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Abstract

Thermosensitive  polymers  are  materials  capable  of  undergoing a  reversible  phase
transition in aqueous media in response to a variation of the temperature. They have
attracted high scientific interest for advanced applications in diverse areas, such as
biotechnology, biomedical, environmental, food industry and other fields. At the same
time,  chitosan  is  a  promising  marine  polysaccharide  that  has  long  been  used  in
applications such as drug, peptide or gene delivery systems. Being the most abundant
marine  polysaccharide,  chitin  and  chitosan  do  not  exhibit  thermoresponsive
properties,  but  some of  their  derivatives  do.  In  the  present  chapter,  the  efforts  to
produce  chitosan-based  thermosensitive  materials  are  reviewed.  Particularly,  the
properties and applications of chitosan-glycerophosphate thermogelling system are
examined;  the  methods  of  synthesis  of  chitosan  copolymers  grafted  with  poly(N-
isopropylacrylamide) or poly(N-vinylcaprolactam), their physicochemical properties
and most of their prominent applications are discussed as well.

Keywords: chitosan, thermosensitive material, chitosan-glycerophosphate, chitosan-g-
N-isopropylacrylamide, chitosan-g-poly(N-vinylcaprolactam)

1. Introduction

Smart  polymers  are  usually  defined  as  ‘macromolecules  capable  of  undergoing  rapid,
reversible  phase  transitions  from  a  hydrophilic  to  a  hydrophobic  microstructure.  These
transitions are triggered by small shifts in the local environment, such as slight variations in
temperature, pH, ionic strength, or the concentration of specific substances like sugars’ [1].
Among them, thermosensitive water-soluble materials have attracted high scientific interest
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for advanced applications in diverse areas, such as biotechnology, biomedical, environmental,
food industry and other fields.

Chitosan (Cs) is a linear polymer obtained by extensive deacetylation of chitin, the most
abundant marine polysaccharide. It is mainly composed by two kinds of β(1→4)-linked
structural units: 2-amino-2-deoxy-d-glucose and N-acetyl-2-amino-2-deoxy-d-glucose.
Chitosan is a very interesting polymer for biomedical applications because of its biocompati-
bility, biodegradability and low toxicity. It can also be applied for the treatment of residual
waters, in agriculture, food, cosmetics and textile industries, among others [2].

Because of the polyelectrolyte nature of chitosan, these thermoresponsive materials are also
sensitive to changes of pH in the medium. Aqueous polymer solutions that could be trans-
formed in situ into hydrogels by changes in environmental conditions, such as temperature
and pH, have an advanced scientific interest due to their specific technological applications as
sensors, actuators, controllable membrane for separations and modulators for delivery of
drugs for use in medicine, biotechnology and other fields.

A wide variety of chitosan thermosensitive materials has been generated, like nanostructures,
scaffolds, membranes, cryogels and paramagnetic beads, to cite some of them. In the present
chapter, the efforts to produce chitosan-based thermosensitive materials, as well as their most
relevant physicochemical properties and applications, will be considered.

2. Chitosan-glycerophosphate system

2.1. Physicochemical characteristics and mechanism of gelation

Chitosan is an ionic polysaccharide that does not yield physical gels by itself. It was up to 2000,
when Chenite et al. published a couple of articles describing one of the rare true physical
chitosan hydrogels [3, 4]. They described a chitosan formulation with glycerophosphate (GP),
which is capable to render physical gels upon heating. In fact, when adding glycerophosphate
to chitosan aqueous solutions, the polymer remains in solution at neutral pH and room
temperature, while a heat-induced gelation can be triggered upon heating around the phys-
iological temperature. Due to these interesting characteristics, this system has found a wide
interest in the biomedical field including drug delivery and tissue engineering.

The rheological behaviour of a Cs-GP nearly neutral aqueous solution (pH 7.15) exhibits a
strong rise of the storage modulus, Gʹ, upon heating, indicating that the liquid solution turned
into a solid-like gel in the vicinity of 37 °C. In turn, during the cooling run, there is a decrease
of Gʹ, revealing a tendency of the gel to return to the liquid state [3]. Cho et al. have classified
the viscoelastic behaviour of this system in three well-distinctive regions: (1) a liquid-like
behaviour manifested at low temperatures, (2) the thermal gelation process characterized by
an increment in Gʹ and Gʺ moduli as the temperature rises and (3) a slow terminal gelation
after the heat-induced cross-linking process [5].

The temperature of incipient gelation increases as the degree of deacetylation decreases, while
the molecular weight showed no significant effect on the temperature of gelation [3]. If
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transparent hydrogels are needed to be prepared, it is necessary to previously reacetylate
chitosan up to a degree of deacetylations 35–55%, under homogeneous conditions [6].

The morphology of Cs-GP hydrogel as observed by laser scanning confocal microscopy
displays a heterogeneous microstructure, suggesting that the kinetic gelation mechanism of
this system may be nucleation and growth. Power spectra reveal a fractal-like morphology in
the gel [7].

The mechanism of gelation of chitosan in the presence of glycerophosphate involves several
interactions such as screening of electrostatic repulsion, ionic cross-linking and hydrophobic
and hydrogen-bonding interactions [5, 8].

The effects of experimental parameters on the characteristics of the gelation process have been
documented. Chitosan and glycerophosphate concentration: the gelation temperature decreased
with increasing both β-GP and polymer concentration, while the mechanical properties of the
gel become enhanced due to an increase of intermolecular interactions and entanglements [8].
Temperature: it is interesting to note the behaviour of the pH and conductivity during heating.
While any change in pH could not be appreciated, the conductivity displayed a monotonous
increment as the temperature rises. This behaviour was associated to a reduction of chitosan
solubility and an enhancement on the screening of electrostatic repulsion, therefore increasing
hydrophobic interactions and improving conditions for gel formation [5]. According to the
same authors, temperature most probably modifies hydrogen bond distribution and favours
polymer-polymer interactions over those of polymer-solvent interactions. Ionic strength: an
increment of the ionic strength gives favourable conditions for gel formation due to the higher
screening of electrostatic repulsions, thus promoting the hydrophobic interactions in the
polymer physical network [5].

In a continuation of these works, Cho et al. used oscillatory shear data to verify the scaling
behaviour at the gel point. Their conclusions showed that the power-law index was dependent
to some extent on chitosan concentration and temperature [9].

Moreover, an interesting research published by Supper et al. [10] demonstrated the specific
role of the polyol-phosphate molecules on the thermo-physical gelation process. On the one
hand, the phosphate moiety neutralizes the charges along the Cs chains up to the physiological
pH, keeping them in the solution state at room temperature. On the other hand, the polyol unit
is responsible for the thermal sensitivity of the Cs solution. Both the chemical structure and
size of the polyol moiety play a significant role in controlling the gelation process [10]. In
Figure 1 this gelation mechanism is clearly depicted.

Similar conclusions have been achieved by Qiu et al. when they investigated the influence of
urea and isobutanol on the thermogelling process of Cs-GP system. Urea appears to be
unfavourable to the gelation process, because it disrupts hydrogen bonding and retards the
formation of hydrophobic domains, but the addition of isobutanol speeded the sol-gel
transition by strengthening the hydrophobic interactions. This opposite effect opens the
possibilities of tuning the gelling process of Cs-GP system [11].
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Figure 1. Representation of the gelation mechanism of Cs/polyol-phosphate solutions according to Supper et al. [10].
Reprinted with permission from Ref. [10]. Copyright 2013, American Chemical Society.

2.2. Applications

For biomedical purposes, the sterilization of the Cs-GP system and other biomedical charac-
teristics are important to be considered. There have been documented some investigations
about the influence of different sterilization procedures on the thermogelling ability of this
system. Autoclaving and steam sterilization may significantly affect the molecular weight and
viscosity of chitosan, but do not impair its ability to form gels upon heating [12, 13]. However,
γ-radiation markedly changed its thermogelling properties [13]. Regarding the angiogenic
potential of Cs-GP system, results indicate that this system does not contribute to enhance
angiogenesis, while the presence of human bone marrow-derived mesenchymal stem cells
resulted in an increased angiogenic response after 3 days of placement on the chick chorioal-
lantoic membrane [14]. A lower acetylation of chitosan seems to be desirable for better
biocompatibility. At the same time, even though biodegradation is slower, fewer fragments are
generated, and this seems to lead to a minor pronounced immune response [15]. Newer studies
in this sense confirm that Cs-GP is a biocompatible hydrogel, extracts of which can stimulate
mesenchymal stem cell proliferation at certain concentrations. According to authors’ conclu-
sions, ‘this material is therefore a promising vehicle for cell encapsulation and injectable tissue-
engineering applications’ [16].

Chitosan thermosensitive hydrogel has the advantage to form in situ a hydrogel at physio-
logical temperature, avoiding the necessity of surgical implants. This fact underlies its
applications in biomedical field including local drug delivery and tissue engineering [17]. Cs-
GP system has a great potential as scaffold material in tissue engineering and regenerative
medicine due to its good biocompatibility, minimal immune reaction, high antibacterial nature,
good adhesion to cells and the possibility to be moulded in various geometries [18–26]. For
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similar reasons, the other key pharmaceutical application of this material is a smart-controlled
release system [4, 18, 20, 27–38], because the hydrogel is able to keep the drug level within the
therapeutic window during extended periods of time, thus avoiding frequent low doses and
undesirable secondary effects in patients. Important and interesting patents of biomedical
applications of this system have been revised recently [39].

Composite nanomaterials of Cs-GP hydrogel and silver nanoparticles (NPs) with potential
applications in medicine due to their antibacterial activity have also been documented [40, 41].

3. Chitosan thermosensitive derivatives

Chitosan macromolecule is prone to chemical modifications, due to the high reactivity of their
functional groups: primary and secondary hydroxyl groups at C-3 and C-6 positions, respec-
tively, and the highly reactive amino group at C-2 position. The chemical structure of chitosan
is represented in Figure 2. The most common purposes for modifying chitosan include
improvement of its solubility at neutral or alkaline pH and to impart specific functional
properties [42]. Among the different chemical approaches to modify chitosan, the grafting
procedures open a huge range of possibilities to achieve versatile molecular designs for new
advanced materials.

Figure 2. Structural units of chitosan, N-isopropylacrylamide and N-vinylcaprolactam.

A graft copolymer contains a long sequence of structural units (often referred to as the
backbone polymer, in this case chitosan), with one or more branches (grafts) of long sequences
of another monomer. Grafting copolymerization can be conducted in both heterogeneous and
homogeneous conditions [43]. The graft copolymers can be principally synthesized by three
strategies: grafting through, grafting from and grafting onto, in dependence of the method of
preparation. The grafting from reaction is based on the in situ polymerization of the grafting
monomers from a preformed macromolecular backbone that is chemically modified by the
introduction of active sites. The grafting onto is an interesting technique that consists in a
coupling reaction between end-functional groups of the graft chains onto pendant functional
groups of the backbone chain [44]. This procedure has become an efficient tool for the prepa-
ration of graft copolymers with well-defined structure.

Poly(N-isopropylacrylamide), PNIPAm, and poly(N-vinylcaprolactam), PVCL, are two well-
recognized water-soluble thermosensitive polymers (Figure 2). They both undergo hydro-

Chitosan-Based Thermosensitive Materials
http://dx.doi.org/10.5772/65713

283



philic to hydrophobic phase transition when temperature increases, exhibiting lower critical
solution temperature (LCST) behaviour. Below the LCST, the polymer is soluble, but when
temperature increases, they experience a reversible volume phase transition.

Chitosan has been grafted with PNIPAm and PVCL. Other chitosan derivatives such as
chitosan-poly(ethylene glycol) copolymer and N-isobutyryl chitosan also display thermore-
versible behaviour.

In this section, an overview about the methods to synthesize chitosan-based copolymers will
be described, as well as their physicochemical properties and potential applications.

3.1. Chitosan-graft-poly(N-isopropylacrylamide)

3.1.1. Synthesis

The grafting from approaches to modify chitosan with NIPAm could be performed under simple
homogeneous conditions by one-pot free radical polymerization. With this purpose cerium
ammonium nitrate has been frequently employed as initiator [45], as well as a variety of
thermal initiators such as azobisisobutyronitrile (AIBN) [46] and ammonium or potassium
persulfate [47–50]. Cerium ion is an efficient redox agent capable of undergoing radical
polymerization under soft conditions, in acidic aqueous media at low temperatures [51–54].

This copolymer has also been prepared by the grafting onto strategy. With this purpose, a two-
step synthesis should be conducted. Firstly, carboxyl-terminated PNIPAm is obtained by free
radical polymerization in the presence of 3-mercaptopropionic acid as chain-transfer agent.
Then, the homopolymer is grafted onto chitosan chain using a condensing agent such as EDC/
NHS [55, 56].

Nowadays, more organized polymer structures are required to attend specific biotechnological
applications. The conventional radical polymerization employed to prepare PNIPAm-COOH
homopolymers by the grafting onto strategies does not allow a control over the degree of
polymerization of PNIPAm chains, and hence no predefined molecular architecture of
chitosan-g-PNIPAm copolymer could be synthesized.

Atom transfer radical polymerization (ATRP) is an alternative in which the polymer length is
controlled by the synthesis of well-defined graft chains. Bao et al. have obtained a Cs-g-
PNIPAm copolymer by the following approach: azide-ended PNIPAm homopolymer was
firstly prepared through ATRP. Simultaneously, alkynyl pendant Cs derivative is prepared by
the amidation of Cs with 4-pentynoic acid in the presence of EDC/NHS. Finally, the Cs
copolymer was completed by the click reaction of alkynyl Cs with PNIPAm-N3 under mild
click chemistry conditions. The click reaction proved to be an efficient coupling method for
grafting Cs [57]. The same research group has also reported the synthesis of a comb-type Cs(-
g-PDMAEMA)-g-PNIPAm terpolymer using a similar strategy of copolymerization [58].

Chen et al. have proposed a four-step route where the grafting reaction was directed towards
the C-6 position; the method involves [59]:
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• Protection of amino groups of chitosan by N-phthaloylation.

• Preparation of the bromoisobutyryl-terminated N-phthaloyl chitosan macroinitiator.

• Synthesis of the copolymer via ATRP from the chitosan macroinitiator with NIPAm.

• Removal of the N-phthaloyl groups regenerates amino groups.

Don et al. synthesized Cs-g-PNIPAm by means of a two-step route: in order to include vinyl
carboxylic acid groups in the backbone, chitosan was first modified with maleic anhydride to
produce MA-Cs. In the second step, NIPAm monomer was grafted onto MA-Cs via UV-
initiated free radical polymerization [60]. Later, this group proposed a new grafting route in
which chitosan amino groups were protected by N-phthaloylation, and then the vinyl
functional group was introduced at the C-6 position by reaction with m-tetramethylxylene
isocyanate, followed by deprotection of amino groups. Finally, PNIPAm was grafted to the
vinyl Cs by UV-initiated free radical polymerization [61].

3.1.2. Properties

Due to the interesting dual-responsive behaviour of Cs-g-PNIPAm copolymers, the properties
of these materials have been thoroughly studied using different techniques such as micro-
differential scanning calorimetry (μDSC), dynamic light scattering (DLS), NMR, UV-Vis
spectroscopy and rheological measurements, among others [46, 51, 52, 54, 58–60, 62–65].

During heating of Cs-g-PNIPAm solutions, μDSC traces show a sharp endothermic peak
associated with the phase transition at LCST. Associated enthalpy values are proportional to
NIPAm content in the copolymer. Comparable exothermic peaks were obtained during
cooling, giving rise to fully reversible transition [52].

Hydrophilic and hydrophobic interactions are important factors governing thermosensitive
properties of NIPAm polymers. At temperatures below LCST, water molecules form regular
ice-like structures around hydrophobic methyl groups. An increase in temperature results in
a breakdown of the hydrophobic hydration. As a result, hydrophobic interactions between
methyl groups from different NIPAm-grafted blocks are promoted, giving rise to a polymer
network. From a thermodynamic point of view, such a phase transition should generate a
conformational entropy loss upon polymer association, which should be compensated by the
translational-entropy gain of expelled water molecules. Therefore, there is a total entropy
increment upon phase transition that overcomes the observed endothermic enthalpy, thus
giving rise to a decrement in Gibbs free energy [52, 66].

Variation of viscoelastic G′ and G′′ moduli during heating also confirms the existence of a sol-
gel transition: as the phase transition takes place, there is a marked increase in storage modulus
and a moderate decrement in loss modulus (Figure 3a). This phenomenon has been interpreted
as the result of the formation of hydrophobic junctions at the expense of the net amount of sol
fraction, giving rise to the formation of more elastic networks [52].

It is well known that the LCST value of PNIPAm may be changed conveniently if the hydro-
phobicity of the system is altered, either by changes in macromolecular composition or by
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changes in overall hydrophilicity of the surrounding environment [50, 66–68]. This response
is also observed for Cs-g-PNIPAm copolymers. Wang et al. successfully regulated the LCST
adding acrylamide as a comonomer during the synthesis. By this way, the LCST of Cs-g-
poly(NIPAm-co-AAm) was increased from 33 to 38 °C when 5.5% of AAm was included [69].
An increment in LCST from 33 to 44 °C as the chitosan feed concentration with respect to
NIPAm was raised up is also reported [67].

The influence of the environmental conditions on the LCST of Cs-g-PNIPAm is noticeable. For
example, it was observed that the transition temperature of the copolymer shifted to lower
temperatures with increasing concentration of alcohols [70]. Meanwhile, addition of salt to
PNIPAm solutions is known to disrupt the regular ice-like structure of water molecules around
NIPAm moieties resulting in a decrement of the transition temperature [71, 72]. Such an effect
was appreciated for the copolymer: the addition of NaCl to hydrochloric stoichiometric
solutions of the copolymer decreased the LCST and caused an increase in enthalpy change [52].

The fully reversible behaviour of the phase transition of this copolymer is an upmost property.
On the one hand, it is noticeable from the fast and reversible variation of the viscoelastic moduli
during heating-cooling cycles [52]. On the other hand, the same behaviour is evident from the
continuous swelling-shrinking cycles, induced by stepwise periodic changes in temperature
for a polyelectrolyte complex membrane of Cs-g-PNIPAm [63] (Figure 3b).

Figure 3. (a) Variations in mechanical moduli, G′ (,) and G′′ (–), for 1% (w/w) solution of Cs-g-NIPAm in 10% aqueous
acetic acid to stepwise periodic changes in temperature between 10 and 30 °C (ω = 1 rad s−1; γ = 5%); reprinted with
permission from Ref. [52]. Copyright 2009, American Chemical Society. (b) Variation of swelling in pure water
(pH = 5.9) for a Cs-g-PNIPAm polyelectrolyte complex membrane to stepwise periodic changes in temperature be-
tween 10 and 40 °C; reprinted from Ref. [63]. Copyright 2011, with permission from Elsevier.

There are evidences that Cs-g-PNIPAm undergoes micellization processes above the phase
transition temperature. On the one hand, Chen et al. noticed that aqueous solutions of Cs-g-
PNIPAm (which amino groups were protected during the synthesis) showed pH-dependent
behaviour, and at temperatures above the LCST, the copolymer self-assembled into micelles
with chitosan core [59]. On the other hand, recent studies have demonstrated that during
heating, Cs-g-oligo(NIPAm) copolymers self-assembled into aggregates due to the hydro-
phobization of NIPAm blocks. At 25 °C, oligo(NIPAm) chains are hydrophilic exhibiting
expanded structures. In change, at 37 °C, a clear transition is observed, the side-chain segments
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become hydrophobic and the molecules began to fold [54]. In the same way, Cs(-g-PDMAE-
MA)-g-PNIPAm terpolymer experiments thermo- and pH-responsive micellization behaviour
in aqueous solutions. Moreover, this terpolymer could form three-layer onion-like micelles at
25 °C when pH is above 7 [58].

3.1.3. Applications

Cs-g-(PNIPAm) is a potential thermosensitive in situ gel-forming material for ocular drug
delivery that may enhance ocular absorption, efficacy, bioavailability and pharmacokinetic
properties. Experimental results suggested that, at physiological pH, the copolymer hydrogel
can interact with the mucus and cornea cell membrane, increasing the drug residential time
[46].

Chitosan/PNIPAm hydrogels have been considered as a useful tool to enhance oral bioavail-
ability of low-solubility drugs such as naproxen [73], paclitaxel [69], caffeine [74], etc.

Raskin et al. have proposed a mucoadhesive amphiphilic nanogel based on the micellization
of CS-g-oligo(NIPAm) and stabilized through the ionotropic gelation of chitosan. These
polymeric micelles are self-assembled and positively charged nanocarriers with potential for
improved mucosal administration of hydrophobic drugs [54].

A formulation of curcumin-loaded biodegradable thermoresponsive Cs-g-PNIPAm nanopar-
ticles was prepared by ionic cross-linking method. The in vitro drug release was prominent at
temperatures above LCST. The curcumin-loaded nanoparticles (NPs) showed specific toxicity
on cancer cells and increased apoptosis on PC3 cells [55].

Gui et al. have developed some inorganic/organic hybrid composite hydrogels using Cs-g-
NIPAm as a shell that combine thermo-/pH sensitivity, fluorescence and biocompatibility
giving an attractive option for biological and biomedical applications [64, 75]. In the first report,
experimental data evidence that Adriamycin-loaded microspheres could effectively improve
drug release and accumulation in targeted tumour cells or tissues [64]. On the second article,
authors prepared doxorubicin-loaded nanospheres that exhibited remarkable fluorescence/
thermo-/pH sensitivity with high anticancer activity [75].

Recently, interpenetrated cryogel scaffolds of PNIPAm and chitosan have been prepared via
free radical polymerization in the presence of cross-linkers. These materials were evaluated as
potential bioartificial liver devices. The cell-seeded cryogel proved their capacity to success-
fully purify plasma, supporting liver function in terms of both detoxification and synthesis of
important metabolites [65].

3.2. Chitosan-graft-poly(N-vinylcaprolactam)

3.2.1. Synthesis

To the best of our knowledge, the first report of the preparation of chitosan-graft-PVCL (Cs-g-
PVCL) copolymer was documented by Kudyshkin et al. [76]. They reported the synthesis of
this thermosensitive material by radical graft polymerization. This reaction was performed
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under homogeneous conditions using a mixture of solvents at 60 °C. Unfortunately, this
reaction is reported to be accompanied by a decrease in the molecular weight of chitosan,
probably caused by the cleavage of the glycoside bonds by potassium persulfate [76, 77]. In
the grafting from technique, the radical chain polymerization of a monomer is triggered by the
thermal decomposition of the initiator. Simultaneously, the polymer radicals are formed by
chain transfer between the propagating radical and polymer. It is well known that this method
results in a mixture of homopolymer and graft copolymer, as well as ungrafted backbone
polymer [43]. The grafting from approach allows the synthesis of graft copolymers by one-step
reaction, but its principal drawback is the lack of control on the chain length of the grafted
polymer.

A novel approach to obtain Cs-g-PVCL based on grafting onto copolymerization was docu-
mented by Prabaharan et al. This strategy consists of the reaction between functional
groups from two different polymers. In this research, the first carboxyl-terminated PVCL
homopolymer (PVCL-COOH) was synthesized by radical chain polymerization, using
AIBN as initiator and 3-mercaptopropionic acid as chain-transfer agent. Then, PVCL-
COOH chains were grafted onto chitosan backbone via amidation reaction using EDC/NHS
as coupling agents [78].

After this pioneering work, the synthesis of the chitosan-graft-PVCL by the grafting onto
approach has been documented by other authors [79–85]. The formation of amide bonds
between PVCL-COOH and chitosan amino groups has been confirmed by FTIR [78, 80, 85],
1H-NMR [78, 85] and Raman [85] spectroscopy techniques. EDC/NHS system is the activator
agent usually used by many authors. The main drawback of this system is the formation of
the secondary products, which are difficult to remove leading to low yields of functionaliza-
tion [86, 87]. In this regard, DMTMM entails some benefits over the former system because it
selectively promotes the formation of the amide bond in aqueous solution in a wide range of
pH. The coupling reaction is thought to be initiated by addition of a carboxylate anion to
DMTMM to give an activated ester, which undergoes attack by an amino to give the corre-
sponding amide [88, 89].

The main advantage of the grafting onto procedure is the possibility to control the molecu-
lar architecture of the copolymer. In this sense, our group has reported the synthesis of
PVCL-COOH samples with different molecular weights by means of controlled radical
polymerization and their subsequent grafting onto the chitosan backbone using DMTMM
as activator agent. This approach allows a control of the chain length of the grafted PVCL
chains, as well as the spacing between grafted side chains onto the chitosan backbone
[85].

Cs-g-PVCL copolymer has also been synthesized by gamma radiation [90]. This method allows
obtaining functionalized materials without remaining residues. The reaction solution is
irradiated with a 60Co γ-source using doses between 10 and 50 kGy. The ionizing radiation is
a powerful tool to achieve functionalization of polymers requiring no additional reactants [91].
However, it has been documented that γ-radiation leads to the scission of 1–4 glycosidic bond
of chitosan, thus reducing the molecular weight [92, 93].
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3.2.2. Properties

The Cs-g-PVCL system shows properties of both, chitosan and PVCL. As it is well known,
chitosan is a pH-sensitive, non-toxic, biodegradable, biocompatible linear polyelectrolyte [2],
while PVCL is a non-ionic, biocompatible, thermosensitive water-soluble polymer with a phase
transition temperature in the physiological range [94]. This graft copolymer showed pH and
temperature sensitiveness that could be very interesting for the development of smart-
controlled release systems, as well as active scaffold for tissue engineering and regenerative
medicine.

The grafting parameters, such as grafting percentage and grafting efficiency, are greatly
influenced by the reaction conditions [95]. These parameters have been evaluated by 1H-NMR
[78], thermogravimetric analysis (TGA) [85] and gravimetrically [79, 85, 90].

Kholmuminov et al. observed a relatively rapid decrease on the effective viscosity of Cs-g-
PVCL solutions at shear rates up to 100 s−1. These authors suggested that this behaviour is
related to the presence of flexible PVCL chain blocks that easily unwind and orient in a flow
when increasing the shear rate [77].

The phase transition behaviour of Cs-g-PVCL in aqueous solutions has been investigated by
turbidimetry [78–80, 85], DSC [79, 85] and DLS [96]. The LCST of this copolymer has been
estimated between 32 and 42  °C, and it was close to the transition of the corresponding
homopolymers.

It has been demonstrated that the properties of the Cs-g-PVCL are controlled by the molecular
architecture of the copolymer: length of the grafted side chains and their spacing along the
chitosan backbone [85].

On the one hand, the temperature of the phase transition of the copolymer depends on the
spacing between grafted PVCL chains along chitosan backbone. Studies by μDSC evidenced
that the longer the spacing between PVCL-grafted chains, the lower the LCST of the polymer,
as well as the enthalpy associated with the phase transition (Figure 4a) [85]. It is obvious that
as the spacing between grafted chains is smaller, the phase transition is more cooperative, thus
facilitating the hydrophobic intercatenary interactions between PVCL chain segments during
the dehydration process at the critical temperature. From a thermodynamic point of view, the
phase transition produces a loss of conformational entropy due to the aggregation of PVCL
chain segments. This phenomenon must be counterbalanced by the translational-entropy gain
when water molecules are expelled out from the excluded volume of PVCL macromolecules
during phase separation. Thus, the larger the hydrophobic portions are, the greater the entropy
gain is, which explains why the cooperative hydrophobic interactions are favoured when the
PVCL chains are closer in space [85].

On the other hand, the longer the grafted PVCL chain, the lower the phase transition temper-
ature (Figure 4b) [85, 96]. This phenomenon has been attributed to the fact that increasing the
PVCL chain length, the polymer-polymer interactions become more and more cooperative. As
a result, longer hydrophobic segments appear, thus favouring polymer-polymer long-range
interactions giving rise to phase separation phenomena at lower temperatures [85].
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Since this system exhibits a dual temperature and pH sensitiveness, the ionic strength and pH
of the medium have also an influence on the properties of the Cs-g-PVCL aqueous solutions,
as evidenced from DLS and ζ-potential studies [96]. According to the DLS measurements, at
temperatures above the phase separation, the size of the macromolecular aggregates is greater
as the medium is more acidic, and a slight increment on the transition temperature is also
observed (Figure 4d) [96]. Concerning the influence of the ionic strength on the copolymer
solutions, a noticeable effect of the electrostatic screening on the hydrodynamic sizes of the
copolymer coils, which causes that the phase transition takes place at lower temperatures,
giving bigger macromolecular aggregates (Figure 4e) was found [96].

Figure 4. (a) Heating μDSC scans of 10 wt% aqueous solutions of Cs-g-PV-26.A, Cs-g-PV-26.B, Cs-g-PV-26.C and Cs-g-
PV-26.D samples (heating rate, 0.6 °C min−1; reference, water). Reprinted from Ref. [85]. Copyright 2015, with permis-
sion from Elsevier. Dependence of the (b) hydrodynamic diameter, DH, and (c) ζ-potential of Cs-g-PVCL on
temperature of aqueous solutions of Cs-g-PVCL for different number-average molecular weights of PVCL-grafted
chains. Cs-g-PVCL samples with Mn 04, 13, and 26 kDa at 2 mg mL−1 (pH 6). Heating rate, 0.25 °C min−1. Variation of
LCST of the Cs-g-PVCL-26 solution (2 mg mL−1) with (d) pH of the medium and (e) ionic strength. Heating rate,
0.25 °C min−1. Reprinted from Ref. [96]. Copyright 2016, with permission from Springer.

Pérez-Calixto et al. have recently addressed the preparation of N-vinylcaprolactam and N,N-
dimethylacrylamide (DMAAm) binary-grafted system onto cross-linked chitosan by γ-
radiation. The incorporation of DMAAm hydrophilic comonomer increased the phase
transition temperature from 34 to 37  °C, as well as the swelling degree due to intermolecular
interactions with amino groups of chitosan molecule [97].

It is important to remark that Fernández-Quiroz et al. have reported that all the Cs-g-PVCL
copolymers they synthesized were soluble in water at neutral pH, at room temperature. From
a thermodynamic point of view, this fact suggests a significant improvement of the copolymer
solvation via hydrogen bonding between PVCL-nitrogen unshared electron pair and water
molecules. A better polymer-solvent interaction induces higher entropy of mixing giving rise
to the dissolution of the macromolecule. This property could be of considerable interest for
biomedical applications, where it is important to keep a pH near to the physiological one [85].
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3.2.3. Applications

Thermoresponsive chitosan derivatives based on Cs-g-PVCL have been chiefly studied for
biomedical applications as drug delivery and tissue engineering. Their biocompatibility, low
toxicity, pH and temperature sensitiveness have drawn a great scientific interest.

In this sense, beads and nanomaterials based on Cs-g-PVCL copolymer have been prepared
by ionotropic gelation using sodium tripolyphosphate (TPP) as ionic cross-linking agent [78,
80–84]. Studies carried out by Prabaharan et al. indicated that the copolymer has a swelling
degree higher at pH 2.2 than at pH 7.4, decreasing with increased environmental temperature.
These copolymer beads exhibited a slower release of ketoprofen, as compared with chitosan,
revealing a different release profile in dependence on the pH and temperature. According to
MTT assay, the copolymer showed no obvious cytotoxicity [78].

Rejinold et al. studied the behaviour of Cs-g-PVCL nanoparticles as 5-fluorouracil carrier for
its delivery to cancer cells. The copolymer showed a temperature-induced phase transition in
the range of 38–45  °C in aqueous solutions, and its NPs display nearly spherical shape with
an average diameter of 150 nm, which increased up to 180–200 nm when loaded with the drug.
According to the drug delivery, cytotoxicity, in vitro cell uptake and apoptosis studies, these
NPs could be a promising candidate for cancer drug delivery [80].

Recently, several studies relative to Cs-g-PVCL nanoparticles loaded with curcumin (Cs-g-
PVCL-CRC-NPs) have been investigated as a potential anticancer drug delivery carrier
system [81–84]. These NPs exhibit similar morphology to those in Ref. [80]. The rate of drug
release was dependent on pH and temperature of the medium and showed an increase in
delivery at temperatures above LCST in acidic pH conditions. These NPs exhibited specific
toxicity to cancer cells at above their LCST [84].

In other articles, this group also describes Cs-g-PVCL-CRC-NPs in combination with metallic
nanoparticles to assess their feasibility as a potential system for radio frequency (RF)-assisted
cancer therapy [81–83]. With this purpose, gold nanoparticles (Au-NPs) were incorporated in
Cs-g-PVCL-CRC-NPs in order to induce RF-assisted heating. These NPs showed uniform
spherical shape, with particle size around 170 nm and ζ-potential of +18 mV. These NPs proved
to be beneficial for combined RF therapy for treating breast and colon cancers [81, 83].

In a recent study, iron oxide nanoparticles (Fe3O4 NPs) were also incorporated to Cs-g-PVCL-
CRC-NPs. Fe3O4 NPs require lower-background RF heating than the Au-NPs. In this report,
80 W for 2 min was required to heat the system up to 42 °C, and curcumin was controlled and
released in cancer cells. These nanoparticles showed cellular internalization on array of the
cancer cells, which decrease in cell viability and increase in cellular apoptosis [82].

Indulekha et al. documented the behaviour of a thermoresponsive polymeric gel based on Cs-
g-PVCL as an on-demand transdermal drug delivery carrier for pain management. In this
article, the delivery behaviour was analyzed by loading acetamidophenol (a model hydrophilic
drug) and etoricoxib (a model hydrophobic drug). This material showed a pulsatile drug
release (ON-OFF mechanism), giving an enhanced release for both drugs at temperature above
LCST and pH 5.5. Histopathological results proved that the gel is biocompatible [79].
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3.3. Other chitosan derivatives

Selective modification of chitosan via N-acylation with carboxylic anhydrides in dilute acetic
acid/methanol under mild conditions has been documented by Hirano et al. [98–100]. These
gels are colourless, transparent, rigid and stable on heating. Among them, the gel formation
during the N-isobutyrylation of chitosan has been investigated in our laboratory [101]. N-
Isobutyryl chitosan has structural and steric similarities with NIPAm.

Even when it is known that N-acylation leads to irreversible gel formation, N-isobutyryl
chitosan behaves as a thermally sensitive hydrogel material similar to other thermally synthetic
systems such as PNIPA. Indeed, after the derivatization reaction, the gel was thoroughly
washed with water at 60 °C in order to get rid of methanol, acetic acid and any excess of
reactant. When this hydrogel was submitted to cyclic stepwise changes in temperature, there
is a pulsatile reversible response of the viscoelastic moduli, which persisted after four cycles
[101].

Lastly, it should be mentioned that other chitosan-g-poly(ethylene glycol) thermoreversible
copolymers have been also recently proposed [102–104], which are potentially suitable in
biomedicine, especially for drug release and tissue engineering applications.

4. Concluding remarks

In this chapter, a review about the methods of synthesis of chitosan thermosensitive derivatives
is presented, as well as their featured properties and key potential applications.

When adding glycerophosphate to chitosan solutions at room temperature, the polymer
remains in solution at neutral pH, while a gelation can be triggered upon heating around the
physiological temperature. This thermo-gelation process involves several interactions such as
screening of electrostatic repulsion, “ionic” cross-linking, hydrophobic effect and hydrogen-
bonding interactions.

Some chitosan derivatives have also been extensively investigated. Among them, chitosan-
grafted-poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) are two well-recognized
chitosan-based thermosensitive materials (Figure 5a and b, respectively). Other derivatives
such as chitosan-g-poly(ethylene glycol) and N-isobutyryl chitosan also display thermorever-
sible behaviour. These polymer materials exhibit a lower critical solution temperature behav-
iour. Below the LCST, polymer chains are soluble, but when temperature increases, they
experience a hydrophilic-to-hydrophobic phase transition. In all cases, hydrophobic interac-
tions play a key role, which are associated to a dehydration process at the critical temperature.
Thus, the phase transition produces a loss of conformational entropy due to the aggregation
of grafted chain segments in an extended polymer network. This phenomenon is counterbal-
anced by the translational-entropy gain when water molecules are expelled out from the
excluded volume of the copolymers during phase separation.

Due to the polyelectrolyte nature of chitosan, all these materials are sensitive to changes in
both temperature and pH. A great variety of thermosensitive materials have been produced,
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such as nanostructures, micelles, membranes, hydrogels, cryogels and paramagnetic beads, to
cite some of them. These characteristics make them susceptible to be used in advanced and
exciting technological applications such as sensors, actuators, controllable membrane for
separations and in biomedical and biotechnological fields including drug delivery and tissue
engineering (Figure 5).

Figure 5. Chemical structure of (a) chitosan-g-PNIPAm, (b) chitosan-g-PVCL copolymers and some of their key applica-
tions.
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