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Abstract

This research aims at differentiating human-induced effects over the landscape from the
natural ones by exploiting a combination of amplitude and phase changes in satellite radar
images. At a first step, ERS and Envisat data stacks are processed using COS software
developed by the company SARMAP. Various features related to amplitude and phase
as well as to their changes are then extracted from images of the same sensor. Combinations
of the features extracted from one image, from several images of one sensor as well as
from different sensors are performed to derive robust indicators of potential human-
related  changes.  Finally,  possibilities  of  exploiting  and  integrating  other  types  of
information sources such as various reports, maps, historical or agricultural data, etc. in
the combination process are analyzed to improve the obtained results. The outcomes are
used to evaluate the potential of this method applied to Sentinel-1 images.

Keywords: minefields, suspected hazardous areas, InSAR, coherence

1. Introduction

In postconflict regions, before the starting of demining operations, investigators have to carry
out studies to delineate suspected hazardous areas (SHA). Many factors limit the reliability of
their assessments: imprecision of the minefields records in military documents; inaccessibility
and impassability of the field; lack of accidental records; inability to accurately position on a
map the military units, their actions, confrontations, and the minefields’ deployment; etc.
Inaccuracies and imprecisions become even worse when dealing with unexploded ordnance
(UXO). As a consequence, a significant difference exists between the surfaces to be cleared and
the actually mined ones. This situation leads to a waste of time, work, and funds while donations
are limited.
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1.1. Problem statement

How to refine the delineation of SHA and thus reduce significantly the cost of clearing
operations? When conflicts end, the economic activities restart for the benefit of the society but
landmines and UXO disrupt this process. When activities take place in former battle zones,
the daily works that shape the landscape such as plowing fields, pruning trees, grazing
activities, and roads maintenance, etc., are becoming surviving “experiments” for both humans
and animals. In regions affected by mines during a long period of time, inhabitants have
progressively developed mental SHA maps based on their habituation of the danger.

When correctly located, the inventory of accidents and detonations are primary sources of
information to delineate SHA. But the intersection of all inhabitants’ mental SHA maps should
provide another valuable independent source of information to highlight no man’s lands that
could be minefields.

Mental SHA maps are only partially exploited by the National Mines Action Centers in charge
of the surveys because of the great difficulty to collect all the data. Nowadays, social media
can improve the collection of pertinent information but only where the Internet is accessible.

Our research is dedicated to find out a way to use the surviving “experiments” for both humans
and animals with radar remote sensing techniques. The working hypothesis/approach is based
on the fact that in particular circumstances, and for a specific timespan, all the anthropogenic
modifications of a given landscape can be accurately mapped from space-borne radar single
look complex (SLC) images owing to the exploitation of the coherence information (e.g., [1]
and references therein). The technique based on radar coherence images is known as coherent
change detection (CCD).

1.2. Preliminary researches and results: setting up of a relationship between suspected
hazardous areas boundaries and interferometric coherence

Since the launch of the first two European remote sensing (ERS) radar satellites in 1991 and
1995, the value of interfermetric synthetic aperture radar (InSAR) coherence images computed
from the processing of two SAR scenes, have been recognized as a useful information source
for environmental studies [2].

In SAR CCD techniques, the phases of two SAR images of the same scene are interfered. The
images must be acquired in the same conditions, i.e., the same incidence angle but with a
position slightly different (from a few meters to a few hundred meters). The coherence between
two SAR images expresses the similarity of the radar reflection between them. Any changes
in the complex reflectivity function of the scene are manifested as a decorrelation in the phase
of the appropriate pixels between the two images. In this manner, even very subtle changes in
the scene from one image to the next can be detected. In other words, in a given pixel, if the
reflection and/or dielectric properties have changed between the two acquisitions, the coher-
ence value of that target is reduced and the accuracy over the distance measurement between
the antenna and the ground decreases.
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This ability to detect and to localize very subtle changes can be used in demining operations
to map human and animals activities during a specific time laps, e.g., 35 days for ERS and
Envisat satellites. One of the challenges is to classify the observed changes into two main
categories: pertinent or not for the delineation of minefields perimeter.

Whatever, the thematic concerned, since 1991; space-borne radar interferometry techniques
were successfully applied all around the world. A large number of InSAR results were obtained
over cities, and in warm or cold desert areas (e.g, Landers earthquake dislocation pattern;
Shiraz glacier displacements field, etc.). This is due to the fact that such environments/
landscapes present surface characteristics that match with the most important InSAR condition
of application: the preservation of the phase coherence through time.

Pioneering researches conducted in semiarid to hyperarid regions [3–8] showed that radar
coherence images were able to bring useful insights for geomorphology, geology, soil moisture,
and erosion phenomena. Among them, a few suggested the unique function of coherence
imagery as a tool for monitoring environmental impacts of human activities [6, 9–11].

In the 2000s, first experiments were conducted at the Space Centre of Liege, and then extended
at the Signal and Image Centre (see Figure 1 and Figure 2) demonstrated the CCD capability
for discrimination between topsoil disturbed or not by anthropogenic/animal activities. The
areas of interest were centered over the Dead Sea region.

Later on, based on the knowledge gained through projects financed by the Ministry of Defense,
other experiments related to Surface-to-Air Missile sites and military airfields [12, 13] have
shown that the CCD technique is able to develop a persistent picture of activities within an
area of interest and allows the delineation of the system of fortification, even if hidden by
camouflage. In the frame of security applications, CCD is particularly interesting in the
surveillance (Figure 3) and the detection of intrusions.

CCD technique is less efficient in places where too many human activities occur, or in zones
where the substratum is too hard to record detectable surface modifications (such as in urban
areas). Seasonal variations can affect significantly the estimated coherence, both in terms of
overall average value (weather dependence) and in localized natural effects (e.g., vegetation,
steams, and water bodies with seasonal variations). Additional information has to be exploited
to carefully analyze and understand the nature of the difference coherence losses.

1.3. First hint to delineate mental suspected hazardous areas

The very first observation of a minefield with CCD was derived from ERS spaceborne radar
images processed in the frame of a study dedicated to active faulting in the Dead Sea region
[14]. Interpretation of interferograms and coherence images led to the first delineation of a
square kilometer-size minefield in the northern part of the terminal lake (Figure 1). The
preservation of phase coherence through time in a zone that normally should have lost
coherence provided the first hints to delineate “mental SHA”.
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Figure 1. (A) Israel Defense Force and Jordanian army troops’ movements during the battle of Al-Karamah 21 March
1968, background 1:50,000 map of Karama, Sheet 3153 IV, series K737 (USA). (B) Location of insets C, D, and E. (C)
Interferometric coherence (pixels 20 m), 1995-07-30 and 1995-11-12, temporal baseline = 105 days, perpendicular base-
line = 304 m, descending path. Black arrows correspond to Israeli and Jordanian troops’ movements. (D) Interferomet-
ric coherence, 1995-07-30 and 1996-07-14, temporal baseline = 350 days, perpendicular baseline = 57 m, descending
path. (E) Interferometric coherence, 1995-12-16 and 1999-05-29, temporal baseline = 1260 days, perpendicular baseline =
92 m, ascending path. The color palette ranges from change (loss of coherence or surface modifications) to no change.

Figure 1(A) describe some actions of the Al-Karamah battle fought on March 21, 1968, between
the Israel Defense Forces and the Jordanian Army. Before and during the battle, minefields
were laid and then progressively cleared in the next decades. Systematic demining operations
took place only after the Oslo Accords in 1993–1994. Ten years later, at the Space Center of
Liege, ERS satellite data acquired from 30/07/1995 to 29/05/1999 were processed to generate
differential interferograms and their associated coherence images. Unexpected high coherence
values were noticed on the foothills of the Dead Sea basin (Figure 1B), Jordanian side. In 2002,
during a field survey, rusty barbed wires and warning signs revealed a former battlefield.
Farmers and shepherds indicated that the plateau was cleared in 1999 in anticipation of the
Pope John Paul II coming in the area (March 20–26, 2000). Indeed, to shorten the trip between
Mount Nebo and the Baptism Center next to the Jordan River, the government of Jordan created
one new road that had to cross the minefield. Based on these elements, it was deduced that the
coherence preservation was a consequence of the absence/presence of grazing activities. Since
the Al-Karamah battle, Bedouins had modified their itineraries to protect their flocks and
themselves.

In Figure 1(C)–(E), colored coherence images show the presence/absence of perturbation of
ground scatterers between two acquisition dates. Coherence images having different time
spans (C = 105, D = 350, E = 1260 days) do not display exactly the same amount of changes.
Depending on the environmental conditions and land use dynamics, a kind of “decantation
process” is necessary to distinguish permanent boundaries of untouched zones (e.g., compar-
ison between Figure 1C and E).
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Based on the previous reasoning, the linear minefield along the Jordanian-Syrian border was
mapped with a pair of ERS images acquired 70 days apart (Figure 2). The borderline crosses
a wide cropped and pastured plateau where coherence is lost rapidly. On the contrary, the no
man’s land between Syria and Jordan is not affected by human activities and appears highly
coherent. Elsewhere over the scene, coherence is preserved on the rocky zones (Figure 2, clouds
of brown spots). Coherence images do not map minefields but no man’s lands in which
landmines can be present (Figure 2B–D) taking into account the context.

Figure 2. No man’s land mapping with ERS coherence image, Jordan-Syria border. (A) 1:100,000 Sheet 9-37-121 (USSR)
– graticule 2 km - Irbid, Jordan, is on the left. (B) Interferometric coherence (pixels 20 m), 1995-07-29 and 1995-10-07,
temporal baseline = 70 days; perpendicular baseline = 148 m. (C) Birdseye view of the 100 m wide no man’s land locat-
ed over the border (© Google Earth). (D) mines’ location into the no man’s land (© Norwegian People Aid).

Figure 3. Color composites of a sequence of coherence images derived from Envisat data over an area in Afghanistan.
The following coherence combinations are used: 1 – (2004.04.28 – 2004.08.11), 2 – (2004.08.11–2004.11.24), 3 –
(2004.11.24–2005.03.09), 4 – (2005.03.09 – 2005.04.13). Left image: 1 – red, 2 – green, 3 – blue. Right image: 4 – red, 2 –
green, 3 – blue. Images processed by SARMAP SA.

In  2011,  in  collaboration  with  the  private  company SARMAP,  another  test  was  realized
in  a  desert  plain,  Kandahar  region,  Afghanistan.  The  objective  concerned the  capability
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of  discrimination  between  ephemeral  streams  and  traces  of  convoys  from a  coherence
images  stack.  Figure  3  compares  two color  composites  created from a  sequence  of  five
Envisat  ASAR scenes.  Natural  decorrelation  effects  can  be  identified  like  seasonal  and
permanent  traffic  roads  as  well  as  seasonal  torrents  and  permanent  rivers.

1.4. Purpose of this chapter

Figure 1–3 describe a CCD approach based on a dataset ranging from two to five SLC images.
The environmental conditions of applicability are favorable. Considering these preliminary
but promising results, a research project untitled SPaceborne Radar INterferometric Techni-
ques for Humanitarian Demining Land Release (SPRINT) [15] was proposed to test and
evaluate an approach for SHA area reduction in Croatia based on coherence and intensity
images analysis and interpretation. The project was financed by the Belgium Scientific Policy
(BELSPO). It received the support of the European Commission TIRAMISU project, and of the
private company SARMAP that provided radar images from the European Space Agency and
the outputs of the SBAS processing (see below) with their software Sarscape™.

The project idea consisted in processing ERS and Envisat stacked images to generate time series
geocoded coherence and intensity data, and then fusing this multitemporal information to map
changes in known SHA. It was expected that the types of change and their spatial extension
could provide additional inputs in the Decision Support System to reduce the size of the SHA.

In this chapter the main outcomes of this research are presented. The following three scientific
questions are addressed as well:

1. Is it useful for SHA area reduction to use InSAR stacking techniques to produce time series
of intensity and coherence images of minefields (Gospić, Croatia)?

2. What kind of fusion analysis do we have to perform to extract relevant changes for area
reduction?

3. Does it make sense to collect regularly Sentinel-1 radar images over a war zone or a
postconflict region to exploit these data with stacking techniques in humanitarian
demining?

2. Method

At a first step, C-band ERS and Envisat image stacks are processed using PS-SBAS (permanent
scatterer and small baseline) tools developed by the Swiss company SARMAP (Sarscape™
software). Detailed information is provided below. In a next step, unsupervised classification
based on the analysis of temporal signatures is performed within each of the stacks of ERS
amplitude data, ERS coherence data, Envisat amplitude data, and Envisat coherence data,
separately. After that, combination of the obtained results is performed. Validation process is
discussed after the presentation of the results.
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2.1. Change detection with spaceborne radar

The radar antenna on board satellites transmits a coherent signal that is backscattered by the
Earth surface before being detected by the same antenna. A SAR signal is complex. Each pixel
of an image holds intensity and phase information. The intensity depends on the ground
roughness, the soil moisture, and the incidence angle. The phase information, expressed as an
angle, depends on the optical path travelled by the radar wave along its round trip.

Change detection is an application for which SAR is particularly well suited as this type of
sensors can consistently produce high-quality well-calibrated imagery with good geo-location
accuracy. Two forms of change detection in repeat-pass SAR imagery may be considered,
namely coherent and incoherent change detection:

1. Incoherent change detection (ICD) identifies changes in the mean backscatter power of
two scenes by comparing sample estimates of the mean backscatter power taken from the
repeat-pass image pair. Typically, the sample estimates are obtained by spatially averaging
the image pixel intensities (amplitude squared) over local regions in the image pair. The
mean backscatter power of a scene is determined by the structural and dielectric properties
of the scene, and thus may be used to detect changes in soil or vegetation moisture content
or surface roughness.

2. Coherent change detection (CCD) compares the phase of two images for inconsistencies.
To detect whether or not a change has occurred, two images are taken of the same scene
with a same incident angle, but at different times. These images are then geometrically
registered so that the same target pixels in each image align. After the images are regis-
tered, they are checked pixel by pixel. Where a change has not occurred between the two
images, the pixels remain the same. When the pixels are different, a change has occurred.

Both methods are useful for detecting changes, but they do not measure their magnitude. One
of the major issues is defining what “relevant” changes are. By combining the results with
ancillary data owing to data fusion techniques, it is possible to improve the detection quality
and reliability as well as to differentiate well between changes. Therefore, the SPRINT project
was centered over a sequence of activities dedicated:

1. To process and geocode large amount of space-borne radar data, originally, from ERS and
Envisat (C-band).

2. To extract anomalies, land-cover types, etc., according to the information available.

3. To fuse, at different levels (feature and/or decision level), various pieces of information
coming from one image (in order to improve the quality of the result) as well as change
detection results obtained from different sources (images of one sensor or of different
sensors).

4. To include existing contextual information, experts opinions, and other knowledge
sources in the fusion process and to assess the influence of their inclusion on the final
result.
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5. To perform qualitative and quantitative assessments of the assets and drawbacks of each
radar interferometric techniques as well as of each sensor combination, for dedicated
tasks, in specific environment under surveillance, to support future land release actions.

2.2. InSAR processing

SAR repeat pass interferometry is based on two images acquisitions of the same area from
slightly displaced orbits of the satellite. The ERS and Envisat repeat pass periods are 35 days
but when ERS 1 and 2 were orbiting together (1995–1999), a place was revisited one day apart
(“ERS tandem pairs”).

During the processing, both images are coregistered (“slave” image over “master” one). In
CCD, the phase differences are calculated leading to the so-called interferograms. These
interferograms contain information related to local elevation, local displacement, and noise.
This noise, or phase decorrelation, records the slight changes in scatterers distribution on the
observed Earth surface between the two acquisitions.

There are three “interferometric products” from two SAR scenes. They can be displayed either
in radar geometry (slant range) or geocoded:

1. An intensity image that helps to locate points of interest. The radar cross-section of a
scatterer is calculated from the ratio of the power density received by the scatterer to the
backscattered power density.

2. A phase difference image or interferogram with either only the orbital contribution
removed (to show the topographic contribution) or with both orbital and topographic
contributions removed (to show ground displacements and phase noise).

3. A coherence image that presents the confidence level of each pixel in the phase difference
image.

Coherence (equation 1) refers to a fixed relationship between waves in a beam of electromag-
netic radiation. Two wave trains are “coherent” when they are in phase. In SAR interferometry,
coherence is used to describe systems that preserve the phase of the received signal. Coherence
value can be estimated by means of the “local coherence” of an interferometric SAR image pair.
The local coherence estimator is the cross-correlation coefficient of the couple estimated on a
small window [16, 17]:
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where Im1 is the complex signal of the “master” image and Im*2 is the complex signal in the
“slave” one. The coherence of a pixel is estimated by the means of kernels with L × M pixels.
In an interferogram, the coherence ranges from 0.0 (total decorrelation, the interferometric
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phase is pure noise) to 1.0 (phase correlation is preserved). As a statistical value, it cannot
provide quantitative measurements of the ground scatterers disturbances. However, a physical
interpretation is that it represents the fraction of power scattered by unchanged parts of the
scene [18]. The coherence image serves as a measure of the quality of an interferogram and
gives information about the surface type (e.g., vegetated versus soil and rock) or shows when
a tiny, otherwise invisible change has occurred in the image. Coherence imagery is able to
detect centimeter scale changes in the scatterers distribution.

The coherence values are affected by:

1. The local slope (steep slopes oriented toward the satellite line of sight lead to low
coherence).

2. The properties of the surface being imaged (e.g., vegetated or water surfaces have low
coherence).

3. The time span between the passes in an interferogram. Long lags lead to higher variations
in scatterers distribution and hence to lower coherence.

4. The baseline, which is the distance between the satellites positions. The perpendicular
component is what matters for coherence purposes. Generally, the optimal baseline length
is between 0 and 400 m (large baselines lead to low coherence).

5. The poor coregistration, i.e., the process of lining up two images, a “master” and “slave”,
covering the same area in a way that they fit exactly on top of each other.

6. The poor resampling leads to low coherence during the InSAR processing [19, 20].

2.3. Advanced InSAR processing

Interferometric stacking techniques emerged in the last decade as methods to obtain very
precise measurements of terrain displacements, and in particular of subsidence phenomena.
The so-called Persistent Scatterers (PS) [21] and Small BASeline (SBAS) [22] methods can be
considered as the two most representative stacking approaches.

In both cases, the exploitation of 20 or more satellite saynthetic aperture radar (SAR) acquisi-
tions obtained from the same satellite sensor with similar geometries on the area of interest
allows to measure displacements with an accuracy in the order of few mm/year, and to derive
the full location history of “ coherent pixels with an accuracy of 1 cm or better for every
available date.

The “area-based SBAS-like” tool of Sarscape™ Interferometric Stacking Module is dedicated
to compute mm-scale displacements on distributed targets. Geocoded coherence and intensity
images are side-products. Therefore, the procedure stopped once the information needed was
available.

The first step consisted in the connection graph generation to define the ensemble of pairs to
process. These pairs were displayed as connections in a network that links each acquisition to
others. Given N acquisitions, the number of maximum theoretical available connections is
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(N*(N − 1))/2. The connection graph generation tool permitted to choose the most a priori
reliable connections.

One acquisition considered as Super Master was automatically chosen among the input
acquisitions. The Super Master is the reference image of the whole processing and all the
processed slant range pairs were coregistered on this reference geometry.

Then, from these pairs, the “Interferometric Workflow” and the “Refinement and Re-Flatten-
ing” tools generated a time series of geocoded coherence and intensity images.

3. Material: training areas and image datasets

In 2008–2010, the Croatian Mine Action Center (CROMAC) successfully tested an Advanced
Intelligence-Decision Support System (AI-DSS) over three communities (Gospić, Bilje, and
Drniš) to improve SHA circumscription process [23]. In SPRINT, the documented Gospić area
was used to test and evaluate a contribution based on the processing of ERS and Envisat
satellite radar images time series.

Figure 4. Several battles took place in the Gospić salients from 1991 to 1995 (inset). Minefields are located in a bulge of
the front line. Suspected hazardous and confirmed hazardous areas are shown respectively in hatched and crosshatch-
ed purple polygons (2009 situation) over a 1:50,000 topographic map, graticule 4 km. Source: Milan Bajic.

The plain of Gospić (Figure 4) is characterized by environmental conditions less favorable than
those of Jordan or Afghanistan (Figures 1–3) because of the forest covering the valley sides
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(volume decorrelation), the escarpment of the valley sides (shadows; layover), and the climatic
conditions (moisture decorrelation).

Apart from these drawbacks, SPRINT demonstrated the possibility to process data and get
valuable results for the analysts. The well-documented minefields allowed the study to be
carried out in three main steps, without expensive and time consuming field surveys: data
acquisition and processing, data fusion, and validation inside a geographical information
system.

In the geographical information system ArcGIS™, the geocoded coherence and intensity
images (100 ×100 km) have been clipped with confirmed hazardous areas displayed in Figure
4 (crosshatched). A 300 m wide buffer was also created to compare the results in the minefields
with the ones in the immediate vicinity.

Two major datasets were created from radar images (Table 1): “minefields” and “buffers”. For
each one, ERS and Envisat intensity and coherence were computed. SARMAP collected radar
images from the archives of the European Space Agency. Sarscape™ Focusing Module
generated single look complex images based on a ω-κ frequency domain algorithm. Two stacks
of 42 ERS SLC images (1992/08/01–2009/06/02) and of 40 Envisat scenes (2002/11/07–2010/10/21)
were the inputs of SBAS processing.

Satellite images

track 315 – frame 873

(ascending)

42 ERS intensity 112 ERS coherence 40 Envisat intensity 127 Envisat coherence

26 minefields 1092 subsets 2912 subsets 1040 subsets 3302 subsets

26 buffer zones 1092 subsets 2912 subsets 1040 subsets 3302 subsets

The number of coherence image is higher than the one of the intensity because SBAS process multiple pairs of images

Table 1. Image dataset processed and analyzed in SPRINT.

Although both radar sensors are using C-band, the interferometric combination of Envisat and
ERS data was not performed because the interferometric phase is strongly dependent on the
radar frequency. The radar center frequency of Envisat (5.331 GHz) is slightly different
compared to the ERS sensor (5.300 GHz). The difference of 31 MHz prevented the simple
combination.

4. Results

Figure 5 locates 26 polygons corresponding to the confirmed hazardous areas over a visible
satellite image (ArcGIS “world image” layer) to illustrate the land use/land cover. Most of the
polygons are located in a plain extending ESE from Gospić. Agricultural parcels, pasture lands,
and a few woodlots cover most of the flatten zones. The southern part is hilly and forested.
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Figure 5. Location of the confirmed hazardous areas in the plain of Gospić. The minefield in light blue color is used to
illustrate the whole process from the intensity and coherence images to the indicators of potential human-related
change map.

In terms of land use/land cover dynamics, the comparison between Landsat images acquired
from 1993 to 2015 indicated that the landscape is very stable and that most minefields are either
covered by woodlots or pasture lands. A very little number presented evidence of agricultural
activities.

Figure 6. Comparison between intensity and coherence data with the visible information. Radar images have been
processed with a pixel size of 25 m.

The wide polygon in Figure 6 is an illustrative case study. This minefield is almost flat and
covered by woods, pastures, and crops. A main road also crosses the area. The landscape
displayed in radar image is very different than the one obtained in the visible wavelength
because the physical mechanism used to create those scenes is completely different. Radar and
visible data are independent, reliable, and complementary sources of information. However,
at a first glance, radar data provide no information directly useful in demining operations. In
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the intensity images the main road crossing the polygon can be distinguished but its width is
overestimated. The limits between woods, crops, and pastures cannot be observed. Coherence
displayed in gray-scale provides information on the ground scatterers’ perturbations between
two dates (1999/08/05–1999/10/30). However, radar intensity and phase provide information
complementary to the visible ones about the subtle changes of the ground surface.

4.1. Natural decorrelation revealed by ERS tandem pairs

As previously mentioned, slopes, forests, and high moisture zones are able to decorrelate the
signal in less than one day. Hence, in those zones, it is clearly impossible to work with radar
time series. Figure 7 illustrates this important element for the approach to delineate SHA
perimeters. The inset on the right side shows the land cover of the minefield during the period
of war (1991–1995). Green color indicates wooden areas. The main road crossing the zone
already existed and appears as a NW-SE linear light grey color feature.

Figure 7. Evaluation of the decorrelation phenomena from tandem pairs (temporal baseline = 1 day). Green and yellow
areas allow performing time series analysis. The orange red areas loose very quickly coherence. No information can be
retrieved.

The middle inset is the average coherence between the four tandem pairs. The coherence is
generally well preserved everywhere in the polygon at the noticeable exception of the wooden
parcels. The left inset is a classification of the previous data in four classes (unsupervised). The
green color shows where further studies can be conducted while the red color indicates that
no information can be retrieved. Orange and yellow colors are areas where studies can be
conducted but the environmental conditions are less favorable. In yellow spaces there are still
certain levels of confidence that can be obtained.
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4.2. Data fusion first level

Elementary pieces of information (intensity and coherence), such as the ones displayed in
Figure 6, become relevant once exploited through stacks of data. Four data sources have been
used (Table 2): ERS coherence, Envisat coherence, ERS intensity, and Envisat intensity.

Satellite images track
315 – frame 873
(ascending)

112 ERS coherence 127 Envisat coherence 42 ERS intensity 40 Envisat intensity

Figure 6’ Minefield 112 subsets 127 subsets 42 subsets 40 subsets

Unsupervised
classification

Table 2. Unsupervised classification results.

Data within each of these stacks have been combined and classified using multitemporal
signature analysis, where pixels with similar signatures are grouped together. The output is
an unsupervised classification of ERS coherence, ERS intensity, Envisat coherence, and Envisat
intensity. These classification results are inputs for the second level.

Figure 8. Example of combination, coherence classification results of Envisat and of ERS and intensity classification
results of Envisat and of ERS. Then, fusing the two intermediate fusion results to create a map of indicators of potential
human-related changes in the landscape. L = low; H = high.
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4.3. Data fusion second level

The combination is performed using different strategies:

1. Fusing firstly coherence classification results of Envisat and of ERS, and intensity
classification results of Envisat and of ERS. Then, fusing the two intermediate fusion
results (Figure 8).

2. Fusing first the two ERS results (coherence classification and amplitude classification),
and the two Envisat results (coherence classification and amplitude classification), and
then fusing the two intermediate results (Figure 9).

Figure 9. Example of combination, coherence classification results and intensity classification results of Envisat of ERS
are combined. Then, fusing the two intermediate fusion results to create a map of indicators of potential human-relat-
ed changes in the landscape. L = low; ML mean low; MH mean high; H = high.

The two strategies should provide the same final result only if the combination operators are
commutative and associative. It is not the case here since different reasoning is applied in
function of the data to be fused. The fusion order matters and influences the final result. The
two strategies are developed and tested in parallel in order to cover various situations that
might occur in reality (only one sensor used; only amplitude or coherence data available, etc.).
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5. Discussion

5.1. Performance evaluation

Taking into account that humanitarian demining is a very sensitive matter, it was not easy to
validate on the ground, especially, in the case of a demonstration project due to the lack of
time, as well as human and material resources. To validate the results, alternative solutions
were taken. One of the validation sources provided by CROMAC was photos as well as various
indicators of mine presence and mine absence.

– Indicators of mine presence: destroyed houses, abandoned roads and areas, bunker lines,
trenches, cover for infantry and artillery, shallow drafts, bridges.

– Indicators of mine absence: safe roads, houses in use, roads in use, and areas in use.

Although these pieces of knowledge were very informative, they were not geocoded, so it was
not possible to use them directly for validation.

Due to their sensitive content, CROMAC could not provide geocoded validation data, so this
type of validation had to be left to them.

Thus, the only means to validate the results in SPRINT was to compare them with existing
(published) aerial data.

Figure 10 shows a superimposition of ERS classification results over aerial photo of the region
of interest. Zones with trees are clearly classified as a class labeled by green color. Agricultural
zones are well classified in the class labeled yellow. Roads are in red, and the blue color seems
to be the zone around forests and trees. There are various possibilities to explain why this class
occurred as a separate class in our classification. For example, it could be due to the acquisition
mode itself (radar shadows), or due to works in the bordering zones around trees. A further
investigation in this direction, involving potentially the terrain observation, would be neces-
sary.

Figure 10. Classification of ERS data over an aerial photograph.
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In Figure 11, for an easy visual comparison, an aerial image of one of the minefields is given
(top left), together with the danger map obtained from CROMAC (top right) and the two
classification results at the bottom (ERS left, Envisat right). In the danger map, the level of red
indicates the level of danger (more dangerous zones are represented with darker red). Green
zones are surfaces in use, while purple corresponds to the roads in use.

Figure 11. Top: aerial image of one of the regions (left); danger map obtained from CROMAC (right); the color code is:
brown = reconstructed minefield position; green = surface used; purple = pathway used; red = various levels of danger
(dark is the highest); bottom: ERS classification result (left), Envisat classification result (right).

Based on a visual comparison with the classification results, we can see that fields in use belong
to the radar yellow class. Following that logic, we might conclude that the whole yellow
classified zone could be suggested to CROMAC as mine-free (in use).

It should be noted that the classification results should be treated as a layer in creating/
modifying CROMAC database, and not as a self-sufficient decision-making information, since
in creating danger maps, other sources of information should be taken into account as well,
that we have not used in our classification, such as: mine laying records, mine accidents, mine
incidents, history of battles, etc.

As long as the SPRINT project is concerned, the fact that obtained results are able to distinguish
areas in use from forests and other zones and that there is a correspondence with danger maps
proves that the method developed in the project is promising.

Taking into account that the terrain itself is not ideal from the point of view of SAR sensors,
we might expect even better results for some other areas, where terrain conditions are more
beneficial for SAR acquisition (flat zones, not so many trees, etc.—see Figures 1–3).
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5.2. Research outcomes

When the environmental conditions of applicability are met, to a certain extent, it is possible
to apply CCD for the improvement of the SHA delineation (see Figures 1 and 2).

CCD techniques present limitations related to the radar interferometric methods. Based on
results published in the past 20 years (e.g., [4, 18, 20]), at least nine major factors limit the
applicability or the effectiveness:

1. Coherence is a mathematical estimation computed usually with 3 ×3, 5×5, or 7 × 7 windows.
The SHA limits are thus fuzzy.

2. Coherence decreases when the perpendicular baseline between acquisitions increases.
The use of radar images pairs characterized by short baselines should be favored.

3. Coherence decreases with the angle of local slopes. The interpretation should be confined
to flat and undulated surfaces.

4. Coherence is low over vegetation cover (volume scattering) in X-, C-, and L-bands. The
approach provides best results in open spaces such as pastured or cropped areas (Figure
2).

5. Coherence varies with soil moisture content. Semiarid and arid zones like Iraq or Libya
should be preferred.

6. The efficiency of the approach depends on the land-use impact on the ground surface
(displacement of the ground scatterers). In desert areas, lot of time can be needed to
observe a relevant contrast because of the lack of activities. Coherence remains high most
of the time. On the contrary, in busy places, it is possible to detect areas of interest with
short temporal baselines (e.g., 35 days for ERS).

7. The ground surfaces must be covered with scatterers able to move when an activity occurs.
Hard rock surfaces preserve coherence even when activities occurred. No signal is
recorded.

8. Pixel resolution: the smaller the pixel, the longer the coherence is preserved. Indeed, small
pixels gather less scatterers than wide pixels. In a small pixel, it is less possible to record
an event than in a wider pixel.

9. In time series analysis, the variation of the meteorological conditions through year can
affect the efficiency. Regions with relatively stable meteorological conditions will be
favored.

Figure 12 presents a qualitative assessment of the approach based on a set of fundamental
parameters: human activities, slopes, vegetation cover, and precipitation (climate variable).
Up to now, the best results have been obtained in places characterized by human activities
modifying the surface the landscape, flat to very gentle slopes, relatively poor vegetation cover,
and climate relatively dry to extra dry.
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Figure 12. Qualitative assessment of the approach. Effectiveness of the method for C-band datasets. Based on Gospic
(Croatia) and Jordan experiments.

6. Conclusion

Is it useful for SHA area reduction to use InSAR stacking techniques to produce time series of
intensity and coherence images of minefields (Gospić, Croatia)?

SPRINT demonstrated that valuable information for the mines action centers can be provided
through the processing of radar image stacks acquired during and after a conflict. SPRINT
used successfully the COS Sarscape™ software and the objectives were achieved. The outputs
of the interferometric processing have been successfully manipulated in ArcGIS to generate
subset images useful for the fusion analysis step. All outputs, whatever the level in the
processing chain, were in a standard format compatible with any types of (open) integrated
geospatial systems.

What kind of fusion analysis do we have to perform to extract relevant changes for area
reduction?

Unsupervised classification based on the analysis of temporal signatures had been performed
within each of the stacks of ERS amplitude data, ERS coherence data, Envisat amplitude data
and Envisat coherence data, separately. After that, combination of the obtained results have
been performed.

Does it make sense to collect regularly Sentinel-1 radar images over a war zone or a postconflict
region to exploit these data with stacking techniques in humanitarian demining?
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The answer is positive. Since 2015, a large part of the world is covered by Sentinel-1 SAR (C-
band) images. They are for free by the EU-ESA owing to the Copernicus project. The resolution
is better than ERS and Envisat (5 vs. 20 m); the revisit time 11 days (and then 6 days when 2
satellites) versus 35 days.
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