
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

Evolutionary Algorithms with Dissortative
Mating on Static and Dynamic Environments

Carlos M. Fernandes1,2 and Agostinho C. Rosa1

1Laseeb – Instituto de Sistemas e Robótica − Instituto Superior Técnico
2Depart. de Arquitectura y Tecnología de Computadores − University of Granada

1Portugal
2Spain

1. Introduction

Evolutionary Algorithms (EAs) (Bäck, 1996) mimic the process of natural selection by
recombining the most promising solutions to a problem from a population of individuals,
each one representing a possible solution. There are several methods to select the
individuals, but all of them follow the same general rule: good (or partially good) solutions
must be chosen more often for recombination events than poorer solutions. In traditional
Genetic Algorithms (GAs), for instance, the chromosomes are recombined via a crossover
operator over a certain number of generations until a stop criterion is reached. The parents
are selected according to their fitness values, that is, better solutions have larger probability
to be chosen to generate offspring. By considering merely the quality of solutions
represented in the chromosomes when selecting individuals for mating purposes, the
traditional GAs emulate what, in nature, is called random mating (Roughgarden, 1979;
Russel, 1998), that is, mating chance is independent of genotypic or phenotypic distance
between individuals.
However, random mating is not the sole mechanism of sexual reproduction observed in
nature. Non-random mating, which encloses different kinds of strategies based on parenthood
or likeness of the agents involved in the reproduction game, is frequently found in natural
species, and it is believed to be predominant among vertebrates. Humans, for instance, mate
preferentially outside their family tree: this non-random mating scheme is called outbreeding
and has its opposite in inbreeding, a selection strategy where individuals mate preferentially
with their relatives (Roughgarden, 1979; Russel, 1998). It is often stated that inbreeding
decreases the genetic diversity in a population while outbreeding increases that same
diversity (Russel, 1998). In addition, inbreeding will increase the normal rate of a harmful
allele present in the family. If inbreeding is extensive and intensive, homozygosity will
increase in frequency and the family experiences a growth in the genetic load (measure of all
of the harmful recessive alleles in a population or family line) of the harmful allele.
Assortative mating is another non-random mating mechanism, in which individuals choose
their mates according to phenotypic similarities (Roughgarden, 1979; Russel, 1998). When
similar individuals mate more often than expected by chance, we are in presence of positive
assortative mating (or assortative mating in the strict sense). When dissimilar individuals O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008,
I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

 Advances in Evolutionary Algorithms

182

mate more often, the scheme is called negative assortative mating (or dissortative mating). In
humans, assortative mating is well exemplified by the correlation between heights or
intelligence in partners. On the other hand, humans do not mate assortatively with respect
to blood groups. This kind of behavior, which selects assortatively for some traits and not
others, makes it difficult to unmask the effects of assortative mating in the population. In
fact, human assortative mating is not completely positive except for some small and isolated
communities (the Old Order Amish, for instance).
Positive assortative mating results in an average increase in homozygosity and in an
increase in population variance. However, this does not mean that genetic diversity is
increasing. In fact, this type of mating may result in highly distinct cluster of similar
genotypes, thus playing a crucial role when speciation without geographic barriers occurs
(sympatric speciation) (Todd & Miller, 1991). Dissortative mating, on the other hand, has the
primary consequence of a progressive increase in the frequency of heterozygous genotypes;
the increase in the diversity of the population is a direct consequence of these changes in the
genotype frequencies. Evidences show that mating is very unlikely to be random in nature
and may have the potential to act as an evolutionary agent, although its effects are very
complex and hard to model and analyze (Jaffe, 1999). Even so, artificial life models
presented by Jaffe (1999) and Ochoa et al. (1999) shed some light into the subject, and gave
empirical support to the hypothesis that mating is not likely to be random in nature and that
assortative and dissortative mating may produce higher survival rates among individuals
evolving in, static and dynamic environment, respectively. While in dynamic landscapes
genetic variability is fundamental to a quick and effective response to changes, in static
environments diversity is not so important. In fact, natural organisms move towards an
optimal degree of genetic variability that depends on the environment, via some mating
scheme. Environment itself appears to guide the evolution of mating strategies.
In Evolutionary Computation (Bäck, 1996), selective pressure and genetic diversity are two
major topics, probably those of primary importance (Whitley, 1988). Pressure and diversity
are closely related to the delicate equilibrium between exploration and exploitation needed
in order to have “safe” search in EAs. Therefore, non-random mating naturally came out in
EAs research field in order to deal with the problem of genetic diversity and premature
convergence: some efficient algorithms appeared, especially when applied to problems
where the genetic diversity is needed in order to maintain exploration high and avoid local
optima traps. In addition, diverse search stages usually call for different balance between
exploration and exploitation mechanisms. To an initial strong explorative stage, the
algorithm gradually must enter a more exploitive phase, where the neighborhood of good
solutions found so far is inspected in order to reach the global optimum. When the
problem’s environment change over time, that is, when dealing with dynamic optimization,
genetic diversity becomes even more important, since full convergence must be avoided: the
algorithm must maintain sufficient diversity to readapt itself to a change in the fitness
function, even if it has converged to the current optimum. In dynamic environments, it is
often more important to track the best solution than to converge, that is, it may be sufficient
to keep the population near the optimum, even if returning only near-optimal solution, thus
avoiding the risk of a full convergence in a specific period of the search, which would
reduce the possibilities of readaptation after a change.
Very often recombination is associated with exploitation while mutation is said to play a
determinant role in exploration by preventing alleles becoming extinct. While this appears

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

183

to be true, it may have misled some researches towards assortative mating instead of
dissortative, because of the higher exploitation performed by the first strategy. If similar
individuals tend to mate, it is more likely that their neighboring space is closely inspected.
On the other hand, several studies on dissortative mating showed empirical evidence that
this scheme is more adapted to a wide range of problems, both static and dynamic
(Craighurst & Martin, 1995; Eschelman, 1991; Eschelman & Schaffer, 1991; Fernandes et al.,
2000, 2001; Fernandes & Rosa 2001; Fernandes, 2002; García-Martínez et al., 2007; Matsui,
1999; Ochoa et al., 2005) − see next section for a state-of-the-art review.
This chapter proposes a review and an empirical study on EAs with dissortative mating
strategies and their application to static and dynamic problems. Dissortative mating will be
discussed within a biological framework and some Artificial Life models will be analyzed; a
detailed description of several methods found in EAs literature will be also given. The
empirical study will be centered on the Variable Dissortative Mating GA (VDMGA), which
was recently presented in (Fernandes & Rosa, 2008) by the authors of this chapter. VDMGA
holds a mechanism that varies GA’s mating restrictions during the run, by means of a
simple rule based on the number of chromosomes created in each generation and indirectly
influenced by the genetic diversity of the population. The empirical study presented in
(Fernandes & Rosa, 2008) shows that VDMGA performs well when applied to a wide range
of problems: it consistently outperforms traditional GAs and assortative mating GAs, and it
is faster and more robust than some previously proposed dissortative mating GAs. Results
suggest that VDMGA’s ability to escape local optima and converge more often to the global
solution may come from maintaining the genetic diversity at a higher level when compared
with traditional GAs. VDMGA’s genetic diversity naturally leads the research towards the
application of the algorithm on Dynamic Optimization Problems (DOPs). Due to their
specific characteristics, DOPs require additional tools, many of them different from those
widely studied by EAs researchers on static problems. Memory schemes and niching
(Branke & Schmeck, 2002) are some of the techniques used to tackle DOPs. Strategies for
maintaining genetic diversity and/or introducing novelty in the EAs populations are also
very efficient strategies when solving dynamic problems (Branke & Schmeck, 2002). In this
chapter, the original VDMGA is subject to minor modifications, and then applied to DOPs
benchmarks and compared to other GAs. The results confirm the predictions and show that
VDMGA may improve other GAs’ performance on changing environments. As already been
observed when tackling static fitness functions (Fernandes & Rosa, 2008), dissortative
mating, via a simple and easily tunable algorithm with diversity preservation, reveals
interesting skills when evolving in dynamic environments.

2. Non-random mating evolutionary algorithms

This section describes some EAs with outbreeding, assortative and dissortative mating
strategies found in the literature. A special emphasis is given to the ones that, to the extent
of the authors of this chapter knowledge, were seminal in their line of work, and to those
that preceded (or are, at some level, related to) VDMGA.
In the GA with outbreeding described in (Craighurst, 1995), individuals with a certain
degree of parenthood are not allowed to recombine and generate offspring. An incest
prevention degree is defined in the beginning of the run and remains unchanged until the
convergence criterion is fulfilled. This degree defines how far back in the family tree of an
individual the GA must inspect in order to prevent the recombination events. This policy

www.intechopen.com

 Advances in Evolutionary Algorithms

184

does not completely restrict mating between similar individuals, but it sure decreases its
frequency since related individuals tend to share a large amount of common alleles. Tests
(Craighurst, 1995) compare the outbreeding GA with a standard GA when applied to the
Traveling Salesman Problem. The non-random mating algorithm outperformed the
standard GA but the differences in the algorithms’ performances were noticed mainly with
low mutation rates. This is not surprising since incest prohibition is supposed to maintain
the genetic diversity of the population at a higher level for longer periods, thus reducing the
need for mutation to introduce genetic novelty into converging populations. Fernandes et al.
(2000) combined the outbreeding strategy proposed in (Craighurst, 1995) with a varying
population size GA (Arabas, 1994) to create the non-incest Genetic Algorithm with Varying
Population Size (niGAVaPS). The results showed that the two mechanisms worked together
well in order to find the optimum of Four Peaks and Royal Road R4 functions. Tests made
with the algorithm ranging through different degrees of incest prohibition showed
improvements in the capability of escaping local optima when the individuals are not
allowed to mate with their parents and siblings.
There are several studies indicating that dissortative mating may improve EAs performance
by maintaining the genetic diversity of the population at a higher level during the search
process. For instance, CHC (Eschelman, 1991; Eschelman & Schaffer, 1991) which stands for
Cross generational elitist selection, Heterogeneous Recombination and Cataclysmic Mutation, is a
variation of the standard GA that holds a simple mechanism of dissortative mating which
has given proofs of being rather effective in a wide range of problems. Although the title in
(Eschelman & Schaffer, 1991) may suggest that CHC is an outbreeding GA, a closer look
reveal that the algorithm uses a dissortative mating strategy in order to prevent premature
convergence. CHC uses no mutation in the classical sense of the concept, but instead it goes
through a process of macro-mutation (or hyper-mutation) when the best fitness of the
population does not change after a certain number of generations. The genetic diversity is
assured by a highly disruptive crossover operator, the Half Uniform Crossover (HUX)
(Eschelman & Schaffer, 1991), and a reproduction restriction that assures that selected pairs
of chromosomes will not generate offspring unless their Hamming Distance is above a
certain threshold. CHC search process goes as follows. In each generation, p/2 pairs of
chromosomes are randomly selected from the population with size p. All pairs are
submitted to the reproduction process. First, their Hamming distance is computed. If the
value is found to be above the threshold then the chromosomes generate two children with
the HUX operator. When the process is concluded, the newly generated population of p’
offspring replaces the worst chromosomes in the main population, therefore maintaining the
size of the population. The threshold is usually set in the beginning of the runs to ¼ of the
chromosome length, and decremented when no offspring is generated. When the algorithm
is stuck in local optima, a cataclysmic mutation is applied by replacing the entire
population, except the best chromosome, with mutated copies of that individual.
The Assortative Mating GA (AMGA) was introduced in (Fernandes et al., 2001). The only
difference between AMGA and a standard GA is the way parents are selected for
recombination. In each recombination event one parent (first parent) is select by any
traditional method. Then, a set of n individuals is selected by the same method. After
computing the similarity between the first parent and all the n individuals in the set, the
second parent is chosen according to the type of assortative mating in progress. If the
algorithm is the positive Assortative Mating GA (pAMGA) the individual more similar to the

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

185

first parent is chosen. With the negative Assortative Mating GA (nAMGA) the individual less
similar is chosen as the second parent (please remember that negative assortative is the
same as dissortative). The intensity of the non-random mating scheme may be controlled by
the size of the set of candidates to the second parent position. Increasing n increases the
frequency of mating between dissimilar (if negative assortative) or similar (if positive)
individuals. Experiments with the algorithm solving a vector quantization problem showed
pAMGA and standard GA performed similarly, while nAMGA outperformed both
(Fernandes et al., 2001). Increasing the size of the candidates set resulted in higher success
rates (number of runs in which the global optima was found) of nAMGA. In (Fernandes &
Rosa, 2001), the algorithm was combined with a varying population size mechanism, tested
with a Royal Road (R4) function (Mitchell, 1994) and compared with a standard GA and the
niGAVaPS (Fernandes et al., 2000). The negative assortative mating (or dissortative mating)
strategy has proven to be more able in escaping Royal Road’s local optima traps. pAMGA
was also tested under the same conditions but its performance was clearly inferior to
standard GA.
A similar idea was tested by Ochoa et al. (2005) on dynamic environments. The authors
tested haploid and diploid GAs with assortative mating (where parents are selected as in
AMGA) on a knapsack problem with moving extrema, and nAMGA was more able to track
dynamic optima. Standard GA often failed to track the optima but the worst performance
was attained by pAMGA. In general, the haploid algorithms produced better results than
the diploid ones. The authors also discuss the optimal mutation rate for different strategies.
By means of exhaustive tests, they concluded that the optimal mutation rate increases when
the mating strategy goes from negative (dissortative) to positive assortative. These results
were predictable: dissortative mating is supposed to maintain the population diversity at a
higher level, reducing the amount of mutation needed in order to prevent the premature
convergence of the population. In this line of work, the same authors proposed a study on
the error threshold of replication in GAs with different mating strategies (Ochoa, 2006;
Ochoa & Jaffe, 2006). The error threshold is a critical mutation rate beyond which structures
obtained by an evolutionary process are destroyed more frequently than selection can
reproduce them. By evolving a GA on four different fitness landscapes, the authors first
conclude that recombination shifts the error threshold toward lower values. Then, the tests
show that assortative mating overcomes this effect by increasing the error threshold, while
the dissortative strategy pushes the error into lower values. The authors argue that this
study may have effects on both natural and artificial systems since it supports the
hypothesis that assortative mating overcomes some of the disadvantages inherent to sex.
They also intend to shed some light into the relation between mutation rates and mating
strategies in EAs. This last issue is directly related with the idea that assortative mating
increases the optimal mutation rate of an EA, while dissortative strategies decreases it. This
behavior has already been observed in (Fernandes, 2002) and (Ochoa et al., 2005).
Fernandes & Rosa (2006) proposed the Self-Regulated Evolutionary Algorithm (SRPEA).

SRPEA is an algorithm with a dynamic on-the-fly variation of the population size. Selected

individuals are recombined to generate offspring only if their Hamming distance is above a

threshold value. That value changes over time, depending on the number of newborn

individuals and deaths in each generation. Individuals die (that is, are removed from the

population) only when their lifetime (which is set to specific value in the beginning of the

search depending on the individual’s fitness) reaches zero, which means that parents and

www.intechopen.com

 Advances in Evolutionary Algorithms

186

children may belong to the same population. An empirical study demonstrated that the

algorithm self-regulates its population size: there are neither uncontrolled demographic

explosions nor quasi-extinction long stages, as it is observed in the dynamics of other

varying population EAs (Arabas, 1994). VDMGA, the main algorithm in this chapter’s

study, is directly related to SRPEA.

In (García-Martinez et al., 2006), an assortative mating strategy is used to implement a local
search genetic algorithm. The approach is consistent with the fact that crossover is the main
mechanism of a GA generating local search, and assortative mating, by its own
characteristics, tends to increase the strength of exploitation, thus leading to a more
intensive local search. On the other hand, Gárcia-Martinez et al. (2007) introduced a real-
coded genetic algorithm with dissortative mating. The authors show that the inclusion of
that mating strategy increases the performance of the GA on a set of proposed problems. In
addition, empirical analysis indicates that the merits of dissortative mating are clearer with
lower values of α parameter of the PBX-α crossover (Lozano et al., 2004). This observation is
closely related with the optimal mutation rate issue described above, since α determines the
spread of the probability distribution used to create offspring with PBX-α. This way,
parameter α acts as genetic diversity controller, with higher values leading to GAs with
higher exploratory capabilities, as it happens with mutation rate values. Therefore, if
dissortative mating is expected to decrease optimal mutation rates, optimal values of α may
also be dependent on the mating strategy chosen for the GA, being lower when dissimilar
individuals have more chance to generate offspring.
A large number of other GAs with non-random mating may be found in Evolutionary
Computation literature. A few are briefly described in the following paragraph.
Mauldin (1984) proposed a method to avoid similar individuals in the population based on
a Hamming distance restriction. CHC is in some way a descendent of Mauldin’s method,
and, as a result, so is VDMGA. Hillis (1992) described a co-evolutionary computation
paradigm with assortative mating applied to a sorting network problem. The author does
not provide results comparing the proposed strategy and random mating but it states that
the choice on assortative mating was inspired by some problem characteristics rather than
genetic diversity concerns. Ronald (1995) introduced the concept of seduction in GAs, which
consists in selecting the second parent according to the preferences of the first parent. After
the first chromosome involved in a recombination event is selected, all other individuals in
the population are provided with a secondary fitness according to certain rules that reflects
the preferences of the first parent. Then, the second parent is chosen according to the
secondary fitness. Petrowski proposes (1997) speciation in order to restrict mating. De et al.
(1998) proposed genotypic and phenotypic assortative mating. The new approaches are
compared with standard GA and CHC on some well-known test functions and on the
problem of selecting the optimal set of weights in a multilayer perceptron. Phenotypic
assortative mating revealed to be the best strategy, outperforming standard GA and CHC on
the range of proposed problems. Matsui (1999) incorporated dissortative mating within the
tournament selection strategy. After the first parent is selected, the second parent is chosen
according to a function that depends on the individual fitness and the Hamming distance to
the first parent (all individuals in the population are inspected in order to determine the
distance to the first parent). In addition, the author incorporates a family-based selection
mechanism that, by applying selection and replacement at family level (two parents and two
offspring), maintains the genetic diversity of the population. Ting et al. (2003) introduced

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

187

the Tabu Genetic Algorithm (TGA). TGA combines the characteristics of GAs and Tabu
Search (Glover, 1986), by incorporating a taboo list in a traditional GA that prevents
inbreeding and maintains genetic diversity. An aspiration criterion is also used by TGA in
order to allow some crossovers even if they violate the taboo. Since incest prevention
efficiency is sensitive to mutation rate, the authors include a self-adaptive mutation in TGA.
The process is somehow similar to the cataclysmic mutation that occurs in CHC, since
mutation in TGA occurs in presence of a deadlock situation, that is, when the genetic
diversity of the population as decreased down to a level were allowed recombination is
almost or even impossible to occur. Finally, Wagner & Affenzeller (2005) introduced the
SexualGA, which simulates sexual selection within the frame of a GA and uses two different
selection schemes in the same population.

3. Dynamic optimization problems

A problem is said to be a Dynamic Optimization Problem (DOP) when there is a change in
the fitness function, problem instance or restrictions, thus making the optimum change as
well. When changes occur, solutions already found may be no longer valuable and the
process must engage in a new search effort. Traditional EAs, for instance, may encounter
some difficulties while solving dynamic problems: if the first convergence stage reduces
population diversity, then the algorithm may not be able to react to sudden changes. The
crucial and delicate equilibrium needed between exploration and exploitation in static
environments becomes even more important and complex when dealing with DOPs. In
addition, if the change is detectable (which not always possible), it is hard to decide if it is
better to continue the search with same population, after a shift in the environment, or if a
restart is more efficient. The extent of the change is of crucial importance in that decision.
This problem was stated by Branke & Schmek (2002), which suggested a classification of
DOPs and a classification of the most widespread EAs that deal with changing
environments. One standard approach to deal with DOPs is to regard each change as the
arrival of a new optimization problem that has to be solved from scratch. However, this
simple approach is often impractical since solving a problem from scratch without reusing
information from the past might be time consuming, a change might not be identifiable
directly, or the solution to the new problem should not differ too much from the solution of
the old problem. Thus, as in the on-line tracking process suggested in (Angeline, 1997), it
has been recommended in (Branke, 1999; Branke, 2002; Branke & Schmeck 2002) to have an
optimization algorithm that is capable of continuously adapting the solution to a changing
environment, reusing the information gained in the past. Since natural adaptation is a
continuous and continuing process and EAs have much in common with natural evolution,
they seem to be a suitable candidate for this task. However, evolutionary approaches
typically converge to an optimum and thereby lose the diversity necessary for efficiently
exploring the search space and consequently also the ability to adapt to a change in the
environment (Branke, 2002; Branke & Schmeck 2002). The problem here can be stated as
seeking an appropriate balance between two contradictory characters of the search
procedure, those between the exploring (ideal for gathering new solutions) and exploiting
(making the best use of past solutions) nature of the algorithm. Over the past few years, a
number of authors have addressed the problem of convergence and subsequent loss of
adaptability in many different ways. According to (Branke e Schmeck 2002), most of these
approaches could be grouped into one of the following three categories established by them:

www.intechopen.com

 Advances in Evolutionary Algorithms

188

1. React on Changes: The EA is run in standard fashion, but as soon as a change in the
environment is detected, explicit actions are taken to increase diversity and thus
facilitating the shift to the new optimum.

2. Maintaining Diversity throughout the run: Convergence is avoided all the time and it is
hoped that a spread-out population can adapt to changes more easily.

3. Memory-based Approaches: The EA is supplied with a memory to recall useful
information from past generations, which seems especially useful when the optimum
repeatedly returns to previous locations.

Techniques such as Hypermutation (Cobb, 1990) pursue the first category, keeping the whole
population after a change but increasing population diversity by drastically increasing the
mutation rate for some number of generations. Please note that reacting to changes assumes
that changes are detectable, a condition, as already stated, that is not always fulfilled
(Branke, 2002).
The Random Immigrants Genetic Algorithm (RIGA) (Grefenstette, 1992) is an example of a
strategy that falls in the second category. In RIGA the population is partly replaced by rr
randomly generated individuals in every generation. This guarantees the introduction of
new genetic material in every time step and avoids the convergence of the whole population
to a narrow region of the search space. The performance is affected by the parameter rr.
RIGA is used in the following sections to evaluate VDMGA’s performance on DOPs;
therefore, its pseudo-code is presented here:

Algorithm 1: Random Immigrants Genetic Algorithm

initialize Population(P)
evaluate Population(P)
while (not termination condition) do
 P ← Replace Fraction of Population (P, rr)
 create P.new by selection, crossover and mutation of P
 P ← P.new
end while

The following algorithms may also be classified in category 2. As described in the previous
section, the negative Assortative Mating Genetic Algorithm (nAMGA) (Fernandes & Rosa 2001)
is used in (Ochoa et al., 2005) to solve a knapsack DOP. Negative assortative mating (or
dissortative mating), by preventing the recombination of similar individuals, slows down
the expected diversity loss of traditional GAs thus having the proper characteristics to be
classified whitin category 2. The co-evolutionary agent based model of genotype editing (ABMGE)
(Huang et al., 2007) use several genetic editing characteristics that are gleaned from the
RNA editing system as observed in several organisms. Their results outperformed
traditional EAs via obtaining greater phenotypic plasticity. In (Tinós & Yang, 2007), a RIGA
associated with the Bak-Sneppen model is presented and tested on DOPs: the Self-Organized
Random Immigrants Genetic Algorithm (SORIGA). Bak-Sneppen (Bak & Sneppen, 1993) is
known as a Self-Organized Critically model, a phenomenon that was detected in 1987 by
Bak, Tang and Wiesenfield (Bak et al., 1987), and which characterized by displaying scale
invariant behavior. When associated with EAs it may periodically insert large amounts of
new material in the population or completely reorganize a solution to a problem. For those
reasons, it soon was adopted by EA researchers in order to provide new means to control
parameter values or maintain population diversity, thus avoiding premature convergence to

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

189

local optima. DOPs research field was a logical following step. Besides SORIGA, another
approach has been recently proposed by Fernandes et al. (2008a), in which the Sandpile
model (Bak et al., 1987) is attached to a GA is order to solve DOPs.
Another kind of approach is to supply the algorithm with some sort of memory, storing
good partial solutions in order to reuse them later (category 3). This can be advantageous in
cases where the environment is changing periodically, and repeated situations occur.
However, they also could be counterproductive if the environment changes dramatically
with open-ended novelty. Memory may be provided in two general ways: implicitly by
using redundant representations, or explicitly by introducing an extra memory and
formulating strategies to deposit and retrieve solutions later. Generally, the most prominent
approach to implicit memory and redundant representation is multiploidy (Goldberg &
Smith, 1987). On the other hand, while redundant representations allow the EA to implicitly
store some useful information during the run, it is not clear that the algorithm actually uses
this memory in an efficient way. As an alternative, some approaches use an explicit memory
in which specific information is stored and reintroduced into the population at later
generations, as in (Louis & Xu, 1996). Branke (1999) compared a number of replacement
strategies for inserting new individuals into a memory stressing the importance of diversity
for memory-based approaches.
Estimation of Distribution Algorithms (EDAs) (Pelikan, Goldberg & Lobo, 1999; Lorrañga &

Lozano, 2002) is a class of EAs where a probability model replaces an explicit representation

of the population. In the last decade, research on EDAs has experienced a continuous and

consistent growth. However, only recently the DOP issue has started to raise a strong

interest on EDAs’ researchers. For instance, the Population Based Incremental Learning

(PBIL) (Baluja, 1994) - one of the first EDAs - is used in (Yang & Xao, 2005) to solve DOPs

created by a problem generator proposed by the same authors. The authors compare several

versions of PBIL with GAs and RIGAs. In (Yang, 2005), the author proposes the Univariate

Marginal Distribution Algorithm (UMDA) with enhanced memory and the results of the

experiments show that the memory is efficient in dynamic environments. In addition, a

combination of memory and random immigrants for the UMDA is studied. Lima et al.

(2008) investigates the incorporation of restricted tournament replacement (RTR) in the

extended compact genetic algorithm (ECGA) (Harik et al., 1999) for solving problems with

non-stationary optima. (RTR is a simple yet efficient niching method used to maintain

diversity in a population of individuals.) Finally, Fernandes et al. (2008) proposed a new

update strategy for UMDA based on Swarm Intelligence.

Some recent proposals have been made using a Swarm Intelligence (Bonabeau, Dorigo &
Threraulaz, 1999) approach to attempt to solve dynamic problems. Swarm Intelligence is the
property of a system whereby the collective behaviors of simple entities interacting locally
with their environment cause global patterns to emerge. In (Guntsch & Middendorf, 2002)
the authors applied population based ACO algorithms for tracking extrema in dynamic
environments. Others, like (Ramos et al., 2005) developed distributed pheromone layering
over the dynamic environment itself, in order to track different peaks. Finally, Fernandes et
al. (2007) developed the Binary Ant Algorithm (BAA), based on the ACO framework, to take
advantage of ACO’s ability to solve combinatorial DOPs and generalize it to binary DOPs.
However, BAA may also be regarded as a kind of EDA, since, like this class of algorithms,
BAA creates the possible solutions to a problem via a transition probability model. Actually,

www.intechopen.com

 Advances in Evolutionary Algorithms

190

there have been recent attempts to unify ACO and EDAs into the same framework (Zlochin,
et al., 2004).

4. The variable dissortative mating genetic algorithm

To model dissortative mating in EAs, some kind of relaxation policy may be needed in order
to avoid a freezing population, since evolution eventually leads the search process into a
stage of low diversity, where all the individuals are almost identical. In addition, the
population usually searches for an optimal degree of genetic variability according to the
landscape were it evolves. It is possible that the population movement towards the optimal
regions of the landscape also requires different levels of genetic diversity along the way, in
order to maintain a robust search. Therefore, the degree of assortative or dissortative mating
should vary along the run in order to deal with the inevitable decrease in diversity and to
follow the search path of the population. Some methods try to maintain the diversity in a
permanent high level, but that may be incompatible with the desirable convergence of the
algorithm. For instance, a constant macro-mutation certainly maintains the diversity of the
population, but the expected success of an EA based on such premises is not high. Diversity
by itself is not a guarantee of a successful search through the landscape.
The Variable Dissortative Mating Genetic Algorithm (VDMGA) (Fernandes & Rosa, 2008) is a
non-random mating GA, which incorporates an adaptive Hamming distance mating
restriction that tends to relax as the search process advances, but may be occasionally
reinforced. The algorithm works in the following way. When the first population is
randomly created, a threshold value is set to an initial level equal to L-1, where L is the
chromosome length. Then, offspring may be created by selecting pairs of parents (by any
method), followed by recombination and mutation. However, recombination only occurs if
the genetic distance (Hamming distance in implementation made for this chapter) between
the two parents is found to be above the threshold. If not, the recombination event is
considered as “failed” and another pair of chromosomes is selected until N/2 pairs have
tried to recombine (where N is the size of the population). When this process ends, the
amount of successful and failed recombination events is compared, and the threshold is
incremented if successful mating exceeds failed mating. Otherwise, threshold is
decremented (the process repeats if no mating succeeded). This way, the threshold is
indirectly controlled by the diversity of the population. After the reproduction cycle is
completed, a new population is created by selecting the N best members from the parents’
population and newly generated offspring (if a parent and a child have the same fitness then
the child is chosen). Parents and children compete together for survival, conducing to a
highly selective algorithm (VDMGA belongs to the class of steady-state GAs). The process
repeats until a stop criterion is reached.
VDMGA’s threshold value evolves in conformity with the genetic diversity of the
population. When diversity decreases, threshold tends to be decremented since the
frequency of unsuccessful mating will necessarily increase. However, the mutation operator
introduces some variability in the population which may result in occasional increments of
the threshold that moves it away from zero (if threshold reaches zero, all individuals are
allowed to crossover, like in random mating GAs). Tests performed on several functions
confirmed this predicted behavior (Fernandes & Rosa, 2008).
Two changes must be made on the original VDMGA presented in (Fernandes & Rosa, 2008)
in order to solve DOPs with an enhanced performance.

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

191

Algorithm 2: Variable Dissortative Mating Genetic Algorithm

initialize Population(P) with size(P) = N
evaluate Population(P)
set initial threshold(iT) /* iT ← L-1 for static problems; iT ← L/4 for DOPs*/
threshold(T) ← iT
 while (not termination condition)
 create new individuals P.new
 evaluate new individuals P.new
 if (static problem)
 P ← P+P.new
 remove worst individuals from population(P) until size(P) reaches initial size N
 end if

 if (DOP)
 replace size(P.new) worst individuals from population(P) by P.new
 end if

 end while

Procedure: create new individuals

 matingEvents ← N/2 /* N is the population size */
 successfulMatings ← 0
 failedMatings ← 0
 while (successfulMatings < 1) do
 for (i ← 1 to matingEvents) do
 select two chromosomes (c1, c2) /* Any method may be used here */
 compute Hamming distance H(c1, c2)
 if (H(c1, c2) >= T)
 crossover and mutate

 successfulMatings ← successfulMatings+1
 end if

 if (H(c1, c2) < T)
 failedMatings ← failedMatings +1
 end if

 end for
 if (failedMatings > successfulMatings) T ← T-1
 else T ← T+1
 end while

(1) In each time step, VDMGA builds an auxiliary pool of chromosomes, with parents and
offspring, and then creates the new population by selecting the best chromosomes from the
pool. This means that all newly created (and evaluated) individuals may be excluded from
the population (considering the “worst” case scenario). Since the study on DOPs performed
for this chapter assumes that changes not are detectable − and this is the most general
assumption, since changes are not always detectable (Branke, 2002) −, all individuals in the
population must be (re)evaluated in each generation, even if they have been created in a
previous generation. Individuals with fitness values corresponding to previous shapes of
the search space will mislead the search and modify performance metrics in a wrong

www.intechopen.com

 Advances in Evolutionary Algorithms

192

manner. (If changes were detectable, reevaluations would only be necessary when detecting
a change.) Therefore, when dealing with DOPs, it is better to introduce a larger number of
new individuals in VDMGA’s population, not only to diminish reevaluations, but also to
bring a larger amount of genetic material into the population. For that purpose, original
VDMGA replacement strategy is substituted by the following process: all new individuals
N’ are introduced in the new population, replacing the worst N’ old chromosomes − see
pseudo-code for details.
(2) The original initial threshold value was set to L-1, such that a strong exploratory
behavior is guaranteed to take place in the beginning of the search. Starting with L-1, results
showed that VDMGA self-regulates the threshold in the first generation according to the
conditions of the problem. The adaptive characteristic of the threshold and the robustness of
VDMGA to its initial value suggested that it might be convenient to treat threshold’s initial
value as a constant and let the algorithm self-tune the parameter, thus reducing the
complexity of the parameter’s space. Since the expected ratio of dissimilar alleles in two
random binary chromosomes is equal to 0.5 (considering infinite strings) it is likely that
during the first generation (t = 1) the threshold decreases to values around 0.5×L. On the
other hand, experimental results showed that the threshold value in the following
generations depends on population size (N) and length of the chromosome (L): tests
performed in (Fernandes & Rosa, 2008) show that the threshold value at the end of the first
generation varies from 49.4% and 67.5% of the chromosome length L depending on N and L.
As stated before, VDMGA needs to (re)evaluate all the old chromosomes in the population
in order to deal with DOPs. If the algorithm passes through an initial stage, during which
few new chromosomes are created, until it reaches a more stable threshold value, then a
prohibitive number of reevaluations are performed, delaying the algorithm and
compromising the first stage of optimization, especially when the changes occur fast. For
that reason, initial threshold value is set to a lower value when the problem is dynamic. A
value bellow 0.5×L is sufficient. In the tests performed for this study and described in the
following sections, initial threshold was set to 0.25×L.

5. Performance and scalability on static environments

In (Fernandes & Rosa, 2008), VDMGA was subject to a wide range of experiments on some
optimization functions frequently found in EAs literature. The test suite included unimodal
and multimodal functions (with and without regular arrangement of local optima), a step
function without local gradient information, scalable functions, high dimensional functions
and complex combinatorial functions. VDMGA was compared with traditional GAs, CHC
(Eschelman, 1991) and nAMGA (Fernandes et al., 2000). pAMGA (Fernandes et al., 2000)
was also included in the tests in order to compare analogous dissortative and assortative
mating strategies and demonstrate that the former are more efficient in solving the proposed
optimization problems. Overall results displayed VDMGA’s superior performance when
compared to other GAs (while statistically equivalent to nAMGA in some functions,
VDMGA proved to be more efficient when facing the harder problems). Please refer to
(Fernandes & Rosa, 2008) for a detailed description of the test set and results.
A simple scalability test is also provided in (Fernandes & Rosa, 2008). Using the 4-bit fully
deceptive function (Whitley, 1991), results confirm the assumption that VDMGA’s optimal
population sizes are smaller than standard GA’s. Consequently, the slope of the scalability
log-log curve is reduced in VDMGA when compared with a generational GA and a steady-

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

193

state GA, even if only by a small amount. For this chapter, VDMGA’s scalability is
investigated in l-trap function. The main interest is to perceive how VDMGA reacts to
increasing the number of l-traps that are juxtaposed and summed together.

5.1 Trap functions and VDMGA’s scalability

To investigate how VDMGA’s scales on landscapes with different characteristics,
experiments were conducted with trap functions, which were used as subproblems to
construct larger problems. A trap function is a piecewise-linear function defined on
unitation (the number of ones in a binary string). There are two distinct regions in search
space, one leading to a global optimum and the other leading to the local optimum (see
figure 2). In general, a trap function is defined as in equation 1.

()()trap u x =
f ⎧

⎪
⎨
⎪⎩

()() ()

()()

,

,

a
z u x if u x z

z

b
u x z otherwise

l z

− ≤

−
−

f f

f
 (1)

where ()u x
f

 is the unitation function, defined as:

() ()1 1 1
0

, ... , ...
L

L i
i

u x u x x x x x
=

= = + =∑
f

 (2)

and a is the local optimum, b is the global optimum, l is the problem size (l-bit trap function)
and z is slope-change location separating the attraction basin of the two optima as depicted
in figure 1.

Fig. 1. Generalized l-trap function.

Depending on the parameter setting, trap functions may be deceptive or not. Deceptive
problems are functions where low-order building-blocks do not combine to form higher
order building-blocks. Instead, low-order building-blocks may mislead the search towards
local optima, thus challenging GA’s search mechanisms. For a trap function to be deceptive,
the ratio r between the local (a) and global (b) optimum must be so that:

1
2

1
2

L zr

z

−
−≥

−
 (3)

In the experiments, 2-bit, 3-bit and 4-bit trap functions were defined with the following
parameters: a = l-1; b = l; z = l-1. This way, equation 1 may be simplified:

www.intechopen.com

 Advances in Evolutionary Algorithms

194

(4)

Please note that with these settings, the ratio r of the 2-trap function is bellow the deception
threshold, while 4-trap is fully deceptive since the condition of equation 3 is satisfied. The
ratio of the 3-trap function is equal to the threshold, which means that the function lies in
the region between deceptive and non-deceptive. Under these conditions, it is possible to
investigate not only how standard GAs and VDMGA scale on l-trap functions, but also to
observe how that scaling varies when moving from non-deceptive to fully deceptive search
spaces. For that purpose, L-bit decomposable functions were constructed by juxtaposing m
trap functions and summing the fitness of each sub-function to obtain the total fitness:

(5)

For each trap and each size m, a standard generational GA (GGA) and VDMGA were run

with several values of population size N. Starting from N = 4, optimal population size was

determined by the bisection method (Sastry, 2001). The success rate (percentage of runs in

which the global optimum was attained) and the average evaluations needed to find the

solution (Average Evaluations to a Solution - AES) were measured. Each configuration was

executed for 50 times and the results are averaged over those runs. The best configuration

was defined as the one with 98% success rate and lower AES. Then, AES optimal population

size values corresponding to the best run were plotted and the resulting log-log graphics are

depicted in figure 2. The algorithms were tested with uniform crossover and no mutation.

Crossover probability, pc, was set to 1.0. Selection method is binary tournament (kts = 1.0).

(Please note that without mutation it is simply required that one bit is set to 0 or 1 in the

entire population for the run to be declared not successful.)

2-trap 3-trap 4-trap

Fig. 2. Scalability with trap functions. Optimal population size and AES values for different
problem size L = l×m.

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

195

When solving 2-trap functions the algorithms behave similarly, but when the trap
dimension increases to 3 and 4, the differences in the scalability is much more noticeable.
The difficulty that deceptive trap functions pose to GAs is rather clear when noticing that
GGA optimal population size values are close to search space size, that is, 2L, when solving
4-trap functions. VDMGA significantly reduces the slope of the scalability curve, revealing a
good ability to maintain diversity and recombine information in order to achieve the higher
order building-blocks. Since VDMGA maintains genetic diversity at a higher level, smaller
populations are sufficient to find the global optimum, and thus fewer evaluations are
required to converge to that same optimal solution.
VDMGA is a steady-state algorithm, and due to its structure, most of the generations keep
the best solutions in the population. When compared to a GGA, which holds no elitism and
the offspring completely replaces the parents’ population, it is expected that it scales better.
To avoid any misinterpretation of the results provided by VDMGA, another scalability test
was performed to compare the algorithm with a GGA with 2-elitism (2-e), and a steady-state
GA (SSGA) in which half of the population is replaced by the offspring (the worst
chromosomes in the current population are replaced by N/2 newly generated
chromosomes). Results, presented in figure 3, show that both SSGA and GGA 2-e maintain a
better scalability than GGA when raising the size of the trap from 2 to 4. In addition, SSGA
keeps its performance very close to VDMGA when solving not only 2-traps, but also 3-traps.

2-trap 3-trap 4-trap

Fig. 3. Scalability with trap functions. Comparing VDMGA with an elitist generational GA
(GGA 2-e) and a steady-state GA (SSGA).

However, when reaching 4-trap functions, it is clear that VDMGA scales better than elitist
GGA and SSGA. It may be assumed now that this improved scalability is to a great extent
due to the fact that VDMGA maintains a higher diversity during the run (Fernandes & Rosa,
2008), and not to its steady-state nature. Scalability tests are very important and useful
because when tackling real-world problems, the algorithm may be requested to codify
solutions in extremely large binary strings. If the GA does not scale well, optimization
becomes practically impossible above a certain problem size. Scalability issues have been
increasingly raising the interest of EAs research community, especially amongst EDAs
(Pelikan, Goldberg & Lobo, 1999; Lorrañga & Lozano, 2002) researchers.

6. VDMGA on dynamic optimization problems

The test environment proposed in (Yang & Xao, 2005) was used to create an experimental

setup for VDMGA on DOPs. Given a stationary problem () }{()0,1
L

f x x∈ where L is the

chromosome length, the dynamic environments may be constructed by applying a binary

mask }{M 0,1
L

∈ to each solution before its evaluation in the following manner:

www.intechopen.com

 Advances in Evolutionary Algorithms

196

() ()(), XOR Mf x t f x k= (6)

Where t is the generation index,
t

k
τ

= is the period index and f(x,t) is the fitness of solution

x. M(k) can be incremently generated as follows:

M(k)= M(k-1) XOR T(k) (7)

where T(k) is an intermediate binary mask for every period k. This mask T(k) has ρ× L ones,

where ρ is a value between 0 and 1.0 which controls the intensity or severity of change.

Notice that ρ = 0 corresponds to a stationary problem since T vectors will carry only 0’s and

no change will occur in the environment. On the other hand, ρ = 1 will guarantee the highest

degree of change, that is, for instance, if a solution to a problem is a vector of 1’s, then the

dynamic solution will oscillate between a vector of 1’s and a vector of 0’s. Therefore, by

changing ρ and τ in the previous set of equations it is possible to control two of the most

important features when testing algorithms on DOPs: severity (ρ) and speed (τ) of change

(Angeline, 1997).

The generator was applied to trap functions. GGA 2-e and SSGA were tested in order to
compare them with VDMGA. It is not the aim of this study to compare VDMGA with the
best GAs in solving DOPs, even because there is hardly any evidence of a GA that
consistently outperforms any other in a wide range of problems and dynamics. Instead, the
study of the effects of VDMGA’s diversity maintenance on its behavior on dynamic
environments is the main aim of this section: the way dissortative mating may be used in
order to improve GAs performance and on which kind of DOPs that improvement is more
noticeable. Nevertheless, a commonly used algorithm on dynamic optimization studies was
added to the test bench: RIGA (see section 3). Two variations were tested. In RIGA 1, the
immigrants replace randomly selected individuals from the population, while in RIGA 2 the
rr immigrants replace the worst rr individuals in the population. (Both RIGA were
implemented with 2-elitism. Non-elitist GAs were tested but the performance on trap DOPs

was very poor. VDMGA outperformed non-elitist GAs on every problem and (ρ, τ)
configuration, but such a test is clearly unfair to standard and Random Immigrants GAs.
All the algorithms were tested with N = 240, pc = 1.0, uniform crossover and binary
tournament (kts = 1). Performance was measured by comparing the mean best_of_generation:

(8)

where T is the number of generations and R is the number of runs (30 in all the

experiments). Several tests were conducted by varying severity (ρ) and speed (τ) of change:

ρ was set to 0.05, 0.6 and 0.95; speed of change τ was set to 10, 100 and 200 generations. This

means that 9 kinds of environmental changes were tested for each function and algorithm.

Every environment was tested with 10 periods of change, thus making

T = 100 for τ = 10, T = 1000 for τ = 100 and T = 2000 for τ = 200. Since it is expected that the

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

197

optimal mutation rate is not equal for every GA in the test bench, it is of extreme importance

to test the algorithms with different pm. Values ranged from 0.5/L to 5/L and the results

displayed on tables 1-3 correspond to best configurations (best configurations were

determined by averaging the nine performance values). In order to properly compare the

algorithms it is imperative that each GA performs the same number of function evaluations

in each generation. Otherwise, during each period between changes, different GAs may be

requiring different computation effort. For that reason, RIGAs population size must be set to

N-rr, because RIGA performs extra rr evaluation in each time step. For RIGA’s tests in this

section, rr was set to 24, therefore, N is equal to 216. In addition, since this study assumes

that changes in the environment are not detectable, all chromosomes must be evaluated in

each generation, even those that have already been evaluated in a previous generation, as in

VDMGA (please remember that VDMGA is a steady-state algorithm, that is, parents and

children may belong to the same population). For the same reason, SSGA also reevaluates

the fraction (half) of the population that has not been replaced by children. (GGA, due to its

2-elitism, must also reevaluate, in each generation, the two best chromosomes in the

population.) This way, VDMGA always performs N fitness calculations in each generation

but only a fraction of those evaluations are performed on new individuals. This feature is

expected to penalize VDMGA’s performance on DOPs with very fast changes (low τ), since

it may happen that for some periods of time only a small amount of new genetic material

(new individuals) are inserted in the population in each generation. Actually, this outcome

is confirmed on the first test, performed on 3-trap functions.

Table 1 shows the results obtained by the various GAs on a function constructed by
juxtaposing ten 3-trap subfunctions (L = 30). A statistical comparison was carried out by t-
tests with 58 degrees of freedom at a 0.05 level of significance. The (+) signs means that the
corresponding algorithm is significantly better than VDMGA on that particular

configuration of ρ and τ. A (~) sign means that the performance is statistically equivalent
and (−) sign means that the GA performs worst than VDMGA. A general observation of

table 1 shows that only when τ = 10 the GAs consistently outperform VDMGA. With lower
speed, VDMGA has always a better performance than the other algorithms in the test bench
when ρ = 0.6 and ρ = 0.95, being statistically equivalent when ρ = 0.05. This was an expected
outcome, due to what was stated above about VDMGA’s ration between function
evaluations in each time step and new chromosomes inserted in the population.
Table 2 shows the results with 4-trap functions (L = 12). Values appear to be more balanced
in this case: all the algorithms perform similarly, but when increasing the size of the
problem to L = 24 – see table 3 −, VDMGA improves its performance when compared to

other GAs when τ = 100 and τ = 200 (please remember that VDMGA is expected to face
some difficulties when facing fast changing environments. However, the algorithm

performs well in 12-bit and 24-bit 4-trap function when ρ = 0.05 and τ = 10.)
An unexpected result occurs when speed of change is slow and ρ = 0.95. For instance, when

τ = 200, RIGAs outperforms VDMGA. But when looking at the dynamic behavior of the
algorithms, in figure 4, a possible explanation arises for this particular result. Figure 4 shows
the dynamics of VDMGA, SSGA and RIGA 2 when tracking the extrema of 4-trap functions

(L = 24) by plotting the best_of_generation values over all generations. When ρ = 0.6 and τ =
200 the graphs shows that VDMGA becomes closer to the optimum (and results on table 3
confirm that VDMGA outperforms other algorithms). However, when increasing ρ to 0.95,

www.intechopen.com

 Advances in Evolutionary Algorithms

198

3-trap (L = 30) τ
ρ

GGA
(pm = 1/L)

SSGA
(pm = 1/2L)

RIGA 1
(pm = 1/L)

RIGA 2
(pm = 1/L)

VDMGA
(pm = 1/L)

10
0.05

26.06
±0.978 (+)

26.020
±0.506 (+)

25.938
±0.661 (+)

26.144
±0.819 (+)

25.319
±0.556

10
0.60

22.078
±0.266 (+)

21.467
±0.289 (+)

21.934
±0.305 (+)

21.952
±0.362 (+)

21.227
±0.280

10
0.95

23.937
±0.278 (+)

23.638
±0.326 (+)

23.832
±0.221 (+)

23.978
±0.237 (+)

22.877
±0.404

100
0.05

29.712
±0.090 (~)

29.656
±0.082 (~)

29.674
±0.145 (~)

29.664
±0.175 (~)

29.622
±0.103

100
0.60

26.293
±0.186 (−)

26.095
±0.257 (−)

26.322
±0.292 (−)

26.258
±0.300 (−)

26.444
±0.250

100
0.95

25.605
±0.137 (−)

25.730
±0.098 (−)

25.628
±0.163 (−)

25.597
±0.121 (−)

25.999
±0.242

200
0.05

29.851
±0.051 (~)

29.822
±0.075 (~)

29.849
±0.526 (~)

29.852
±0.056 (~)

29.821
±0.050

200
0.60

27.120
±0.200 (−)

26.972
±0.261 (−)

27.350
±0.225 (−)

27.314
±0.272 (−)

27.826
±0.170

200
0.95

25.838
±0.129 (−)

25.978
±0.096 (−)

25.802
±0.122 (−)

25.818
±0.180 (−)

26.211
±0.185

Table 1. Results on 3-traps (L = 30). Mean best_of_generation and corresponding standard
deviation values (results averaged over 30 runs).

4-trap (L = 12) τ
ρ GGA

(pm = 3/L)
SSGA

(pm = 3/L)
RIGA 1

(pm = 4/L)
RIGA 2

(pm = 4/L)

VDMGA
(pm = 2/L)

10
0.05

10.712
±0.215 (−)

11.307
±0.271 (~)

10.800
±0.171 (−)

10.782
±0.162 (−)

11.283
±0.254

10
0.60

10.800
±0.177 (+)

10.484
±0.176 (~)

10.783
±0.178 (+)

10.833
±0.179 (+)

10.585
±0.175

10
0.95

10.914
±0.213 (−)

11.360
±0.193 (~)

10.798
±0.174 (+)

10.825
±0.191 (+)

11.436
±0.204

100
0.05

11.653
±0.109 (−)

11.948
±0.031 (~)

11.700
±0.010 (−)

11.705
±0.088 (−)

11.957
±0.020

100
0.60

11.687
±0.089 (~)

11.661
±0.074 (~)

11.713
±0.020 (~)

11.725
±0.075 (~)

11.672
±0.060

100
0.95

11.710
±0.080 (~)

11.622
±0.076 (−)

11.735
±0.016 (~)

11.688
±0.068 (~)

11.696
±0.062

200
0.05

11.823
±0.066 (−)

11.981
±0.010 (~)

11.842
±0.012 (−)

11.843
±0.034 (−)

11.981
±0.012

200
0.60

11.842
±0.051 (~)

11.823
±0.027 (~)

11.847
±0.017 (~)

11.873
±0.035 (+)

11.831
±0.036

200
0.95

11.852
±0.049 (+)

11.691
±0.055 (−)

11.863
±0.014 (+)

11.864
±0.037 (+)

11.742
±0.028

Table 2. Results on 4-traps (L = 12). Mean best_of_generation and standard deviation values,
averaged over 30 runs.

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

199

4-trap (L = 24) τ
ρ SGA

(pm = 1/L)
SSGA

(pm = 2/L)
RIGA 1

(pm = 1/L)
RIGA 2

(pm = 1/L)

VDMGA
(pm = 3/L)

10
0.05

18.394
±0.355 (−)

19.710
±0.648 (~)

18.301
±0.340 (−)

18.417
±0.391 (−)

19.544
±0.345

10
0.60

18.270
±0.185 (+)

17.777
±0.311 (~)

18.142
±0.282 (+)

18.066
±0.282 (+)

17.703
±0.289

10
0.95

20.807
±0.200 (+)

20.489
±0.347 (+)

20.682
±0.230 (+)

20.747
±0.161 (+)

19.724
±0.284

100
0.05

19.136
±0.408 (−)

22.370
±0.629 (−)

19.091
±0.434 (−)

19.125
±0.583 (−)

23.421
±0.141

100
0.60

20.570
±0.242 (~)

20.630
±0.293 (~)

20.474
±0.233 (~)

20.593
±0.274 (~)

20.518
±0.323

100
0.95

21.465
±0.099 (~)

21.308
±0.103 (−)

21.418
±0.116 (~)

21.452
±0.076 (~)

21.472
±0.176

200
0.05

19.065
±0.140 (−)

23.385
±0.347 (−)

19.220
±0.760 (−)

19.430
±0.895 (−)

23.746
±0.0726

200
0.60

20.947
±0.267 (−)

21.058
±0.228 (−)

20.851
±0.294 (−)

20.800
±0.231 (−)

21.670
±0.175

200
0.95

21.509
±0.065 (+)

21.332
±0.136 (~)

21.503
±0.087 (+)

21.495
±0.082 (+)

21.354
±0.166

Table 3. Results on 4-traps. Mean best_of_generation and standard deviation values, averaged
over 30 runs.

the curves become much different. The shape of RIGA’s curve may be easily explained by

the characteristics of the trap functions used in this study: the global optimum of the

functions is the string with all 1’s and the local optimum is the string with all 0’s. RIGA is

stuck in a region of the search space and, when the environment changes dramatically (ρ =

0.95), what were once chromosomes near the global optimum local then become (nearly)

local optimum solutions. With 4-trap functions and L = 24, global optimum is 24 and local

optimum value is 18. Please note how RIGA oscillates between values near 24 and 18. The

algorithm is not able to track the optimum; it just “waits”, for the global optimum to pass by

every other period of change. Exclusively looking at mean best_of_generation values may

conduce to a misinterpretation of GAs abilities to solve DOPs.

Another aspect is worth notice. It is clear that RIGA 2 is not able to track the optima when

changes are small (ρ = 0.05), at least not as able as VDMGA and SSGA. Random material

inserted in the population is not an appropriate strategy to deal with an environment that

shifts only by a small amount. For ρ = 0.05 and low speed of change (τ = 100 and τ = 200)

VDMGA tracks the optima with much more ability than SSGA, even if it is slower in the

first stage of search: only three periods of τ generations are needed for VDMGA to track the

optima and remain close to it in the following periods. RIGA 2 appeared to perform well on

24-bit 4-trap when compared to other algorithms (table 3). However, a closer inspection, by

plotting the evolution of the tracking process, reveals that the algorithm fails when changes

are both small (ρ = 0.05) and severe (ρ = 0.95). VDMGA, on the other hand, maintains a

more stable performance trough all the different combinations of speed and severity of

change, being particular able to track the optimum when ρ = 0.05.

www.intechopen.com

 Advances in Evolutionary Algorithms

200

7. Genetic diversity and threshold dynamics

As described above, assortative and dissortative mating have effects on the frequency of

heterozygous and homozygous genotypes. Consequently, population diversity may also be

affected: dissortative tends to increase genetic diversity while assortative decreases it. This

may also be true when dealing with artificial systems such as GAs. Previous reports

 ρ = 0.05 ρ = 0.6 ρ = 0.95

τ= 10

τ=100

τ=200

Fig. 4. Dynamics when tracking 4-trap functions (L = 24). Best_of_generation curves.

(Fernandes & Rosa, 2001; Fernandes, 2002) show that the variation of diversity in GAs

populations is influenced by the chosen mating strategy. In (Fernandes & Rosa, 2008), a

study on genetic diversity also confirmed this assumption. To measure diversity, the

following equation was used:

d P

F F

L

i i

i

L

()

m in (,)

/
=

−
=
∑ 1

2

1

(9)

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

201

where ∑
=

=
N

j

ii jPF
1

)(and ()
⎪⎩

⎪
⎨
⎧

=
0,0

1,1

allelehasiechromossomofgenejif

allelehasiechromossomofgenejif

jP
th

th

i

Diversity was inspected on VDMGA, SSGA and RIGA 2. For that purpose, a problem with

ten 4-trap subfunctions was used (L = l×m = 4×10 = 40). Population size was set to 100, pc

was set to 1.0 (binary tournament selection and uniform crossover) and different mutation

rates pm were tested. The algorithms were run for 100 generations. Each run was repeated

for 30 times and the results are the average over those runs.

Fig. 5. Genetic diversity.

Graphics in figure 5 show similar results as in previous reports: VDMGA maintains a higher

diversity than SSGA, even when comparing different mutation rates. RIGA gets closer to

VDMGA’s diversity but, as depicted in figure 6, performance is much lower. By observing

the growth of the best fitness in the population, it is clear that RIGA 2 is outperformed by

SSGA, converging to a lower local optimum. On the other hand, VDMGA, although being

slower in a first stage of search, attains higher fitness values, which are still growing when t

= 100. These results illustrate how important are the genetic diversity maintenance schemes,

and not diversity maintenance itself. RIGA, although maintaining the diversity for a longer

period, is outperformed by SSGA on this particular test.

Fig. 6. Best fitness on 4-traps (L = 24).

A final test was conducted with the aim of investigating diversity when the environment

changes. For that purpose, a 4-trap DOP with L = 4 was used. GAs parameters were set as in

previous experiment. VDMGA’s diversity is compared with SSGA in figure 7 (only five

periods of change are shown in the graphs), for two configurations of (ρ, τ). As expected,

www.intechopen.com

 Advances in Evolutionary Algorithms

202

VDMGA maintains a higher diversity throughout the successive search periods, even with

lower mutation rates.

VDMGA’s threshold values during a run of each one of the previous experiments (ρ = 0.05

and τ = 100; ρ = 0.6 and τ = 200) may be seen in figure 8 (with pm = 1/L). The graphics

indicate that the threshold reacts to the changes in the environment when it is close to 0:

when the environment shifts, the threshold tends to increase. The explanation for this

outcome is simple and resides in the fact that after a change occurs, new genetic material

enters in a previously converged population, allowing the threshold to increase because

successful matings have also increase. An amplified threshold will then prevent mating

between similar individuals and continue to guarantee higher genetic diversity.

 VDMGA SSGA

ρ=0.05

τ = 100

ρ = 0.6

τ = 200

Fig. 7. SSGA and VDMGA’s diversity on dynamic 4-trap functions.

ρ = 0.05, τ = 100 ρ = 0.6, τ = 200

 Fig. 8. VDMGA’s threshold value. Mutation rate, pm = 1/L

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

203

8. Conclusions

This chapter presented a study on Genetic Algorithms (GA) with dissortative mating. A
survey on non-random mating was given, in which the most prominent techniques in
Evolutionary Computation literature were presented and described. In addition, a survey on
Bio-inspired Computation applied to Dynamic Optimization Problems (DOPs) was also
given, since DOPs was one of the main aims of the experimental study performed for this
chapter. The experiments were performed with the aim of checking the ability of Variable
Dissortative Mating GA (VDMGA) on tracking the extrema in dynamic problems. VDMGA,
presented in a recent work (Fernandes & Rosa, 2008), inhibits crossover when the Hamming
distance between the chromosomes is below a threshold value. The threshold is updated
(incremented or decremented) by a simple rule which is indirectly influenced by the genetic
diversity of the population: it tends to decrease when the amount of successful crossovers is
superior to the number of failed attempts in a generation; when the ratio of successful
recombination events rises, the threshold will have a tendency to increase. VDMGA holds
this mechanism without the need for further parameters than traditional GAs. In fact, the
parameters that need to be tuned are reduced to population size and mutation rate. In
addition, no replacement strategy has to be chosen: VDMGA is a steady-state GA in which
the number of new chromosomes entering the population in each generation is controlled
by the threshold value, genetic diversity and population’s stage of convergence.
Scalability tests were performed in order to investigate how VDMGA reacts to growing
problem size. Deceptive and non-deceptive trap functions were used for that purpose. The
algorithm was tested and compared with traditional GAs. Results showed that VDMGA
scales clearly better than other traditional GAs when the trap function is deceptive.
DOPs experiments demonstrated that in most of the cases, VDMGA is able to perform
equally or better than other GAs, except when the speed of change is high. In particular,
VDMGA outperformed, in general, the Random Immigrants GA, which a typical algorithm
used in DOPs studies to compare other methods performance. Statistical t-tests were
performed, giving stronger reliability to the conclusions.
A study on the genetic diversity was also performed. As expected, VDMGA maintains a
higher diversity throughout the run. The speed of the algorithm may be reduced in a first
stage of search (and that is one of the reasons VDMGA is not so able to solve fast DOPs), but
the diversity of its population gives it the ability to converge more often to the global
optimum.
VDMGA is a simple yet effective algorithm to deal with static and dynamic environments. It
holds no more parameters than a standard GA. When regarding DOPs, VDMGA may be
classified in the category of methods that preserve diversity in order to tackle DOPs (see
section 3). Thus, it avoids the complexity of methods that hold memory schemes (which in
general need rules and parameters to determine how to deal with memory), and the lower
range of problems in which algorithms that react to changes may be applied. Changes in
DOPs are not always detectable and a reaction to changes assumes that it is possible to
detect when the environment shifts.

9. Acknowledgments

First author wishes to thank FCT, Ministério da Ciência e Tecnologia, his Research Fellowship
SFRH/BD/18868/2004, partially supported by Fundação para a Ciência e a Tecnologia (ISR/IST
plurianual funding) through POS_Conhecimento Program that includes FEDER funds.

www.intechopen.com

 Advances in Evolutionary Algorithms

204

10. References

Angeline, P. (1997). Tracking Extrema in Dynamic Environments. Proceedings of the 6th
International Conference on Evolutionary Programming, Springer, pp. 335-345.

Arabas, J.; Michalewicz, Z.; Mulawka, J. (1994). GAVaPS – A genetic algorithm with varying
population size, Proceedings of the 1st IEEE Conference on Evolutionary Computation,
IEEE, Vol. 1: pp. 73-78.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice, Oxford University, New York.
Bak; P.; Tang, C.; K. Wiesenfeld, K. (1987). Self-organized criticality: an explanation of 1/f

noise. Physical Review of Letters, vol. 59, pp. 381-384.
Bak, P.; K. Sneppen (1993). Punctuated equilibrium and criticality in a simple model of

evolution. Physical Review of Letters, vol. 71, pp. 4083-4086.
Baluja, S. (1994). Population-Based Incremental Learning: A Method for Integrating Genetic

Search Based Function Optimization and Competitive Learning, Technical Report
CMU-CS-94-163, Carnegie Mellon University, USA.

Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization
problems. Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, pp.
1875-1882.

Branke, J. (2002), Evolutionary optimization in dynamic environments. Kluwer Academic
Publishers.

Branke, J.; Schmeck, H. (2002), Designing evolutionary algorithms for dynamic optimization
problems. Theory and Application of Evolutionary Computation: Recent Trends, A.
Ghosh and S. Tsutsui (editors), pp. 239-262.

Cobb, H.G. (1990). An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependent nonstationary
environments, Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA.

Craighurst R, Martin W (1995) Enhancing GA performance through crossover prohibitions
based on ancestry, Proceedings of the Sixth International Conference on Genetic
Algorithms, Morgan Kauffman, pp. 130-135.

De, S.; Pal, S.K.; Ghosh, A. (1998). Genotypic and phenotypic assortative mating in genetic
algorithm. Information Science 105: pp. 209-225.

Eschelman, L.J. (1991). The CHC algorithm: How to have safe search when engaging in non-
traditional genetic recombination, Proceedings of Foundations of Genetic Algorithms,
Academic Press, 1: pp. 70-79.

Eschelman, L.J.; Schaffer, J.D. (1991). Preventing premature convergence in genetic
algorithms by preventing incest. Proceedings of the fourth International Conference on
Genetic Algorithms, Morgan Kauffman, pp. 115-122.

Fernandes, C.M.; Tavares, R.; Rosa, A.C. (2000). NiGAVaPS – Outbreeding in genetic
algorithms, Proceedings of 2000 Symposium on Applied Computing, ACM, pp. 477-482.

Fernandes, C.M.; Tavares, T.; Munteanu, C.; Rosa, A.C. (2001). Using Assortative Mating in
Genetic Algorithms for Vector Quantization Problems, Proceedings of 2001
Symposium on Applied Computing, ACM, pp. 361-365.

Fernandes, C.M.; Rosa, A.C. (2001). A Study on Non-Random Mating in Evolutionary
Algorithms Using a Royal Road Function. Proceedings of the 2001 Congress on
Evolutionary Computation, IEEE, pp. 60-66.

Fernandes, C.M. (2002) Algoritmos Genéticos e Acasalamento não-aleatório, Msc dissertation
thesis, IST, Universidade Técnica de Lisboa, in Portuguese.

www.intechopen.com

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

205

Fernandes, C.M., Rosa, A.C. (2006). Self-Regulated Population Size in Evolutionary
Algorithms, Proceedings of 9th International Conference on Parallel Problem Solving from
Nature, LNCS 4193, 920-929.

Fernandes, C.M.; Rosa, A.C.; Ramos, V. (2007). Binary ant algorithm. Proceedings of the 2007
Genetic and Evolutionary Computation Conference, ACM, pp. 41-48.

Fernandes, C.; Rosa, A.C. (2008). Self-adjusting the intensity of dissortative mating of genetic
algorithms, Journal of Soft Computing, in press.

Fernandes. C.; Merelo J.J.; Ramos, V.; Rosa, A.C. (2008a). A self-organized criticality
mutation operator for dynamic optimization problems. to appear in Proceedings of
the 2008 Genetic and Evolutionary Computation Conference, ACM.

Fernandes C, Lima C, Rosa AC (2008b), UMDAs for Dynamic Optimization. to appear in
Proceedings of the 2008 Genetic and Evolutionary Computation Conference, ACM Press.

García-Martínez, C.; Lozano, M.; Molina, D. (2006). A Local Genetic Algorithm for Binary-
Coded problems, In T. Runarsson et al. (eds.), Proceedings of 9th International
Conference on Parallel Problem Solving from Nature, LNCS 4193, 192-201.

García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2008). Global and local
real-coded genetic algorithms based on parent-centric crossover operators,
European Journal of Operational Research, 185(3): pp. 1088-1113.

Glover, F. (1986). Future paths for Integer Programming and Links to Artificial Intelligence,
Computers and Operations Research, 5: pp. 533-549.

Grefenstette, J.J. (1992). Genetic algorithms for changing environments, Proceedings of Parallel
Problem Solving from Nature II, North-Holland, pp. 137-144.

Goldberg, D.E.; Smith, R.E. (1987). Nonstationary function optimization using genetic
algorithms with dominance and diploidy, Proceedings of the 2nd International
Conference on Genetic Algorithms, ACM, pp. 59-68.

Guntsch, M.; Middendorf, M. (2002). Applying population based ACO to dynamic
optimization problems. Proceedings of 3rd International Workshop ANTS 2002,
Springer, pp. 111-122.

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report
No. 99010, Illinois Genetic Algorithms Laboratory.

Hillis, W. (1992). Co-evolving parasites improve simulated evolution as an optimization
procedure, Artificial Life II, Addison-Wesley, pp. 313-324.

Huang, C.; J. Kaur, A.; Maguitman, L.; Rocha, L. (2007). Agent-based model of genotype
editing, Evolutionary Computation, MIT Press, pp. 253-289.

Jaffe, K. (1999). On the adaptive value of some mate selection techniques, Acta Biotheoretica,
47: pp. 29-40.

Lorrañga, P.; Lozano, J.A. (2002). Estimation of distribution algorithms: A new tool for
evolutionary computation. Boston: Kluwer Academic Publishers, Boston.

Louis, S.J.; Xu, Z. (1996). Genetic Algorithms for open shop scheduling and rescheduling.
Proceedings ofg the 11th International Conference on Computers and their Applications,
pp. 99-102.

Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. (2004). Real coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation Journal, 12(3): pp. 273-302.

Matsui K (1999) New selection method to improve the population diversity in genetic
algorithms, In: Proceedings of the 1999 IEEE International Conference on Systems, Man,
and Cybernetics.

Mauldin, M. (1984). Maintaining genetic diversity in genetic search, National Conference on
Artificial Intelligence, AAAI, pp. 247-250.

www.intechopen.com

 Advances in Evolutionary Algorithms

206

Mitchell, M. (1994). When will a GA outperform hillclimbing? Advances in Neural Information
Processing Systems, 6: pp. 51-58.

Ochoa, G.; Madler-Kron, C.; Rodriguez, R.; Jaffe, K. (1999). On sex, selection and the Red
Queen. Journal of Theoretical Biology 199: pp. 1-9.

Ochoa, G.; Madler-Kron, C.; Rodriguez, R.; Jaffe, K. (2005). Assortative mating in genetic
algorithms for dynamic problems. Proceedings of the 2005 EvoWorkshops, LNCS 3449,
pp. 617-622.

Ochoa, G. (2006). Error Thresholds in Genetic Algorithms. Evolutionary Computation, 14(2):
pp. 157-182.

Ochoa, G.; Jaffe, K. (2006). Assortative Mating Drastically Alters the Magnitude of Error
Thresholds. Proceedings of 9th International Conference on Parallel Problem Solving from
Nature, LNCS 4193, pp. 890-899.

Pelikan, M.; Goldberg D.; Lobo, F. (1999). A Survey of Optimization by Building and Using
Probabilistic Models. Technial Report 99018, University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory (IlliGAL), IL, USA.

Sastry, K. (2001). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master's
thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Petrowski, A. (1997). A new selection operator dedicated to speciation, Proceedings of the 7th
International Conference on Genetic Algorithms, Morgan Kauffman, pp. 144-151.

Ramos, V.; Fernandes, C.; Rosa, A.C. (2005). On self-regulated swarms, societal memory,
speed and dynamics. Proceedings of ALifeX, MIT Press, pp. 393-399.

Ronald, E. (1995). When selection meets seduction. Proceedings of the 6th International
Conference on Genetic Algorithms, Morgan Kauffman, pp. 167-173.

Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology, Prentice-Hall.
Russel, P.J. (1998). Genetics. Benjamin/Cummings.
Ting, C; Sheng-Tu, L.; Chungnan, L. (2003). On the harmounious mating strategy through

tabu search. Journal of Information Sciences, 156(3-4): pp. 189-214.
Tinós, R; Yang, S. (2007). A self-organizing random immigrants genetic algorithm for

dynamic optimization problems. Genetic Programming and Evolvable Machines, 8: pp.
255-286.

Todd, P.M.; Miller, G.F. (1991). On the sympatric origin of species: Mercurian mating in the
quicksilver model. Proceedings of the IV International Conference on Genetic Algorithms,
Morgan Kaufmann, pp. 547-554.

Wagner, S.; Affenzeller, M. (2005). SexualGA: Gender-specific selection for genetic
algorithms. Proceedings of the 9th World Multiconference on Systemics, Cybernetics and
Informatics, vol.4, pp. 76-81.

Whitley, D. (1988). GENITOR: a different genetic algorithm. Proceedings of the Rocky
Mountain Conference on Artificial Intelligence, pp. 118-130.

Whitley, D. (1991). Fundamental principles of deception in genetic search. Foundations of
Genetic Algorithms, 1: pp. 221-241.

Yang, S.; Yao, X. (2005). Experimental Study on population-based incremental learning
algorithms for dynamic optimization problems. Journal of Soft Computing, 9(11): pp.
815-834.

Yang, S. (2005). Memory-enhanced univariate marginal distribution algorithms. Proceedings
of the 2005 Congress on Evolutionary Computation, ACM, pp. 2560-2567.

Zlochin, M.; Birattari, M.; Meuleau, N.; Dorigo, M. (2004). Modelbased search for
combinatorial optimization: A critical survey. Annals of Operations Research, 131: pp.
373-395.

www.intechopen.com

Advances in Evolutionary Algorithms

Edited by Xiong Zhihui

ISBN 978-953-7619-11-4

Hard cover, 284 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the recent trends towards massive data sets and significant computational power, combined with

evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim

of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carlos M. Fernandes and Agostinho C. Rosa (2008). Evolutionary Algorithms with Dissortative Mating on Static

and Dynamic Environments, Advances in Evolutionary Algorithms, Xiong Zhihui (Ed.), ISBN: 978-953-7619-11-

4, InTech, Available from:

http://www.intechopen.com/books/advances_in_evolutionary_algorithms/evolutionary_algorithms_with_dissort

ative_mating_on_static_and_dynamic_environments

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

