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1. Introduction 

Evolutionary Algorithms (EAs) (Bäck, 1996) mimic the process of natural selection by 
recombining the most promising solutions to a problem from a population of individuals, 
each one representing a possible solution. There are several methods to select the 
individuals, but all of them follow the same general rule: good (or partially good) solutions 
must be chosen more often for recombination events than poorer solutions. In traditional 
Genetic Algorithms (GAs), for instance, the chromosomes are recombined via a crossover 
operator over a certain number of generations until a stop criterion is reached. The parents 
are selected according to their fitness values, that is, better solutions have larger probability 
to be chosen to generate offspring. By considering merely the quality of solutions 
represented in the chromosomes when selecting individuals for mating purposes, the 
traditional GAs emulate what, in nature, is called random mating (Roughgarden, 1979; 
Russel, 1998), that is, mating chance is independent of genotypic or phenotypic distance 
between individuals.  
However, random mating is not the sole mechanism of sexual reproduction observed in 
nature. Non-random mating, which encloses different kinds of strategies based on parenthood 
or likeness of the agents involved in the reproduction game, is frequently found in natural 
species, and it is believed to be predominant among vertebrates. Humans, for instance, mate 
preferentially outside their family tree: this non-random mating scheme is called outbreeding 
and has its opposite in inbreeding, a selection strategy where individuals mate preferentially 
with their relatives (Roughgarden, 1979; Russel, 1998). It is often stated that inbreeding 
decreases the genetic diversity in a population while outbreeding increases that same 
diversity (Russel, 1998). In addition, inbreeding will increase the normal rate of a harmful 
allele present in the family. If inbreeding is extensive and intensive, homozygosity will 
increase in frequency and the family experiences a growth in the genetic load (measure of all 
of the harmful recessive alleles in a population or family line) of the harmful allele.  
Assortative mating is another non-random mating mechanism, in which individuals choose 
their mates according to phenotypic similarities (Roughgarden, 1979; Russel, 1998). When 
similar individuals mate more often than expected by chance, we are in presence of positive 
assortative mating (or assortative mating in the strict sense). When dissimilar individuals O
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mate more often, the scheme is called negative assortative mating (or dissortative mating). In 
humans, assortative mating is well exemplified by the correlation between heights or 
intelligence in partners. On the other hand, humans do not mate assortatively with respect 
to blood groups. This kind of behavior, which selects assortatively for some traits and not 
others, makes it difficult to unmask the effects of assortative mating in the population. In 
fact, human assortative mating is not completely positive except for some small and isolated 
communities (the Old Order Amish, for instance). 
Positive assortative mating results in an average increase in homozygosity and in an 
increase in population variance. However, this does not mean that genetic diversity is 
increasing. In fact, this type of mating may result in highly distinct cluster of similar 
genotypes, thus playing a crucial role when speciation without geographic barriers occurs 
(sympatric speciation) (Todd & Miller, 1991). Dissortative mating, on the other hand, has the 
primary consequence of a progressive increase in the frequency of heterozygous genotypes; 
the increase in the diversity of the population is a direct consequence of these changes in the 
genotype frequencies. Evidences show that mating is very unlikely to be random in nature 
and may have the potential to act as an evolutionary agent, although its effects are very 
complex and hard to model and analyze (Jaffe, 1999). Even so, artificial life models 
presented by Jaffe (1999) and Ochoa et al. (1999) shed some light into the subject, and gave 
empirical support to the hypothesis that mating is not likely to be random in nature and that 
assortative and dissortative mating may produce higher survival rates among individuals 
evolving in, static and dynamic environment, respectively. While in dynamic landscapes 
genetic variability is fundamental to a quick and effective response to changes, in static 
environments diversity is not so important. In fact, natural organisms move towards an 
optimal degree of genetic variability that depends on the environment, via some mating 
scheme. Environment itself appears to guide the evolution of mating strategies. 
In Evolutionary Computation (Bäck, 1996), selective pressure and genetic diversity are two 
major topics, probably those of primary importance (Whitley, 1988). Pressure and diversity 
are closely related to the delicate equilibrium between exploration and exploitation needed 
in order to have “safe” search in EAs. Therefore, non-random mating naturally came out in 
EAs research field in order to deal with the problem of genetic diversity and premature 
convergence: some efficient algorithms appeared, especially when applied to problems 
where the genetic diversity is needed in order to maintain exploration high and avoid local 
optima traps. In addition, diverse search stages usually call for different balance between 
exploration and exploitation mechanisms. To an initial strong explorative stage, the 
algorithm gradually must enter a more exploitive phase, where the neighborhood of good 
solutions found so far is inspected in order to reach the global optimum. When the 
problem’s environment change over time, that is, when dealing with dynamic optimization, 
genetic diversity becomes even more important, since full convergence must be avoided: the 
algorithm must maintain sufficient diversity to readapt itself to a change in the fitness 
function, even if it has converged to the current optimum. In dynamic environments, it is 
often more important to track the best solution than to converge, that is, it may be sufficient 
to keep the population near the optimum, even if returning only near-optimal solution, thus 
avoiding the risk of a full convergence in a specific period of the search, which would 
reduce the possibilities of readaptation after a change.  
Very often recombination is associated with exploitation while mutation is said to play a 
determinant role in exploration by preventing alleles becoming extinct. While this appears 
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to be true, it may have misled some researches towards assortative mating instead of 
dissortative, because of the higher exploitation performed by the first strategy. If similar 
individuals tend to mate, it is more likely that their neighboring space is closely inspected. 
On the other hand, several studies on dissortative mating showed empirical evidence that 
this scheme is more adapted to a wide range of problems, both static and dynamic 
(Craighurst & Martin, 1995; Eschelman, 1991; Eschelman & Schaffer, 1991; Fernandes et al., 
2000, 2001; Fernandes & Rosa 2001; Fernandes, 2002; García-Martínez et al., 2007; Matsui, 
1999; Ochoa et al., 2005) − see next section for a state-of-the-art review.  
This chapter proposes a review and an empirical study on EAs with dissortative mating 
strategies and their application to static and dynamic problems. Dissortative mating will be 
discussed within a biological framework and some Artificial Life models will be analyzed; a 
detailed description of several methods found in EAs literature will be also given. The 
empirical study will be centered on the Variable Dissortative Mating GA (VDMGA), which 
was recently presented in (Fernandes & Rosa, 2008) by the authors of this chapter. VDMGA 
holds a mechanism that varies GA’s mating restrictions during the run, by means of a 
simple rule based on the number of chromosomes created in each generation and indirectly 
influenced by the genetic diversity of the population. The empirical study presented in 
(Fernandes & Rosa, 2008) shows that VDMGA performs well when applied to a wide range 
of problems: it consistently outperforms traditional GAs and assortative mating GAs, and it 
is faster and more robust than some previously proposed dissortative mating GAs. Results 
suggest that VDMGA’s ability to escape local optima and converge more often to the global 
solution may come from maintaining the genetic diversity at a higher level when compared 
with traditional GAs. VDMGA’s genetic diversity naturally leads the research towards the 
application of the algorithm on Dynamic Optimization Problems (DOPs). Due to their 
specific characteristics, DOPs require additional tools, many of them different from those 
widely studied by EAs researchers on static problems. Memory schemes and niching 
(Branke & Schmeck, 2002) are some of the techniques used to tackle DOPs. Strategies for 
maintaining genetic diversity and/or introducing novelty in the EAs populations are also 
very efficient strategies when solving dynamic problems (Branke & Schmeck, 2002). In this 
chapter, the original VDMGA is subject to minor modifications, and then applied to DOPs 
benchmarks and compared to other GAs. The results confirm the predictions and show that 
VDMGA may improve other GAs’ performance on changing environments. As already been 
observed when tackling static fitness functions (Fernandes & Rosa, 2008), dissortative 
mating, via a simple and easily tunable algorithm with diversity preservation, reveals 
interesting skills when evolving in dynamic environments. 

2. Non-random mating evolutionary algorithms 

This section describes some EAs with outbreeding, assortative and dissortative mating 
strategies found in the literature. A special emphasis is given to the ones that, to the extent 
of the authors of this chapter knowledge, were seminal in their line of work, and to those 
that preceded (or are, at some level, related to) VDMGA. 
In the GA with outbreeding described in (Craighurst, 1995), individuals with a certain 
degree of parenthood are not allowed to recombine and generate offspring. An incest 
prevention degree is defined in the beginning of the run and remains unchanged until the 
convergence criterion is fulfilled. This degree defines how far back in the family tree of an 
individual the GA must inspect in order to prevent the recombination events. This policy 
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does not completely restrict mating between similar individuals, but it sure decreases its 
frequency since related individuals tend to share a large amount of common alleles. Tests 
(Craighurst, 1995) compare the outbreeding GA with a standard GA when applied to the 
Traveling Salesman Problem. The non-random mating algorithm outperformed the 
standard GA but the differences in the algorithms’ performances were noticed mainly with 
low mutation rates. This is not surprising since incest prohibition is supposed to maintain 
the genetic diversity of the population at a higher level for longer periods, thus reducing the 
need for mutation to introduce genetic novelty into converging populations. Fernandes et al. 
(2000) combined the outbreeding strategy proposed in (Craighurst, 1995) with a varying 
population size GA (Arabas, 1994) to create the non-incest Genetic Algorithm with Varying 
Population Size (niGAVaPS). The results showed that the two mechanisms worked together 
well in order to find the optimum of Four Peaks and Royal Road R4 functions. Tests made 
with the algorithm ranging through different degrees of incest prohibition showed 
improvements in the capability of escaping local optima when the individuals are not 
allowed to mate with their parents and siblings.  
There are several studies indicating that dissortative mating may improve EAs performance 
by maintaining the genetic diversity of the population at a higher level during the search 
process. For instance, CHC (Eschelman, 1991; Eschelman & Schaffer, 1991) which stands for 
Cross generational elitist selection, Heterogeneous Recombination and Cataclysmic Mutation, is a 
variation of the standard GA that holds a simple mechanism of dissortative mating which 
has given proofs of being rather effective in a wide range of problems. Although the title in 
(Eschelman & Schaffer, 1991) may suggest that CHC is an outbreeding GA, a closer look 
reveal that the algorithm uses a dissortative mating strategy in order to prevent premature 
convergence. CHC uses no mutation in the classical sense of the concept, but instead it goes 
through a process of macro-mutation (or hyper-mutation) when the best fitness of the 
population does not change after a certain number of generations. The genetic diversity is 
assured by a highly disruptive crossover operator, the Half Uniform Crossover (HUX) 
(Eschelman & Schaffer, 1991), and a reproduction restriction that assures that selected pairs 
of chromosomes will not generate offspring unless their Hamming Distance is above a 
certain threshold. CHC search process goes as follows. In each generation, p/2 pairs of 
chromosomes are randomly selected from the population with size p. All pairs are 
submitted to the reproduction process. First, their Hamming distance is computed. If the 
value is found to be above the threshold then the chromosomes generate two children with 
the HUX operator. When the process is concluded, the newly generated population of p’ 
offspring replaces the worst chromosomes in the main population, therefore maintaining the 
size of the population. The threshold is usually set in the beginning of the runs to ¼ of the 
chromosome length, and decremented when no offspring is generated. When the algorithm 
is stuck in local optima, a cataclysmic mutation is applied by replacing the entire 
population, except the best chromosome, with mutated copies of that individual.  
The Assortative Mating GA (AMGA) was introduced in (Fernandes et al., 2001). The only 
difference between AMGA and a standard GA is the way parents are selected for 
recombination. In each recombination event one parent (first parent) is select by any 
traditional method. Then, a set of n individuals is selected by the same method. After 
computing the similarity between the first parent and all the n individuals in the set, the 
second parent is chosen according to the type of assortative mating in progress. If the 
algorithm is the positive Assortative Mating GA (pAMGA) the individual more similar to the 
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first parent is chosen. With the negative Assortative Mating GA (nAMGA) the individual less 
similar is chosen as the second parent (please remember that negative assortative is the 
same as dissortative). The intensity of the non-random mating scheme may be controlled by 
the size of the set of candidates to the second parent position. Increasing n increases the 
frequency of mating between dissimilar (if negative assortative) or similar (if positive) 
individuals. Experiments with the algorithm solving a vector quantization problem showed 
pAMGA and standard GA performed similarly, while nAMGA outperformed both 
(Fernandes et al., 2001). Increasing the size of the candidates set resulted in higher success 
rates (number of runs in which the global optima was found) of nAMGA. In (Fernandes & 
Rosa, 2001), the algorithm was combined with a varying population size mechanism, tested 
with a Royal Road (R4) function (Mitchell, 1994) and compared with a standard GA and the 
niGAVaPS (Fernandes et al., 2000). The negative assortative mating (or dissortative mating) 
strategy has proven to be more able in escaping Royal Road’s local optima traps. pAMGA 
was also tested under the same conditions but its performance was clearly inferior to 
standard GA. 
A similar idea was tested by Ochoa et al. (2005) on dynamic environments. The authors 
tested haploid and diploid GAs with assortative mating (where parents are selected as in 
AMGA) on a knapsack problem with moving extrema, and nAMGA was more able to track 
dynamic optima. Standard GA often failed to track the optima but the worst performance 
was attained by pAMGA. In general, the haploid algorithms produced better results than 
the diploid ones. The authors also discuss the optimal mutation rate for different strategies. 
By means of exhaustive tests, they concluded that the optimal mutation rate increases when 
the mating strategy goes from negative (dissortative) to positive assortative. These results 
were predictable: dissortative mating is supposed to maintain the population diversity at a 
higher level, reducing the amount of mutation needed in order to prevent the premature 
convergence of the population. In this line of work, the same authors proposed a study on 
the error threshold of replication in GAs with different mating strategies (Ochoa, 2006; 
Ochoa & Jaffe, 2006). The error threshold is a critical mutation rate beyond which structures 
obtained by an evolutionary process are destroyed more frequently than selection can 
reproduce them. By evolving a GA on four different fitness landscapes, the authors first 
conclude that recombination shifts the error threshold toward lower values. Then, the tests 
show that assortative mating overcomes this effect by increasing the error threshold, while 
the dissortative strategy pushes the error into lower values. The authors argue that this 
study may have effects on both natural and artificial systems since it supports the 
hypothesis that assortative mating overcomes some of the disadvantages inherent to sex. 
They also intend to shed some light into the relation between mutation rates and mating 
strategies in EAs. This last issue is directly related with the idea that assortative mating 
increases the optimal mutation rate of an EA, while dissortative strategies decreases it. This 
behavior has already been observed in (Fernandes, 2002) and (Ochoa et al., 2005). 
Fernandes & Rosa (2006) proposed the Self-Regulated Evolutionary Algorithm (SRPEA). 

SRPEA is an algorithm with a dynamic on-the-fly variation of the population size. Selected 

individuals are recombined to generate offspring only if their Hamming distance is above a 

threshold value. That value changes over time, depending on the number of newborn 

individuals and deaths in each generation. Individuals die (that is, are removed from the 

population) only when their lifetime (which is set to specific value in the beginning of the 

search depending on the individual’s fitness) reaches zero, which means that parents and 
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children may belong to the same population. An empirical study demonstrated that the 

algorithm self-regulates its population size: there are neither uncontrolled demographic 

explosions nor quasi-extinction long stages, as it is observed in the dynamics of other 

varying population EAs (Arabas, 1994). VDMGA, the main algorithm in this chapter’s 

study, is directly related to SRPEA. 

In (García-Martinez et al., 2006), an assortative mating strategy is used to implement a local 
search genetic algorithm. The approach is consistent with the fact that crossover is the main 
mechanism of a GA generating local search, and assortative mating, by its own 
characteristics, tends to increase the strength of exploitation, thus leading to a more 
intensive local search. On the other hand, Gárcia-Martinez et al. (2007) introduced a real-
coded genetic algorithm with dissortative mating. The authors show that the inclusion of 
that mating strategy increases the performance of the GA on a set of proposed problems. In 
addition, empirical analysis indicates that the merits of dissortative mating are clearer with 
lower values of α parameter of the PBX-α crossover (Lozano et al., 2004). This observation is 
closely related with the optimal mutation rate issue described above, since α determines the 
spread of the probability distribution used to create offspring with PBX-α. This way, 
parameter α acts as genetic diversity controller, with higher values leading to GAs with 
higher exploratory capabilities, as it happens with mutation rate values. Therefore, if 
dissortative mating is expected to decrease optimal mutation rates, optimal values of α may 
also be dependent on the mating strategy chosen for the GA, being lower when dissimilar 
individuals have more chance to generate offspring. 
A large number of other GAs with non-random mating may be found in Evolutionary 
Computation literature. A few are briefly described in the following paragraph. 
Mauldin (1984) proposed a method to avoid similar individuals in the population based on 
a Hamming distance restriction. CHC is in some way a descendent of Mauldin’s method, 
and, as a result, so is VDMGA. Hillis (1992) described a co-evolutionary computation 
paradigm with assortative mating applied to a sorting network problem. The author does 
not provide results comparing the proposed strategy and random mating but it states that 
the choice on assortative mating was inspired by some problem characteristics rather than 
genetic diversity concerns. Ronald (1995) introduced the concept of seduction in GAs, which 
consists in selecting the second parent according to the preferences of the first parent. After 
the first chromosome involved in a recombination event is selected, all other individuals in 
the population are provided with a secondary fitness according to certain rules that reflects 
the preferences of the first parent. Then, the second parent is chosen according to the 
secondary fitness. Petrowski proposes (1997) speciation in order to restrict mating. De et al. 
(1998) proposed genotypic and phenotypic assortative mating. The new approaches are 
compared with standard GA and CHC on some well-known test functions and on the 
problem of selecting the optimal set of weights in a multilayer perceptron. Phenotypic 
assortative mating revealed to be the best strategy, outperforming standard GA and CHC on 
the range of proposed problems. Matsui (1999) incorporated dissortative mating within the 
tournament selection strategy. After the first parent is selected, the second parent is chosen 
according to a function that depends on the individual fitness and the Hamming distance to 
the first parent (all individuals in the population are inspected in order to determine the 
distance to the first parent). In addition, the author incorporates a family-based selection 
mechanism that, by applying selection and replacement at family level (two parents and two 
offspring), maintains the genetic diversity of the population. Ting et al. (2003) introduced 
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the Tabu Genetic Algorithm (TGA). TGA combines the characteristics of GAs and Tabu 
Search (Glover, 1986), by incorporating a taboo list in a traditional GA that prevents 
inbreeding and maintains genetic diversity. An aspiration criterion is also used by TGA in 
order to allow some crossovers even if they violate the taboo. Since incest prevention 
efficiency is sensitive to mutation rate, the authors include a self-adaptive mutation in TGA. 
The process is somehow similar to the cataclysmic mutation that occurs in CHC, since 
mutation in TGA occurs in presence of a deadlock situation, that is, when the genetic 
diversity of the population as decreased down to a level were allowed recombination is 
almost or even impossible to occur. Finally, Wagner & Affenzeller (2005) introduced the 
SexualGA, which simulates sexual selection within the frame of a GA and uses two different 
selection schemes in the same population. 

3. Dynamic optimization problems 

A problem is said to be a Dynamic Optimization Problem (DOP) when there is a change in 
the fitness function, problem instance or restrictions, thus making the optimum change as 
well. When changes occur, solutions already found may be no longer valuable and the 
process must engage in a new search effort. Traditional EAs, for instance, may encounter 
some difficulties while solving dynamic problems: if the first convergence stage reduces 
population diversity, then the algorithm may not be able to react to sudden changes. The 
crucial and delicate equilibrium needed between exploration and exploitation in static 
environments becomes even more important and complex when dealing with DOPs. In 
addition, if the change is detectable (which not always possible), it is hard to decide if it is 
better to continue the search with same population, after a shift in the environment, or if a 
restart is more efficient. The extent of the change is of crucial importance in that decision. 
This problem was stated by Branke & Schmek (2002), which suggested a classification of 
DOPs and a classification of the most widespread EAs that deal with changing 
environments. One standard approach to deal with DOPs is to regard each change as the 
arrival of a new optimization problem that has to be solved from scratch. However, this 
simple approach is often impractical since solving a problem from scratch without reusing 
information from the past might be time consuming, a change might not be identifiable 
directly, or the solution to the new problem should not differ too much from the solution of 
the old problem. Thus, as in the on-line tracking process suggested in (Angeline, 1997), it 
has been recommended in (Branke, 1999; Branke, 2002; Branke & Schmeck 2002) to have an 
optimization algorithm that is capable of continuously adapting the solution to a changing 
environment, reusing the information gained in the past. Since natural adaptation is a 
continuous and continuing process and EAs have much in common with natural evolution, 
they seem to be a suitable candidate for this task. However, evolutionary approaches 
typically converge to an optimum and thereby lose the diversity necessary for efficiently 
exploring the search space and consequently also the ability to adapt to a change in the 
environment (Branke, 2002; Branke & Schmeck 2002). The problem here can be stated as 
seeking an appropriate balance between two contradictory characters of the search 
procedure, those between the exploring (ideal for gathering new solutions) and exploiting 
(making the best use of past solutions) nature of the algorithm. Over the past few years, a 
number of authors have addressed the problem of convergence and subsequent loss of 
adaptability in many different ways. According to (Branke e Schmeck 2002), most of these 
approaches could be grouped into one of the following three categories established by them: 
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1. React on Changes: The EA is run in standard fashion, but as soon as a change in the 
environment is detected, explicit actions are taken to increase diversity and thus 
facilitating the shift to the new optimum. 

2. Maintaining Diversity throughout the run: Convergence is avoided all the time and it is 
hoped that a spread-out population can adapt to changes more easily. 

3. Memory-based Approaches: The EA is supplied with a memory to recall useful 
information from past generations, which seems especially useful when the optimum 
repeatedly returns to previous locations. 

Techniques such as Hypermutation (Cobb, 1990) pursue the first category, keeping the whole 
population after a change but increasing population diversity by drastically increasing the 
mutation rate for some number of generations. Please note that reacting to changes assumes 
that changes are detectable, a condition, as already stated, that is not always fulfilled 
(Branke, 2002). 
The Random Immigrants Genetic Algorithm (RIGA) (Grefenstette, 1992) is an example of a 
strategy that falls in the second category. In RIGA the population is partly replaced by rr 
randomly generated individuals in every generation. This guarantees the introduction of 
new genetic material in every time step and avoids the convergence of the whole population 
to a narrow region of the search space. The performance is affected by the parameter rr. 
RIGA is used in the following sections to evaluate VDMGA’s performance on DOPs; 
therefore, its pseudo-code is presented here: 
 

Algorithm 1: Random Immigrants Genetic Algorithm 
 

initialize Population(P) 
evaluate Population(P) 
while (not termination condition) do 
       P ← Replace Fraction of Population (P, rr) 
       create P.new by selection, crossover and mutation of P 
       P ← P.new 
end while 
 

The following algorithms may also be classified in category 2. As described in the previous 
section, the negative Assortative Mating Genetic Algorithm (nAMGA) (Fernandes & Rosa 2001) 
is used in (Ochoa et al., 2005) to solve a knapsack DOP. Negative assortative mating (or 
dissortative mating), by preventing the recombination of similar individuals, slows down 
the expected diversity loss of traditional GAs thus having the proper characteristics to be 
classified whitin category 2. The co-evolutionary agent based model of genotype editing (ABMGE) 
(Huang et al., 2007) use several genetic editing characteristics that are gleaned from the 
RNA editing system as observed in several organisms. Their results outperformed 
traditional EAs via obtaining greater phenotypic plasticity. In (Tinós & Yang, 2007), a RIGA 
associated with the Bak-Sneppen model is presented and tested on DOPs: the Self-Organized 
Random Immigrants Genetic Algorithm (SORIGA). Bak-Sneppen (Bak & Sneppen, 1993) is 
known as a Self-Organized Critically model, a phenomenon that was detected in 1987 by 
Bak, Tang and Wiesenfield (Bak et al., 1987), and which characterized by displaying scale 
invariant behavior. When associated with EAs it may periodically insert large amounts of 
new material in the population or completely reorganize a solution to a problem. For those 
reasons, it soon was adopted by EA researchers in order to provide new means to control 
parameter values or maintain population diversity, thus avoiding premature convergence to 
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local optima. DOPs research field was a logical following step. Besides SORIGA, another 
approach has been recently proposed by Fernandes et al. (2008a), in which the Sandpile 
model (Bak et al., 1987) is attached to a GA is order to solve DOPs.   
Another kind of approach is to supply the algorithm with some sort of memory, storing 
good partial solutions in order to reuse them later (category 3). This can be advantageous in 
cases where the environment is changing periodically, and repeated situations occur. 
However, they also could be counterproductive if the environment changes dramatically 
with open-ended novelty. Memory may be provided in two general ways: implicitly by 
using redundant representations, or explicitly by introducing an extra memory and 
formulating strategies to deposit and retrieve solutions later. Generally, the most prominent 
approach to implicit memory and redundant representation is multiploidy (Goldberg & 
Smith, 1987). On the other hand, while redundant representations allow the EA to implicitly 
store some useful information during the run, it is not clear that the algorithm actually uses 
this memory in an efficient way. As an alternative, some approaches use an explicit memory 
in which specific information is stored and reintroduced into the population at later 
generations, as in (Louis & Xu, 1996). Branke (1999) compared a number of replacement 
strategies for inserting new individuals into a memory stressing the importance of diversity 
for memory-based approaches.  
Estimation of Distribution Algorithms (EDAs) (Pelikan, Goldberg & Lobo, 1999; Lorrañga & 

Lozano, 2002) is a class of EAs where a probability model replaces an explicit representation 

of the population. In the last decade, research on EDAs has experienced a continuous and 

consistent growth. However, only recently the DOP issue has started to raise a strong 

interest on EDAs’ researchers. For instance, the Population Based Incremental Learning 

(PBIL) (Baluja, 1994) - one of the first EDAs - is used in (Yang & Xao, 2005) to solve DOPs 

created by a problem generator proposed by the same authors. The authors compare several 

versions of PBIL with GAs and RIGAs. In (Yang, 2005), the author proposes the Univariate 

Marginal Distribution Algorithm (UMDA) with enhanced memory and the results of the 

experiments show that the memory is efficient in dynamic environments. In addition, a 

combination of memory and random immigrants for the UMDA is studied. Lima et al. 

(2008) investigates the incorporation of restricted tournament replacement (RTR) in the 

extended compact genetic algorithm (ECGA) (Harik et al., 1999) for solving problems with 

non-stationary optima. (RTR is a simple yet efficient niching method used to maintain 

diversity in a population of individuals.) Finally, Fernandes et al. (2008) proposed a new 

update strategy for UMDA based on Swarm Intelligence.   

Some recent proposals have been made using a Swarm Intelligence (Bonabeau, Dorigo & 
Threraulaz, 1999) approach to attempt to solve dynamic problems. Swarm Intelligence is the 
property of a system whereby the collective behaviors of simple entities interacting locally 
with their environment cause global patterns to emerge. In (Guntsch & Middendorf, 2002) 
the authors applied population based ACO algorithms for tracking extrema in dynamic 
environments. Others, like (Ramos et al., 2005) developed distributed pheromone layering 
over the dynamic environment itself, in order to track different peaks. Finally, Fernandes et 
al. (2007) developed the Binary Ant Algorithm (BAA), based on the ACO framework, to take 
advantage of ACO’s ability to solve combinatorial DOPs and generalize it to binary DOPs. 
However, BAA may also be regarded as a kind of EDA, since, like this class of algorithms, 
BAA creates the possible solutions to a problem via a transition probability model. Actually, 
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there have been recent attempts to unify ACO and EDAs into the same framework (Zlochin, 
et al., 2004). 

4. The variable dissortative mating genetic algorithm 

To model dissortative mating in EAs, some kind of relaxation policy may be needed in order 
to avoid a freezing population, since evolution eventually leads the search process into a 
stage of low diversity, where all the individuals are almost identical. In addition, the 
population usually searches for an optimal degree of genetic variability according to the 
landscape were it evolves. It is possible that the population movement towards the optimal 
regions of the landscape also requires different levels of genetic diversity along the way, in 
order to maintain a robust search. Therefore, the degree of assortative or dissortative mating 
should vary along the run in order to deal with the inevitable decrease in diversity and to 
follow the search path of the population. Some methods try to maintain the diversity in a 
permanent high level, but that may be incompatible with the desirable convergence of the 
algorithm. For instance, a constant macro-mutation certainly maintains the diversity of the 
population, but the expected success of an EA based on such premises is not high. Diversity 
by itself is not a guarantee of a successful search through the landscape.  
The Variable Dissortative Mating Genetic Algorithm (VDMGA) (Fernandes & Rosa, 2008) is a 
non-random mating GA, which incorporates an adaptive Hamming distance mating 
restriction that tends to relax as the search process advances, but may be occasionally 
reinforced. The algorithm works in the following way. When the first population is 
randomly created, a threshold value is set to an initial level equal to L-1, where L is the 
chromosome length. Then, offspring may be created by selecting pairs of parents (by any 
method), followed by recombination and mutation. However, recombination only occurs if 
the genetic distance (Hamming distance in implementation made for this chapter) between 
the two parents is found to be above the threshold. If not, the recombination event is 
considered as “failed” and another pair of chromosomes is selected until N/2 pairs have 
tried to recombine (where N is the size of the population). When this process ends, the 
amount of successful and failed recombination events is compared, and the threshold is 
incremented if successful mating exceeds failed mating. Otherwise, threshold is 
decremented (the process repeats if no mating succeeded). This way, the threshold is 
indirectly controlled by the diversity of the population. After the reproduction cycle is 
completed, a new population is created by selecting the N best members from the parents’ 
population and newly generated offspring (if a parent and a child have the same fitness then 
the child is chosen). Parents and children compete together for survival, conducing to a 
highly selective algorithm (VDMGA belongs to the class of steady-state GAs). The process 
repeats until a stop criterion is reached.  
VDMGA’s threshold value evolves in conformity with the genetic diversity of the 
population. When diversity decreases, threshold tends to be decremented since the 
frequency of unsuccessful mating will necessarily increase. However, the mutation operator 
introduces some variability in the population which may result in occasional increments of 
the threshold that moves it away from zero (if threshold reaches zero, all individuals are 
allowed to crossover, like in random mating GAs). Tests performed on several functions 
confirmed this predicted behavior (Fernandes & Rosa, 2008). 
Two changes must be made on the original VDMGA presented in (Fernandes & Rosa, 2008) 
in order to solve DOPs with an enhanced performance. 
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Algorithm 2: Variable Dissortative Mating Genetic Algorithm 
 

initialize Population(P) with size(P) = N  
evaluate Population(P) 
set initial threshold(iT)                         /* iT ← L-1 for static problems; iT ← L/4 for DOPs*/   
threshold(T) ← iT            
      while (not termination condition)  
          create new individuals P.new  
          evaluate new individuals P.new 
          if (static problem) 
               P ← P+P.new 
           remove worst individuals from population(P) until size(P) reaches initial size N 
          end if 

          if (DOP) 
          replace size(P.new) worst individuals from population(P) by P.new 
          end if 

      end while  
  

Procedure: create new individuals 
 

    matingEvents ← N/2                            /* N is the population size */ 
    successfulMatings ← 0 
    failedMatings ← 0 
    while (successfulMatings < 1) do 
         for (i ← 1 to matingEvents)  do 
              select two chromosomes (c1, c2)                  /* Any method may be used here */ 
              compute Hamming distance H(c1, c2) 
              if (H(c1, c2) >= T)   
                    crossover and mutate 

                    successfulMatings ← successfulMatings+1 
              end if 

              if (H(c1, c2) < T) 
                    failedMatings ← failedMatings +1 
              end if 

         end for 
         if (failedMatings > successfulMatings)  T ← T-1 
         else                                                    T ← T+1 
     end while 
 

(1) In each time step, VDMGA builds an auxiliary pool of chromosomes, with parents and 
offspring, and then creates the new population by selecting the best chromosomes from the 
pool. This means that all newly created (and evaluated) individuals may be excluded from 
the population (considering the “worst” case scenario). Since the study on DOPs performed 
for this chapter assumes that changes not are detectable − and this is the most general 
assumption, since changes are not always detectable (Branke, 2002) −, all individuals in the 
population must be (re)evaluated in each generation, even if they have been created in a 
previous generation. Individuals with fitness values corresponding to previous shapes of 
the search space will mislead the search and modify performance metrics in a wrong 
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manner. (If changes were detectable, reevaluations would only be necessary when detecting 
a change.) Therefore, when dealing with DOPs, it is better to introduce a larger number of 
new individuals in VDMGA’s population, not only to diminish reevaluations, but also to 
bring a larger amount of genetic material into the population. For that purpose, original 
VDMGA replacement strategy is substituted by the following process: all new individuals 
N’ are introduced in the new population, replacing the worst N’ old chromosomes − see 
pseudo-code for details. 
(2) The original initial threshold value was set to L-1, such that a strong exploratory 
behavior is guaranteed to take place in the beginning of the search. Starting with L-1, results 
showed that VDMGA self-regulates the threshold in the first generation according to the 
conditions of the problem. The adaptive characteristic of the threshold and the robustness of 
VDMGA to its initial value suggested that it might be convenient to treat threshold’s initial 
value as a constant and let the algorithm self-tune the parameter, thus reducing the 
complexity of the parameter’s space. Since the expected ratio of dissimilar alleles in two 
random binary chromosomes is equal to 0.5 (considering infinite strings) it is likely that 
during the first generation (t = 1) the threshold decreases to values around 0.5×L. On the 
other hand, experimental results showed that the threshold value in the following 
generations depends on population size (N) and length of the chromosome (L): tests 
performed in (Fernandes & Rosa, 2008) show that the threshold value at the end of the first 
generation varies from 49.4% and 67.5% of the chromosome length L depending on N and L. 
As stated before, VDMGA needs to (re)evaluate all the old chromosomes in the population 
in order to deal with DOPs. If the algorithm passes through an initial stage, during which 
few new chromosomes are created, until it reaches a more stable threshold value, then a 
prohibitive number of reevaluations are performed, delaying the algorithm and 
compromising the first stage of optimization, especially when the changes occur fast. For 
that reason, initial threshold value is set to a lower value when the problem is dynamic. A 
value bellow 0.5×L is sufficient. In the tests performed for this study and described in the 
following sections, initial threshold was set to 0.25×L. 

5. Performance and scalability on static environments 

In (Fernandes & Rosa, 2008), VDMGA was subject to a wide range of experiments on some 
optimization functions frequently found in EAs literature. The test suite included unimodal 
and multimodal functions (with and without regular arrangement of local optima), a step 
function without local gradient information, scalable functions, high dimensional functions 
and complex combinatorial functions. VDMGA was compared with traditional GAs, CHC 
(Eschelman, 1991) and nAMGA (Fernandes et al., 2000). pAMGA (Fernandes et al., 2000) 
was also included in the tests in order to compare analogous dissortative and assortative 
mating strategies and demonstrate that the former are more efficient in solving the proposed 
optimization problems. Overall results displayed VDMGA’s superior performance when 
compared to other GAs (while statistically equivalent to nAMGA in some functions, 
VDMGA proved to be more efficient when facing the harder problems). Please refer to 
(Fernandes & Rosa, 2008) for a detailed description of the test set and results.  
A simple scalability test is also provided in (Fernandes & Rosa, 2008). Using the 4-bit fully 
deceptive function (Whitley, 1991), results confirm the assumption that VDMGA’s optimal 
population sizes are smaller than standard GA’s. Consequently, the slope of the scalability 
log-log curve is reduced in VDMGA when compared with a generational GA and a steady-
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state GA, even if only by a small amount. For this chapter, VDMGA’s scalability is 
investigated in l-trap function. The main interest is to perceive how VDMGA reacts to 
increasing the number of l-traps that are juxtaposed and summed together.  

5.1 Trap functions and VDMGA’s scalability 

To investigate how VDMGA’s scales on landscapes with different characteristics, 
experiments were conducted with trap functions, which were used as subproblems to 
construct larger problems. A trap function is a piecewise-linear function defined on 
unitation (the number of ones in a binary string). There are two distinct regions in search 
space, one leading to a global optimum and the other leading to the local optimum (see 
figure 2). In general, a trap function is defined as in equation 1. 
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and a is the local optimum, b is the global optimum, l is the problem size (l-bit trap function) 
and z is slope-change location separating the attraction basin of the two optima as depicted 
in figure 1.  
 

 

Fig. 1. Generalized l-trap function.  

Depending on the parameter setting, trap functions may be deceptive or not. Deceptive 
problems are functions where low-order building-blocks do not combine to form higher 
order building-blocks. Instead, low-order building-blocks may mislead the search towards 
local optima, thus challenging GA’s search mechanisms. For a trap function to be deceptive, 
the ratio r between the local (a) and global (b) optimum must be so that:  

1
2
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2

L zr

z

−
−≥

−
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In the experiments, 2-bit, 3-bit and 4-bit trap functions were defined with the following 
parameters: a = l-1; b = l; z = l-1. This way, equation 1 may be simplified: 
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(4) 

Please note that with these settings, the ratio r of the 2-trap function is bellow the deception 
threshold, while 4-trap is fully deceptive since the condition of equation 3 is satisfied. The 
ratio of the 3-trap function is equal to the threshold, which means that the function lies in 
the region between deceptive and non-deceptive. Under these conditions, it is possible to 
investigate not only how standard GAs and VDMGA scale on l-trap functions, but also to 
observe how that scaling varies when moving from non-deceptive to fully deceptive search 
spaces. For that purpose, L-bit decomposable functions were constructed by juxtaposing m 
trap functions and summing the fitness of each sub-function to obtain the total fitness: 

 
(5) 

For each trap and each size m, a standard generational GA (GGA) and VDMGA were run 

with several values of population size N. Starting from N = 4, optimal population size was 

determined by the bisection method (Sastry, 2001). The success rate (percentage of runs in 

which the global optimum was attained) and the average evaluations needed to find the 

solution (Average Evaluations to a Solution - AES) were measured. Each configuration was 

executed for 50 times and the results are averaged over those runs. The best configuration 

was defined as the one with 98% success rate and lower AES. Then, AES optimal population 

size values corresponding to the best run were plotted and the resulting log-log graphics are 

depicted in figure 2. The algorithms were tested with uniform crossover and no mutation. 

Crossover probability, pc, was set to 1.0. Selection method is binary tournament (kts = 1.0). 

(Please note that without mutation it is simply required that one bit is set to 0 or 1 in the 

entire population for the run to be declared not successful.) 
 

2-trap 3-trap 4-trap 

 

 

Fig. 2. Scalability with trap functions. Optimal population size and AES values for different 
problem size L = l×m. 
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When solving 2-trap functions the algorithms behave similarly, but when the trap 
dimension increases to 3 and 4, the differences in the scalability is much more noticeable. 
The difficulty that deceptive trap functions pose to GAs is rather clear when noticing that 
GGA optimal population size values are close to search space size, that is, 2L, when solving 
4-trap functions. VDMGA significantly reduces the slope of the scalability curve, revealing a 
good ability to maintain diversity and recombine information in order to achieve the higher 
order building-blocks. Since VDMGA maintains genetic diversity at a higher level, smaller 
populations are sufficient to find the global optimum, and thus fewer evaluations are 
required to converge to that same optimal solution. 
VDMGA is a steady-state algorithm, and due to its structure, most of the generations keep 
the best solutions in the population. When compared to a GGA, which holds no elitism and 
the offspring completely replaces the parents’ population, it is expected that it scales better. 
To avoid any misinterpretation of the results provided by VDMGA, another scalability test 
was performed to compare the algorithm with a GGA with 2-elitism (2-e), and a steady-state 
GA (SSGA) in which half of the population is replaced by the offspring (the worst 
chromosomes in the current population are replaced by N/2 newly generated 
chromosomes). Results, presented in figure 3, show that both SSGA and GGA 2-e maintain a 
better scalability than GGA when raising the size of the trap from 2 to 4. In addition, SSGA 
keeps its performance very close to VDMGA when solving not only 2-traps, but also 3-traps. 
 

2-trap 3-trap 4-trap 

  

Fig. 3. Scalability with trap functions. Comparing VDMGA with an elitist generational GA 
(GGA 2-e) and a steady-state GA (SSGA). 

However, when reaching 4-trap functions, it is clear that VDMGA scales better than elitist 
GGA and SSGA. It may be assumed now that this improved scalability is to a great extent 
due to the fact that VDMGA maintains a higher diversity during the run (Fernandes & Rosa, 
2008), and not to its steady-state nature. Scalability tests are very important and useful 
because when tackling real-world problems, the algorithm may be requested to codify 
solutions in extremely large binary strings. If the GA does not scale well, optimization 
becomes practically impossible above a certain problem size. Scalability issues have been 
increasingly raising the interest of EAs research community, especially amongst EDAs 
(Pelikan, Goldberg & Lobo, 1999; Lorrañga & Lozano, 2002) researchers. 

6. VDMGA on dynamic optimization problems 

The test environment proposed in (Yang & Xao, 2005) was used to create an experimental 

setup for VDMGA on DOPs. Given a stationary problem ( ) }{( )0,1
L

f x x∈  where L is the 

chromosome length, the dynamic environments may be constructed by applying a binary 

mask  }{M 0,1
L

∈ to each solution before its evaluation in the following manner: 
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( ) ( )( ), XOR Mf x t f x k=  (6) 

Where t is the generation index, 
t

k
τ

=  is the period index and f(x,t) is the fitness of solution 

x.  M(k) can be incremently generated as follows:  

M(k)= M(k-1) XOR T(k)  (7) 

where T(k) is an intermediate binary mask for every period k. This mask T(k) has ρ× L ones, 

where ρ is a value between 0 and 1.0 which controls the intensity or severity of change. 

Notice that ρ = 0 corresponds to a stationary problem since T vectors will carry only 0’s and 

no change will occur in the environment. On the other hand, ρ = 1 will guarantee the highest 

degree of change, that is, for instance, if a solution to a problem is a vector of 1’s, then the 

dynamic solution will oscillate between a vector of 1’s and a vector of 0’s. Therefore, by 

changing  ρ and τ  in the previous set of equations it is possible to control two of the most 

important features when testing algorithms on DOPs: severity (ρ ) and speed (τ ) of change 

(Angeline, 1997).  

The generator was applied to trap functions. GGA 2-e and SSGA were tested in order to 
compare them with VDMGA. It is not the aim of this study to compare VDMGA with the 
best GAs in solving DOPs, even because there is hardly any evidence of a GA that 
consistently outperforms any other in a wide range of problems and dynamics. Instead, the 
study of the effects of VDMGA’s diversity maintenance on its behavior on dynamic 
environments is the main aim of this section: the way dissortative mating may be used in 
order to improve GAs performance and on which kind of DOPs that improvement is more 
noticeable. Nevertheless, a commonly used algorithm on dynamic optimization studies was 
added to the test bench: RIGA (see section 3). Two variations were tested. In RIGA 1, the 
immigrants replace randomly selected individuals from the population, while in RIGA 2 the 
rr immigrants replace the worst rr individuals in the population. (Both RIGA were 
implemented with 2-elitism. Non-elitist GAs were tested but the performance on trap DOPs 

was very poor. VDMGA outperformed non-elitist GAs on every problem and (ρ, τ) 
configuration, but such a test is clearly unfair to standard and Random Immigrants GAs.     
All the algorithms were tested with N = 240, pc = 1.0, uniform crossover and binary 
tournament (kts = 1). Performance was measured by comparing the mean best_of_generation: 

 

(8) 

where T is the number of generations and R is the number of runs (30 in all the 

experiments). Several tests were conducted by varying severity (ρ ) and speed (τ ) of change: 

ρ was set to 0.05, 0.6 and 0.95; speed of change τ was set to 10, 100 and 200 generations. This 

means that 9 kinds of environmental changes were tested for each function and algorithm. 

Every environment was tested with 10 periods of change, thus making  

T = 100 for  τ = 10, T = 1000 for τ  = 100 and T = 2000 for  τ  = 200. Since it is expected that the 
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optimal mutation rate is not equal for every GA in the test bench, it is of extreme importance 

to test the algorithms with different pm. Values ranged from 0.5/L to 5/L and the results 

displayed on tables 1-3 correspond to best configurations (best configurations were 

determined by averaging the nine performance values). In order to properly compare the 

algorithms it is imperative that each GA performs the same number of function evaluations 

in each generation. Otherwise, during each period between changes, different GAs may be 

requiring different computation effort. For that reason, RIGAs population size must be set to 

N-rr, because RIGA performs extra rr evaluation in each time step. For RIGA’s tests in this 

section, rr was set to 24, therefore, N is equal to 216. In addition, since this study assumes 

that changes in the environment are not detectable, all chromosomes must be evaluated in 

each generation, even those that have already been evaluated in a previous generation, as in 

VDMGA (please remember that VDMGA is a steady-state algorithm, that is, parents and 

children may belong to the same population). For the same reason, SSGA also reevaluates 

the fraction (half) of the population that has not been replaced by children. (GGA, due to its 

2-elitism, must also reevaluate, in each generation, the two best chromosomes in the 

population.) This way, VDMGA always performs N fitness calculations in each generation 

but only a fraction of those evaluations are performed on new individuals. This feature is 

expected to penalize VDMGA’s performance on DOPs with very fast changes (low τ ), since 

it may happen that for some periods of time only a small amount of new genetic material 

(new individuals) are inserted in the population in each generation. Actually, this outcome 

is confirmed on the first test, performed on 3-trap functions.    

Table 1 shows the results obtained by the various GAs on a function constructed by 
juxtaposing ten 3-trap subfunctions (L = 30). A statistical comparison was carried out by t-
tests with 58 degrees of freedom at a 0.05 level of significance. The (+) signs means that the 
corresponding algorithm is significantly better than VDMGA on that particular 

configuration of  ρ and τ. A (~) sign means that the performance is statistically equivalent 
and (−) sign means that the GA performs worst than VDMGA. A general observation of 

table 1 shows that only when τ  = 10 the GAs consistently outperform VDMGA. With lower 
speed, VDMGA has always a better performance than the other algorithms in the test bench 
when ρ = 0.6 and ρ = 0.95, being statistically equivalent when ρ = 0.05. This was an expected 
outcome, due to what was stated above about VDMGA’s ration between function 
evaluations in each time step and new chromosomes inserted in the population.  
Table 2 shows the results with 4-trap functions (L = 12). Values appear to be more balanced 
in this case: all the algorithms perform similarly, but when increasing the size of the 
problem to L = 24 – see table 3 −, VDMGA improves its performance when compared to 

other GAs when τ = 100 and τ = 200 (please remember that VDMGA is expected to face 
some difficulties when facing fast changing environments. However, the algorithm 

performs well in 12-bit and 24-bit 4-trap function when ρ = 0.05 and τ = 10.) 
An unexpected result occurs when speed of change is slow and ρ = 0.95. For instance, when 

τ = 200, RIGAs outperforms VDMGA. But when looking at the dynamic behavior of the 
algorithms, in figure 4, a possible explanation arises for this particular result. Figure 4 shows 
the dynamics of VDMGA, SSGA and RIGA 2 when tracking the extrema of 4-trap functions 

(L = 24) by plotting the best_of_generation values over all generations. When ρ = 0.6 and τ  = 
200 the graphs shows that VDMGA becomes closer to the optimum (and results on table 3 
confirm that VDMGA outperforms other algorithms). However, when increasing ρ to 0.95, 
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3-trap (L = 30) τ 
ρ 

GGA 
(pm = 1/L) 

SSGA 
(pm = 1/2L) 

RIGA 1 
(pm = 1/L) 

RIGA 2 
(pm = 1/L) 

VDMGA 
(pm = 1/L) 

10 
0.05 

26.06 
±0.978 (+) 

26.020 
±0.506 (+) 

25.938 
±0.661 (+) 

26.144 
±0.819 (+) 

25.319 
±0.556 

10 
0.60 

22.078 
±0.266 (+) 

21.467 
±0.289 (+) 

21.934 
±0.305 (+) 

21.952 
±0.362 (+) 

21.227 
±0.280 

10 
0.95 

23.937 
±0.278 (+) 

23.638 
±0.326 (+) 

23.832 
±0.221 (+) 

23.978 
±0.237 (+) 

22.877 
±0.404 

100 
0.05 

29.712 
±0.090 (~) 

29.656 
±0.082 (~) 

29.674 
±0.145 (~) 

29.664 
±0.175 (~) 

29.622 
±0.103 

100 
0.60 

26.293 
±0.186 (−) 

26.095 
±0.257 (−) 

26.322 
±0.292 (−) 

26.258 
±0.300 (−) 

26.444 
±0.250 

100 
0.95 

25.605 
±0.137 (−) 

25.730 
±0.098 (−) 

25.628 
±0.163 (−) 

25.597 
±0.121 (−) 

25.999 
±0.242 

200 
0.05 

29.851 
±0.051 (~) 

29.822 
±0.075 (~) 

29.849 
±0.526 (~) 

29.852 
±0.056 (~) 

29.821 
±0.050 

200 
0.60 

27.120 
±0.200 (−) 

26.972 
±0.261 (−) 

27.350 
±0.225 (−) 

27.314 
±0.272 (−) 

27.826 
±0.170 

200 
0.95 

25.838 
±0.129 (−) 

25.978 
±0.096 (−) 

25.802 
±0.122 (−) 

25.818 
±0.180 (−) 

26.211 
±0.185 

Table 1. Results on 3-traps (L = 30). Mean best_of_generation and corresponding standard 
deviation values (results averaged over 30 runs). 
 

4-trap (L = 12) τ 
ρ GGA 

(pm = 3/L) 
SSGA 

(pm = 3/L) 
RIGA 1 

(pm = 4/L) 
RIGA 2 

(pm = 4/L) 

VDMGA 
(pm = 2/L) 

10 
0.05 

10.712 
±0.215 (−) 

11.307 
±0.271 (~) 

10.800 
±0.171 (−) 

10.782 
±0.162 (−) 

11.283 
±0.254 

10 
0.60 

10.800 
±0.177 (+) 

10.484 
±0.176 (~) 

10.783 
±0.178 (+) 

10.833 
±0.179 (+) 

10.585 
±0.175 

10 
0.95 

10.914 
±0.213 (−) 

11.360 
±0.193 (~) 

10.798 
±0.174 (+) 

10.825 
±0.191 (+) 

11.436 
±0.204 

100 
0.05 

11.653 
±0.109 (−) 

11.948 
±0.031 (~) 

11.700 
±0.010 (−) 

11.705 
±0.088 (−) 

11.957 
±0.020 

100 
0.60 

11.687 
±0.089 (~) 

11.661 
±0.074 (~) 

11.713 
±0.020 (~) 

11.725 
±0.075 (~) 

11.672 
±0.060 

100 
0.95 

11.710 
±0.080 (~) 

11.622 
±0.076 (−) 

11.735 
±0.016 (~) 

11.688 
±0.068 (~) 

11.696 
±0.062 

200 
0.05 

11.823 
±0.066 (−) 

11.981 
±0.010 (~) 

11.842 
±0.012 (−) 

11.843 
±0.034 (−) 

11.981 
±0.012 

200 
0.60 

11.842 
±0.051 (~) 

11.823 
±0.027 (~) 

11.847 
±0.017 (~) 

11.873 
±0.035 (+) 

11.831 
±0.036 

200 
0.95 

11.852 
±0.049 (+) 

11.691 
±0.055 (−) 

11.863 
±0.014 (+) 

11.864 
±0.037 (+) 

11.742 
±0.028 

Table 2. Results on 4-traps (L = 12). Mean best_of_generation and standard deviation values, 
averaged over 30 runs. 
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4-trap (L = 24) τ 
ρ SGA 

(pm = 1/L) 
SSGA 

(pm = 2/L) 
RIGA 1 

(pm = 1/L) 
RIGA 2 

(pm = 1/L) 

VDMGA 
(pm = 3/L) 

10 
0.05 

18.394 
±0.355 (−) 

19.710 
±0.648 (~) 

18.301 
±0.340 (−) 

18.417 
±0.391 (−) 

19.544 
±0.345 

10 
0.60 

18.270 
±0.185 (+) 

17.777 
±0.311 (~) 

18.142 
±0.282 (+) 

18.066 
±0.282 (+) 

17.703 
±0.289 

10 
0.95 

20.807 
±0.200 (+) 

20.489 
±0.347 (+) 

20.682 
±0.230 (+) 

20.747 
±0.161 (+) 

19.724 
±0.284 

100 
0.05 

19.136 
±0.408 (−) 

22.370 
±0.629 (−) 

19.091 
±0.434 (−) 

19.125 
±0.583 (−) 

23.421 
±0.141 

100 
0.60 

20.570 
±0.242 (~) 

20.630 
±0.293 (~) 

20.474 
±0.233 (~) 

20.593 
±0.274 (~) 

20.518 
±0.323 

100 
0.95 

21.465 
±0.099 (~) 

21.308 
±0.103 (−) 

21.418 
±0.116 (~) 

21.452 
±0.076 (~) 

21.472 
±0.176 

200 
0.05 

19.065 
±0.140 (−) 

23.385 
±0.347 (−) 

19.220 
±0.760 (−) 

19.430 
±0.895 (−) 

23.746 
±0.0726 

200 
0.60 

20.947 
±0.267 (−) 

21.058 
±0.228 (−) 

20.851 
±0.294 (−) 

20.800 
±0.231 (−) 

21.670 
±0.175 

200 
0.95 

21.509 
±0.065 (+) 

21.332 
±0.136 (~) 

21.503 
±0.087 (+) 

21.495 
±0.082 (+) 

21.354 
±0.166 

Table 3. Results on 4-traps. Mean best_of_generation and standard deviation values, averaged 
over 30 runs. 

the curves become much different. The shape of RIGA’s curve may be easily explained by 

the characteristics of the trap functions used in this study: the global optimum of the 

functions is the string with all 1’s and the local optimum is the string with all 0’s. RIGA is 

stuck in a region of the search space and, when the environment changes dramatically (ρ = 

0.95), what were once chromosomes near the global optimum local then become (nearly) 

local optimum solutions. With 4-trap functions and L = 24, global optimum is 24 and local 

optimum value is 18. Please note how RIGA oscillates between values near 24 and 18. The 

algorithm is not able to track the optimum; it just “waits”, for the global optimum to pass by 

every other period of change. Exclusively looking at mean best_of_generation values may 

conduce to a misinterpretation of GAs abilities to solve DOPs. 

Another aspect is worth notice. It is clear that RIGA 2 is not able to track the optima when 

changes are small (ρ = 0.05), at least not as able as VDMGA and SSGA. Random material 

inserted in the population is not an appropriate strategy to deal with an environment that 

shifts only by a small amount. For ρ = 0.05 and low speed of change (τ = 100 and τ = 200) 

VDMGA tracks the optima with much more ability than SSGA, even if it is slower in the 

first stage of search: only three periods of τ generations are needed for VDMGA to track the 

optima and remain close to it in the following periods. RIGA 2 appeared to perform well on 

24-bit 4-trap when compared to other algorithms (table 3). However, a closer inspection, by 

plotting the evolution of the tracking process, reveals that the algorithm fails when changes 

are both small (ρ = 0.05) and severe (ρ = 0.95). VDMGA, on the other hand, maintains a 

more stable performance trough all the different combinations of speed and severity of 

change, being particular able to track the optimum when ρ = 0.05. 
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7. Genetic diversity and threshold dynamics 

As described above, assortative and dissortative mating have effects on the frequency of 

heterozygous and homozygous genotypes. Consequently, population diversity may also be 

affected: dissortative tends to increase genetic diversity while assortative decreases it. This 

may also be true when dealing with artificial systems such as GAs. Previous reports 
 

 ρ = 0.05 ρ = 0.6 ρ = 0.95 

τ= 10 

τ=100 

τ=200 

Fig. 4. Dynamics when tracking 4-trap functions (L = 24). Best_of_generation curves. 

(Fernandes & Rosa, 2001; Fernandes, 2002) show that the variation of diversity in GAs 

populations is influenced by the chosen mating strategy. In (Fernandes & Rosa, 2008), a 

study on genetic diversity also confirmed this assumption. To measure diversity, the 

following equation was used: 

d P
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Diversity was inspected on VDMGA, SSGA and RIGA 2. For that purpose, a problem with 

ten 4-trap subfunctions was used (L = l×m = 4×10 = 40). Population size was set to 100, pc 

was set to 1.0 (binary tournament selection and uniform crossover) and different mutation 

rates pm were tested. The algorithms were run for 100 generations. Each run was repeated 

for 30 times and the results are the average over those runs. 
 

  
Fig. 5. Genetic diversity. 

Graphics in figure 5 show similar results as in previous reports: VDMGA maintains a higher 

diversity than SSGA, even when comparing different mutation rates. RIGA gets closer to 

VDMGA’s diversity but, as depicted in figure 6, performance is much lower. By observing 

the growth of the best fitness in the population, it is clear that RIGA 2 is outperformed by 

SSGA, converging to a lower local optimum. On the other hand, VDMGA, although being 

slower in a first stage of search, attains higher fitness values, which are still growing when t 

= 100. These results illustrate how important are the genetic diversity maintenance schemes, 

and not diversity maintenance itself. RIGA, although maintaining the diversity for a longer 

period, is outperformed by SSGA on this particular test. 
 

Fig. 6. Best fitness on 4-traps (L = 24). 

A final test was conducted with the aim of investigating diversity when the environment 

changes. For that purpose, a 4-trap DOP with L = 4 was used. GAs parameters were set as in 

previous experiment. VDMGA’s diversity is compared with SSGA in figure 7 (only five 

periods of change are shown in the graphs), for two configurations of (ρ, τ). As expected, 
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VDMGA maintains a higher diversity throughout the successive search periods, even with 

lower mutation rates. 

VDMGA’s threshold values during a run of each one of the previous experiments (ρ = 0.05 

and τ = 100; ρ = 0.6 and τ = 200) may be seen in figure 8 (with pm = 1/L). The graphics 

indicate that the threshold reacts to the changes in the environment when it is close to 0: 

when the environment shifts, the threshold tends to increase. The explanation for this 

outcome is simple and resides in the fact that after a change occurs, new genetic material 

enters in a previously converged population, allowing the threshold to increase because 

successful matings have also increase. An amplified threshold will then prevent mating 

between similar individuals and continue to guarantee higher genetic diversity. 
 

 VDMGA SSGA 

ρ=0.05 

τ = 100 

 

ρ = 0.6 

τ = 200 

 
 

Fig. 7. SSGA and VDMGA’s diversity on dynamic 4-trap functions. 

 

ρ = 0.05, τ = 100 ρ = 0.6, τ = 200 

 
 

 Fig. 8. VDMGA’s threshold value. Mutation rate, pm = 1/L 
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8. Conclusions 

This chapter presented a study on Genetic Algorithms (GA) with dissortative mating. A 
survey on non-random mating was given, in which the most prominent techniques in 
Evolutionary Computation literature were presented and described. In addition, a survey on 
Bio-inspired Computation applied to Dynamic Optimization Problems (DOPs) was also 
given, since DOPs was one of the main aims of the experimental study performed for this 
chapter. The experiments were performed with the aim of checking the ability of Variable 
Dissortative Mating GA (VDMGA) on tracking the extrema in dynamic problems. VDMGA, 
presented in a recent work (Fernandes & Rosa, 2008), inhibits crossover when the Hamming 
distance between the chromosomes is below a threshold value. The threshold is updated 
(incremented or decremented) by a simple rule which is indirectly influenced by the genetic 
diversity of the population: it tends to decrease when the amount of successful crossovers is 
superior to the number of failed attempts in a generation; when the ratio of successful 
recombination events rises, the threshold will have a tendency to increase. VDMGA holds 
this mechanism without the need for further parameters than traditional GAs. In fact, the 
parameters that need to be tuned are reduced to population size and mutation rate. In 
addition, no replacement strategy has to be chosen: VDMGA is a steady-state GA in which 
the number of new chromosomes entering the population in each generation is controlled 
by the threshold value, genetic diversity and population’s stage of convergence.  
Scalability tests were performed in order to investigate how VDMGA reacts to growing 
problem size. Deceptive and non-deceptive trap functions were used for that purpose. The 
algorithm was tested and compared with traditional GAs. Results showed that VDMGA 
scales clearly better than other traditional GAs when the trap function is deceptive. 
DOPs experiments demonstrated that in most of the cases, VDMGA is able to perform 
equally or better than other GAs, except when the speed of change is high. In particular, 
VDMGA outperformed, in general, the Random Immigrants GA, which a typical algorithm 
used in DOPs studies to compare other methods performance. Statistical t-tests were 
performed, giving stronger reliability to the conclusions. 
A study on the genetic diversity was also performed. As expected, VDMGA maintains a 
higher diversity throughout the run. The speed of the algorithm may be reduced in a first 
stage of search (and that is one of the reasons VDMGA is not so able to solve fast DOPs), but 
the diversity of its population gives it the ability to converge more often to the global 
optimum. 
VDMGA is a simple yet effective algorithm to deal with static and dynamic environments. It 
holds no more parameters than a standard GA. When regarding DOPs, VDMGA may be 
classified in the category of methods that preserve diversity in order to tackle DOPs (see 
section 3). Thus, it avoids the complexity of methods that hold memory schemes (which in 
general need rules and parameters to determine how to deal with memory), and the lower 
range of problems in which algorithms that react to changes may be applied. Changes in 
DOPs are not always detectable and a reaction to changes assumes that it is possible to 
detect when the environment shifts. 
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