentiation of the embryonic bodies. The Raman maps were compared with
immunofluorescence imaging. A positive correlation was found between Raman bands at 1340,
1083, 937, 858, 577 and 482 cm™ and the expression of the a-actinin protein in the differentiated
cardiomyocytes. Konorov et al. [26] obtained information on the cell cycle phase of human
embryonic stem cells. The 783 cm™ DNA band from a large number of cell nuclei was used as
indicator of the cell cycle phase. The results were corrected for the RNA contribution at 811
cm. As such, the authors were able to get information on the state of division of the embryonic
stem cells by quantifying the DNA and RNA peaks from the Raman spectra and obtained
Raman intensities similar to the fluorescence intensities of flow cytometry.

In another study, Pascut et al. [42] obtained 97% specificity and 96% sensitivity in differenti-
ating the cardiomyocytes derived from human embryonic stem cells. The main spectral
features that allowed the discrimination of cardiomyocytes were attributed to glycogen and
myofibrils. The results were correlated with the immunofluorescence staining, and a good
correlation was observed. The same authors investigated the potential for developing Raman-
activated cell sorting of individual cells [43]. Hashimoto et al. [44] got information on osteoblast
differentiation and mineralization mechanisms by monitoring fluctuations in the cytochrome
C concentration. The above preliminary studies suggest that Raman spectroscopy has a great
potential to become a leading method for stem cells investigation.

Raman mapping can be used as a tool to obtain molecular fingerprint information from
different subcellular compartments. Based on their distinct chemical features, nucleus and
cytoplasm and also other cellular organelles can be imaged. For example, in their study on
follicle mesenchymal stem cells, Leopold et al. [40] were able to image the cell nucleus based
on the 785 cm™ band characteristic for the DNA O-P-O vibrations. Lipid characteristic peaks,
such as the 1446 cm™ peak characteristic to CH, vibrations, made it possible to highlight the
smooth endoplasmic reticulum in the Raman images, which is known to be the source of
intracellular lipid synthesis. Based on characteristic Raman vibrational peaks of lipids, proteins
and nucleic acids, Krafft et al. [45] were able to reconstruct the main cellular components: the
nucleus, the contour of the cell and the organelles. They focused mostly on the 2800-3000 cm
! region, where CH, and CH, vibrations from proteins, lipids and nucleic acids are present.
In both studies, the cellular organelle identification was carried out based on the score plots
obtained from the principal component analysis. From the score plots, false color Raman maps
were generated, highlighting the subcellular compartments. Raman images of subcellular
organelles were also reported by Krauf3 et al. [23]. The authors have also correlated well their
results with fluorescence microscopy.

Cytochrome C, protein and lipid-rich structures were evidenced in different Raman images
on HeLa cells [3] by irradiating the cells with 488, 514, 532 and 633 nm lasers. The HeLa cells
gave Raman spectra with peaks at 1000 cm™ (breathing of phenylalanine), 1451, 2850, 2885,
2935 cm™ (CH, deformation, CH, and CHj stretching) and 1660 cm™ (amide I bands mode of

65



66 Raman Spectroscopy and Applications

peptide bonds). When irradiated with the 532 nm laser, resonant peaks at 753, 1127, 1314 and
1583, characteristic to cytochrome C, were obtained. Raman images highlighting the Cyto-
chrome C, protein (3-sheets and lipids were created using the 753 cm™ peak (pyrrole ring of
cytochrome C), the 1686 cm™ peak (amide I vibration of peptide bond in protein) and the
2852 cm™ peak (CH, stretching vibration of hydrocarbon chain of lipids). Since cytochrome C
is essential for the electron transfer in mitochondria, the Raman images of cytochrome C should
also point out the distribution of mitochondria in the cell. In addition, Raman spectra from the
nuclei showed no resonance, being similar for all excitation wavelengths. Matthaus et al. [46]
reported on obtaining Raman maps pointing out the location of different cellular structures in
HeLa cells, with emphasis on mitochondria. They performed hierarchical cluster analysis and
found localization of mitochondria in the perinuclear region, which was supported by
correlation with fluorescence maps.

In some cases, Raman imaging requires the use of tags. This happens when molecules cannot
be detected by regular Raman scattering, either because they are in very low amounts, or
because their Raman signal overlaps with other compounds and cannot be distinguished
clearly. There are two approaches for using tags for Raman imaging: (a) using surface-
enhanced Raman scattering, which implies binding of tags onto the plasmonic nanoparticles
surface that can be further used for intracellular identification of analytes [47-50], and (b)
taking advantage of the silent region in the Raman spectra of cells between 1800 and 2800 cm
L. In this region, most of the biologically active molecules show no Raman vibrations, so
functional molecules with Raman fingerprint in this region could be useful as tags for detection
of molecules, which do not give clearly distinguishable Raman peaks in the intracellular
medium. This also has the advantage of avoiding the overlap with any endogeneous molecules.
Tags suitable for the silent region detection are alkynes, azides, deuterium and nitrile.
Palonpon et al. [10] utilized alkyne-tagged EdU (5-ethynil-2-deoxyuridine), for the detection
of DNA accumulation and synthesis in cells. EAU is rapidly incorporated in the DNA during
the replication process, accumulates in the nucleus and is thus suitable for acquiring informa-
tion about DNA synthesis in cells.

Silver nanoparticles (AgNPs) prepared by reduction with hydroxylamine according to the
Leopold and Lendl method [51] were used for mapping sub-membrane hemoglobin in
erythrocytes (red blood cells) [52]. Erythrocytes contain cytosolic and sub-membrane hemo-
globin. Although hemoglobin exhibits strong Raman scattering, Raman spectra of erythrocytes
generally have mostly contribution from cytosolic hemoglobin, since the sub-membrane
hemoglobin is negligible in amount. To trace this sub-membrane hemoglobin, the authors used
SERS-active AgNPs that were internalized in the cells and accumulated in the cell membrane.
SERS images showed the erythrocytes that come in contact with the AgNPs. Lee et al. [53] used
SERS to detect different human breast cancer cell lines phenotypes and to quantify the proteins
on the cell surface. For the purpose of SERS enhancement, silica-encapsulated hollow gold
nanospheres conjugated with specific antibodies were used. The expression of epidermal
growth factor (EGF), ErbB2 and insulin-like growth factor-1 (IGF-1) receptors was determined
in the MDA-MB-468, KPL4 and SK-BR-3 cell lines by SERS mapping. Different distributions
of growth factors were clearly identified and distinguished from their corresponding SERS
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mapping images. Taking advantage on the characteristic wave number of the carbonyl group
vibration that lies within the silent region of the Raman spectra, Kong et al. [54] developed
osmium carbonyl clusters for cancer cell imaging. The clusters were conjugated with PEG-
coated AuNPs and further functionalized with antibody for epidermal growth factor receptors
(anti-EGFR). AuNPs were used for carbon monoxide Raman signal enhancement, while
functionalization with antibody was needed since the EGFR is highly expressed in many cancer
cell lines. Both EGFR-positive and EGFR-negative cancer cells were used. The nanoparticle
conjugates were imaged after cellular uptake based on the CO absorption signal at 2030 cm™,
and the results showed the specificity and efficient targeting of CO-nanoparticle conjugates to
EGFR-positive cells.

For toxicology studies, it is important to be able to distinguish between healthy and apoptotic
cells and also to gain information on the molecular changes associated with apoptosis. Zoladek
et al. [28] used Raman imaging for understanding changes associated with apoptosis in the
MDA-MB-231 human breast cancer cells. Cells were exposed to the apoptotic drug etoposide,
and Raman spectra were recorded 2, 4 and 6 h after exposure. An 1.5-fold increase in the DNA
content was observed after 6 h, and the change was assigned to DNA condensation. The most
drastic change was in the lipid profile; a high concentration in membrane phospholipids and
unsaturated non-membrane lipids was observed in apoptotic cells. The Raman images of the
lipidic areas of the cells were generated based on the 1005 and 1659 cm™ peaks ratio. The
1005 cm™ peak with contribution from phenylalanine is not affected by etoposide exposure,
while the 1659 cm™ C=C stretching vibrations from lipids show strong increase upon etoposide
exposure, indicating an increased degree of unsaturation of lipids for the apoptotic cells. Okada
et al. [55] used resonant Raman scattering for imaging the intracellular distribution of cyto-
chrome C and observing dynamic changes of its 750 cm™ band associated with cell apoptosis.

The cellular uptake of nanoparticles and drugs and the cellular responses to drugs are
important aspects to be investigated for molecular biomedical applications. Cellular uptake
and localization of polyethylene glycol-coated gold nanoparticles in human prostate cancer
cells (LNCaP Pro 5) were visualized based on their photoluminescence peak (180-1800 cm™).
In the Raman images of LNCaP Pro 5 cells with AuNDPs internalized, cell nucleus and nucleoli
are visible, as well as spots generated from the photoluminescence peak of AuNPs. The
nanoparticles are located at different positions inside the cells, depending on the time elapsed
from exposure. Two hours after exposure, the AuNPs are located in the cell membrane, 12h
after they are located in the cytoplasm, and after 24 h, AuNPs are imaged in the perinuclear
region [29].

3. Raman mapping for tissue imaging and medical diagnosis

There is clear indication that Raman spectroscopy could provide insights into drug targeting
mechanisms and could be used for detection of metabolic interactions of drugs with cancer
cells. In their attempt to detect physiologically relevant cellular responses to drugs, El-
Mashtoly et al. [9] used Raman imaging to quantify the effect of the epidermal growth factor
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inhibitor panitumumab on colon cancer cells expressing Kirsten-ras mutations (oncogenic and
wild-type). It is known that oncogenic K-ras mutations block the response to anti-epidermal
growth factor therapy such as panitumumab, while cells expressing wild-type mutations
respond to the treatment; all these facts were nicely confirmed by the Raman mapping results.
The authors used hierarchical cluster analysis on the 700-1800 cm™ and 2800-3050 cm™ regions
for the identification of subcellular components such as cellular membrane, cytoplasm, nucleus
and lipid droplets. They found that the oncogenic mutated K-ras cells showed no response to
the drug, while the wild-type mutated cells have strong cellular responses to panitumumab
treatment, as demonstrated by Raman intensity changes and wave number shifts. The
panitumumab-induced changes are strongest on the lipid droplets, suggesting that lipid
droplets might play a crucial role in anticancer therapy. The results were confirmed by
fluorescence spectroscopy. In another work, El-Mashtoly et al. [30] were able to image the
spatial distribution of the erlotinib, another inhibitor of the epidermal growth factor receptor,
in colon adenocarcinoma cells upon 12 h of incubating the cells with 100 uM erlotinib solution.
Normally, erlotinib cannot be detected by Raman spectroscopy at 100 uM concentrations,
which basically implies that its intracellular level was higher due to most likely concentration
of the drug in the cell. The authors used the C=C alkyne vibration from the silent region of the
Raman spectrum (2085-2140 cm™) to image the erlotinib distribution and found that the drug
was mostly concentrated at the cell borders.

Cells, tissues and bio-fluids can be imaged by Raman micro-spectroscopy. Based on the
hypothesis that molecular changes associated with different diseases can be quantified by
Raman spectroscopy, the method has been used in medical research and diagnosis during the
last years. On one hand, in vitro and in vivo analysis of tissue is important to be able to
distinguish between healthy and tumor cells, and on the other hand, in the medical diagnostics
field, there is imperative need for research directed toward identifying noninvasive methods
for tumor analysis and toward determining the exact tumor margins. There are several papers
reporting the use of Raman spectroscopy and imaging in these directions. Present research still
requires comparison with conventionally used staining methods used in histopathology. The
gold standard method for tumor pathology and classification is the hematoxylin and eosin
(H&E) staining. As opposed to the H&E which involves tissue staining and fixation, Raman
micro-spectroscopy is a nondestructive, nonlabeling method. Also, histopathology cannot be
used intraoperatively as it requires long incubation times. NIR and the visible 532 nm laser are
reported for tissue imaging related to cancer research [7, 30].

The major drawback of Raman technique that limits its application in the medical field is the
low efficiency of the inelastic scattering process. Different strategies have been developed to
overcome this difficulty, based on, for example: (a) using nonlinear imaging modes such as
CARS; (b) acquiring selective sampling of the analyzed probe (e.g., tissue auto-fluorescence
can be used to determine the characteristics of the tissue sample and to further use the
information to prioritize the sampling points for Raman spectroscopy); (c) multimodal
integration of Raman with other techniques such as auto-fluorescence; (d) use of fiber-optic
probes for hand held instruments; and (e) use of plasmonic metallic nanoparticles suitable for
surface-enhanced Raman scattering.
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In vivo and in vitro cancer diagnosis based on Raman imaging was so far focused on brain,
breast, lung, skin, prostate, colorectal, esophagus and bone cancer [33]. The group of Notingher
et al. are pioneers in using Raman imaging for tumor diagnosis, in particular for detecting
tumor margins. Multimodal spectral imaging, combining auto-fluorescence imaging and
Raman micro-spectroscopy, was used [34, 35, 56] to distinguish between healthy and cancer
cells in different carcinoma tissues during intraoperative or postoperative evaluations, for the
purpose of accurately detecting the tumor margins. Multimodal spectral imaging is required
to reduce the acquisition times needed for raster scanning. Instead of raster scanning the
sample, selective sampling is achieved based on integrating collagen auto-fluorescence
imaging with Raman imaging. First auto-fluorescence images are used to determine the
features of the tissue, and then, the information is used to prioritize and decide the sampling
points for Raman spectroscopy. The tissue areas with auto-fluorescence are those containing
collagen and are thus identified as healthy dermis and excluded from the Raman measure-
ments. In this way, a dramatic decrease in the acquisition time is achieved: autofluorescence
Raman typically requires ~100-fold fewer Raman spectra compared to raster scanning [35].
The high speed of fluorescence imaging relies on the capability to image large tissue area, in
contrast to Raman imaging, which requires a pixel-by-pixel readout. For example, an inte-
grated system based on Raman scattering and auto-fluorescence imaging was used by Kong
et al. [35] to diagnose basal cell carcinoma tumor margins during tissue-conserving surgery.
The major challenge in tissue-conserving surgery is to completely remove the tumor, with
minimal loss of healthy tissue. Auto-fluorescence images were necessary in order to prioritize
the sampling points for Raman. By using k-means cluster analysis and comparing the images
obtained from clustering with the histopathology images, it was possible to diagnose the tumor
with 100% sensitivity and 92% specificity. As such, it was possible to assign tissue areas
corresponding to the tumor, epidermis, dermis, fat, inflamed dermis, sebaceous gland and
muscles. The tumor areas show more intense DNA peaks at 788 and 1098 cm™ compared to
healthy tissue. The spectra of the dermis were characterized by collagen-specific peaks at 851
and 950 cm™. It was possible to achieve shorter diagnosis times than those required by
histopathology.

Selective sampling for intraoperative diagnosis during the breast cancer conserving surgery
leads to a diagnosis of mammary ductal carcinoma with 95.6% sensitivity and 96.2% specificity
[56]. As in the study above, discrimination between healthy and tumor areas was based on
increased concentrations of nucleic acids (bands at 788, 1098 cm™) and decreased levels of
collagen and fats (851 and 950 cm™ bands) in the tumor regions. Tissues from 60 patients were
deposited on MgF, plates; 20 um tissue sections were sampled and analyzed by Raman micro-
spectroscopy, and adjacent sections of 70 um were stained with H&E. To reduce acquisition
times needed for raster scanning, selective sampling was achieved based on integrated auto-
fluorescence imaging and Raman. This procedure is also known as multimodal spectral
histopathology. By comparing the Raman images obtained from the k-means cluster analysis
with the ones obtained from H&E staining, the tumor vs healthy breast tissue assignment was
successfully carried out. The images from the tumor regions showed large number of cells with
enlarged nuclei. Compared to regular raster scanning Raman that would require 10,000
spectra/mm? and 5 h analysis time, the multimodal spectral imaging drastically reduces the
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analysis time by reducing the number of Raman spectra acquired to 20 spectra/mm? which
needs 17 min for reaching diagnosis. In a recent study [7], the same group reported on face
and neck basal cell carcinoma analysis by selective sampling Raman with 95.3% sensitivity
and 94.6% specificity. The results are promising; the method can significantly decrease the
diagnosis time. However, it requires strong computing power for the calculations needed after
measurement of each Raman spectrum, and this can still be considered a drawback.

Cancer and pre-cancer cells, erythrocytes and lymphocytes were successfully assigned to colon
cancer tissue sections by combining Raman imaging with histopathology (H&E staining) and
with immunohistochemistry [13]. Hierarchical cluster analysis was used in the spectral region
700-1800 cm™ and 2600-3100 cm™. The tumor protein p53 is normally highly expressed in
cancer and pre-cancer cells because it is a tumor suppresser. The possibility of obtaining Raman
imaging of tumor and pre-tumor cells by highlighting p53 active areas was confirmed. By
comparing the obtained false color Raman maps with the images given by the anti-p53
immunohistochemical stained image, it was found that the sample auto-fluorescence matches
the fluorescence from the anti-p53 stained tissue, proving that the Raman imaging can be used
for assigning the p53 active areas of the tissues. The p53 active areas represent more specifically
the cancer cell nuclei.

Using SERS-active nanoparticles for intraoperative detection of tumor margins is another
promising direction of research in Raman imaging. With this purpose in mind, Wang et al.
[48] developed multi-receptor-targeted SERS-active nanoparticles that are topically applied
at the surface of tissues excised during breast cancer lumpectomy and that enable quantita-
tive molecular phenotyping at the tumor surface for the purpose of diagnosis. The nanopar-
ticles are tagged with multiple antibodies to achieve as high accuracy as possible and to be
able to eliminate influence of nonspecific binding of the nanoparticles. Bovin serum albumin
(BSA) was also used to limit nonspecific accumulation of nanoparticles within cells. Anti-
bodies for the epidermal growth factor receptor (EGFR) or the human epidermal growth
factor receptor 2 (HER2) and a negative control antibody were conjugated to the nanoparti-
cle surface; a fluorophore was also used to conduct flow cytometry for result confirmation.
By targeting the SERS-active nanoparticles to various tumor biomarkers simultaneously and
recording the SERS spectra, followed by computational demultiplexing to determine the rel-
ative concentrations of the individual SERS nanoparticles, it is possible to detect residual
tumors at the surgical margins. The results of the study demonstrated the ability to perform
successful Raman imaging on the tissues and to accurately quantify relative tumor biomark-
er expression levels (high levels of HER2 expression were found, characteristic for breast
tumors), in less than 15 min.

4. Raman mapping in plant and algae research

There is a growing interest in getting a more comprehensive understanding of the chemical
composition of various plant tissues. Investigations on structural aspects of plant cell wall
components, on the chemistry of plant metabolites and relevant plant molecules, are feasible
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using Raman mapping. NIR-FT Raman is suitable for imaging of large plant structures such
as leaves, seeds and fruits, while the higher resolution visible lasers allow investigation of
smaller plant structures.

For example, using the 633 nm laser, it was possible to image the distribution of cell wall
components such as cellulose and lignin in a 55-year-old black spruce wood (Picea mariana)
[57]. Raman images of cellulose and lignin were accurately generated. Cellulose gives three
distinct peaks at 380, 1098 and 2900 cm™, whereas lignin has two overlapping bands at 1600
and 1650 cm™. The distribution of lignin was generated using both the 1600 and 1650 cm™
bands, while the cellulose distribution maps were found to be most reliable when generated
using the 2900 cm™ band which has contribution from lignin alone, without other chemical
interferences. Lignin-to-cellulose ratio was also determined, and it was found to differ in
different areas of the plant cell wall. Because the 1650 cm™ line had as well contribution from
coniferaldehyde and coniferalcohol, it was possible to also image the coniferaldehyde and
coniferalcohol distribution, which followed that of lignin. Sun et al. [58] have also used Raman
mapping to get information on the lignin and cellulose polymers distribution and composi-
tion in Eucalyptus globulus and corn stover. They have imaged the lignin and cellulose within
different areas on the plant cell walls, from the epidermis to the pith area. Based on the Raman
spectral fingerprints, significant compositional differences between Eucalyptus globulus and
corn stover were observed, but also between different types of cells within the same plant.
Schmidt et al. [59] acquired sub-micrometer lateral resolution Raman images of Arabidopsis
thaliana stem cross sections using the visible 532 nm laser and obtained information on the
spatial distributions of cell wall polymers. As such, the distribution of carbohydrates (mainly
cellulose) and lignin was obtained. The spatial distribution of polymers was obtained by
integrating the C-H intensities between 2820-2935 cm™ for cellulose and 1550-1700 cm™ for
lignin. Intense cellulose signals were identified within the secondary walls, whereas lignin was
mainly found in the cell corners and in very little amounts in the secondary walls. However,
since lignin distribution was not homogeneous, some secondary walls were strongly lignified
(ensuring waterproofing). Richter et al. [60] took images from different tissues at different
positions within the leaf of Phormium tenax and managed to visualize (using the 532 nm laser
line) pectin and lignin distribution and to determine the cellulose microfibril angle on the cell
walls.

Carotenoids are another promising class of compounds that can be analyzed and imaged
through Raman mapping. They are organic pigments, conjugated double bond chains found
in plants and other photosynthetic organisms, including bacteria and fungi. Carotenoids have
important physiological roles, making them important molecules in plant biology, food science
and pharmacology. In plants and algae, carotenoids protect from photodamage and absorb
energy to be used in photosynthesis, whereas in human body they are potent antioxidants,
and some of them are vitamin A precursors. The human body is unable to synthesize carote-
noids, so they must be introduced through the diet, from carotenoid-rich foods (e.g., carrots,
tomato, maize, kiwi, cucumber, spinach, broccoli, etc). Information about carotenoid distri-
bution in different plants and plant tissues is limited. Brackmann et al. [61] used coherent anti-
Stokes Raman scattering (CARS) to gain information on [-carotene distribution in sweet
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potato, carrot and mango. The [3-carotene distribution was probed using the C=C vibrational
peaks at 1520 cm™, characteristic for B-carotene. Heterogeneous rod-shaped bodies with high
carotenoid density were identified in sweet potato and carrot, while in mango carotenoid-filled
lipid droplets were identified as homogeneous aggregates. Raman imaging would also be
suitable for other types of carotenoids such as lutein and lycopene, since they all have similar
vibrational Raman bands at 1500-1535 cm™ (C=C stretching), at 1145-1165 cm™ (C—C stretch-
ing) and at 1000-1010 cm™ (C—-CH; deformation) [62, 63]. The Raman bands are similar to all
carotenoids, but shifted in position according to the number of conjugated bonds, the side
groups and to the interaction of carotenoids to other plant constituents. Raman mapping was
proved to be useful in evaluating the individual distribution of 7-, 8- and 9-double bond
conjugated carotenoids in the intact tissues of Calendula officinalis [63]. The Raman images were
generated based on the peak at round C=C stretching vibration at 1520 cm™. This band was
shifted at 1536, 1530 and 1524 cm™ for the 7-, 8- and 9-conjugated double bond carotenoids,
respectively.

Roots of different carrot cultivars were screened for their individual carotenoid distribution.
The p-carotene signal at 1520 cm™ was used for integration. The level of [-carotene was
heterogeneous across root sections of orange, yellow, red and purple carrots. In the secondary
phloem, the level of -carotene increased gradually from periderm toward the core, but
declined fast in cells close to the vascular cambium. Lutein and a-carotene were deposited in
younger cells, while lycopene in red carrots accumulated throughout the whole secondary
phloem at the same level [64]. Raman mapping was also applied for studies of Pelargonium
hortorum to illustrate the heterogeneous distribution of the individual carotenoids in the
leaves [65].

Plant polyacetylenes are another class of compounds that can be identified based on their C=C
stretching vibration in the 2100-2300 cm™ range. Using the Raman peaks at 2258 and 2252 cm
! characteristic to the most common polyacetylenes falcarinol and falcarindiol, Baranska et
al. [66] showed that polyacetylenes are mainly located in the outer section of the carrot roots.

Algae species are important candidates for industrial lipid and biofuel production. Sharma et
al. [67] used Raman mapping for lipid analysis of microalgae. Characterization of lipid contents
in cells obtained by mutagenesis showed that they managed to obtain mutants with increased
lipid content. They have generated Raman images of the lipid-rich, carotenoid-rich and
protein-rich areas on the Chlamydomonas reinhardtii microalgae based on the characteristic
peaks at 1003 cm™ (proteins), 1445 cm™ (lipids) and 1520 cm™ (carotenoids).

Apart from mutations, the growth media can also induce generation of different metabolites.
Chlorella sorokiniana and Neochloris oleoabundans represent two good candidates for biofuel
production. The species were Raman mapped at 532 nm for identification of carotenoid and
triglyceride production, and in consequence, the maps were generated based on the signal
intensity in the 1505-1535 cm™ for carotenoids and 2800-3000 cm™ for triglycerides (CH,
stretching) [68]. Both healthy algae and nitrogen-starved algae were examined. Only carote-
noids could be mapped in the healthy cells. The maps showed distinct locations where the
carotenoids are concentrated as they are normally located in the chloroplasts. Triglyceride
production was observed under nitrogen-starvation conditions, and it was possible to image
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the lipid-rich regions within the starved algae. He et al. [69] reported similar results of
triglyceride accumulation upon nitrogen starvation of Coccomyxa sp. algae. The triglycerides
were imaged through the Raman lipid characteristic peaks at 1440, 1650 and 2840-2950 cm™
(alkyl C-H bending, C=C stretching and CH, stretching, respectively).

Some algae are able to produce large amounts of carotenoids when irradiated with light under
specific conditions (e.g., Hematoccocus pluvialis which produces large amounts of zeaxanthin).
Grudzinski et al. [70] analyzed two algal strains, Chlorella protothecoides and Chlorella vulgaris,
with respect to carotenoid production upon light-induced yellowing. They found the yellow
coloration to be associated with xanthophyll formation, especially zeaxanthin. Under strong
light exposure conditions, newly formed carotenoids were identified as a cell nucleus. It was
possible to determine that zeaxanthin is the major carotenoid by performing Raman mapping
both at 488 and at 514 nm. Both wavelengths are in resonance with xanthophyll pigments, but
514 nm is in resonance with zeaxanthin only. The cell nuclei give particularly high signal
assigned to carotenoids when imaged under the 514 nm laser and low signal when imaged
under the 488 nm laser, proving that zeaxanthin is the major synthesized carotenoid.

5. Conclusions

Raman mapping is a powerful technique for label-free, noninvasive investigations of tissues,
cells and microorganisms. The resulted Raman maps contain not only spatial information but
also valuable structural and chemical information on the analyzed samples. Raman imaging
has been successfully used for investigations at cellular and subcellular level, including
identification of nucleus, nucleoli, mitochondria and lipid-rich structures. Cell responses to
drugs and different stages of the cell cycle from the stem cell to the completely differentiated
cell were as well distinguished. In addition, Raman mapping has a great potential for becoming
a leading method in a wide range of biomedical applications, owing to its high chemical
specificity, good resolution and to the fact that it is a noninvasive to tissues and cells. It is
possible to achieve accurate detection of healthy and cancer tissues. At the moment, for the
purpose of medical diagnosis, the results of Raman imaging need most often to be compared
with currently used diagnosis tools (PCR, histopathology and immunohistopathology). But
since it has already been proved that Raman images are sensitive indicators for cancer
detection, there is strong indication of the possibility to replace the conventional tools with
Raman detection in the future.
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