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Abstract

Equalization and channel decoding are “traditionally” two cascade processes at the
receiver side of a digital transmission. They aim to achieve a reliable and efficient
transmission. For high data rates, the energy consumption of their corresponding algo-
rithms is expected to become a limiting factor. For mobile devices with limited battery’s
size, the energy consumption, mirrored in the lifetime of the battery, becomes even more
crucial. Therefore, an energy-efficient implementation of equalization and decoding
algorithms is desirable. The prevailing way is by increasing the energy efficiency of the
underlying digital circuits. However, we address here promising alternatives offered by
mixed (analog/digital) circuits. We are concerned with modeling joint equalization and
decoding as a whole in a continuous-time framework. In doing so, continuous-time
recurrent neural networks play an essential role because of their nonlinear characteristic
and special suitability for analog very-large-scale integration (VLSI). Based on the pro-
posed model, we show that the superiority of joint equalization and decoding (a well-
known fact from the discrete-time case) preserves in analog. Additionally, analog circuit
design related aspects such as adaptivity, connectivity and accuracy are discussed and
linked to theoretical aspects of recurrent neural networks such as Lyapunov stability
and simulated annealing.

Keywords: continuous-time recurrent neural networks, analog hardware neural net-
works, belief propagation, vector equalization, joint equalization and decoding

1. Introduction

Energy efficiency has been increasingly attracting more interest due to economical and environ-

mental reasons. Mobile communications sector has currently a share of 0.2% in global carbon

emissions. This share is expected to double between 2007 and 2020 due to the ever-increasing
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distribution, and reproduction in any medium, provided the original work is properly cited.



demand for wireless devices [1, 2]. The sustained interest in higher data rate transmission is

strengthening this impact. While major resources are being invested in increasing the energy

efficiency of digital circuits, there is, on the other hand, a growing interest pointing at alterna-

tives to the digital realization [3], including a mixed (analog/digital) approach. In such an

approach, specific energy consuming (sub)tasks are implemented in analog instead of a “con-

ventional” digital realization. The analog implementation possesses a high potential to signif-

icantly improve the energy efficiency [4] because of the inherent parallel processing of signals

that are continuous in both time and amplitude. This has been shown in the field of error

correction coding with a focus on decoding of low-density parity-check (LDPC) codes. Our

ongoing research on equalization reveals similar results. We do not intend “analog” for linear

signal processing with all its disadvantages like component inaccuracies and susceptibility to

noise and temperature dependency [5] but for nonlinear processing instead. The work of Mead

[6] and others on Neuromorphic analog very-large-scale integration (VLSI) has shown that “analog

signal processing systems can be built that share the robustness of digital systems but outperform digital

systems by several orders of magnitude in terms of speed and/or power consumption” [5].

The nonlinearity makes the analog implementation of an algorithm as robust as its digital

counterpart [3, 5]. This profits from the match between the needed nonlinear operations for the

algorithm and the physical properties of analog devices [7].

The capability of artificial neural networks (in the following neural networks) to successfully

solve many scientific and engineering tasks has been shown oftentimes. Moreover, mapping

algorithms to neural network structures can simplify the circuit design because of the regular

(and repetitive) structure of neural networks and their limited number of well-defined arith-

metic operations. Digital implementations can be considered precise (reproducibility of results

under similar circumstances) but accurate (closeness of a result to the “true” value) only to the

extent to which they have enough digits to represent [8]. This means, accuracy in digital

implementations is achieved at the cost of efficiency (e.g., relatively larger chip area and more

power consumption) [9]. An analog implementation is usually efficient in terms of chip area

and processing speed [9], however, at the price of an inherent lack of the reproducibility of

results [8] (because of a limited accuracy of the network components as an example [9]).

However, by exploiting the distributed nature of neural structures the precision of the analog

implementation can be improved despite inaccurate components and subsystems [8]1. In other

words, it is the distributed massively parallel nonlinear collective behavior of an analog

implementation (of neural networks) which offers the possibility to make it as robust as its

digital counterpart but more energy efficient2 (additionally to smaller chip area). Particularly

for recurrent neural networks (the class we focus on when considered as nonlinear dynamical

systems), the robustness can be additionally achieved by exploiting “attracting” equilibrium

points. In the light of this discussion, we map in this chapter a joint equalization and decoding

algorithm into a novel continuous-time recurrent neural network structure. This class of neural

networks has been attracting a lot of interest because of their widespread applications. They

can be either trained for system identification [10], or they can be considered as dynamical

1

For a clear distinction between accuracy and precision when used in hardware implementation context, we refer to [8].
2

Energy efficiency is defined later as appropriate.
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systems (dynamical solver). In the latter case, there is no need for a computationally complex

and time-consuming training phase. This relies on the ability of these networks (under specific

conditions) to be Lyapunov stable.

Equalization and channel decoding (together, in the following detection) are processes at the

receiver side of a digital transmission. They aim to provide a reliable and efficient transmis-

sion. Equalization is needed to cope with the interference caused by multipath propagation,

multiusers, multisubchannels, multiantennas and combinations thereof [11]. Channel (de)cod-

ing is applied for further improving the power efficiency. Equalization and decoding are

nonlinear discrete optimization problems. The optimum solutions, in general, are computa-

tionally very demanding. Therefore, suboptimum solutions are applied, often soft-valued

iterative schemes because of their good complexity-performance trade-off.

For high data rates, the energy consumption of equalization and decoding algorithms is

expected to become a limiting factor. The need for floating-point computation and the

nonlinear and iterative nature of (some of) these algorithms revive the option of an analog

electronic implementation [12, 13], embedded in an essentially digital receiver. This option has

been strengthened since the emergence of the “soft-valued” computation in this context [4]

since soft-values are a natural property of analog signals. In contrast to analog decoding,

analog equalization did not attract that amount of attention.

Furthermore, joint equalization and decoding (a technique where equalizer and decoder

exchange their local available knowledge) further improves the efficiency of the transmission

as an example in terms of lower bit error rates, however, at the cost of more computational

complexity [14]. Most of the work related to joint equalization and decoding is limited to the

discrete-time realization. One of the very few contributions focusing on continuous-time joint

equalization and decoding is given in [13]. The consideration in [13] is not “neural networks-

based”. Stability and convergence are observed but not “deeply” considered.

We introduce in this chapter a novel continuous-time joint equalization and decoding struc-

ture. For this purpose, continuous-time single-layer recurrent neural networks play an essen-

tial role because of their nonlinear and recursive characteristic, special suitability for analog

VLSI and since they serve as promising computational models for analog hardware imple-

mentation [15]. Both, equalizer and decoder are modeled as continuous-time recurrent neural

networks. An additional proper feedback between equalizer and decoder is established for

joint equalization and decoding. We also review individually, both continuous-time equaliza-

tion and continuous-time decoding based on recurrent neural network structures. No training

is needed since the recurrent neural network is serving as a dynamical solver or a computa-

tional model [15, 16]. This means, transmission properties are used to define the recurrent

neural network (number of neurons, weight coefficients, activation functions, etc.) such that no

training is needed. In addition, we highlight challenges emerging from the analog hardware

implementation such as adaptivity, connectivity and accuracy. We also introduce our devel-

oped circuit for analog equalization based on continuous-time recurrent neural networks [3].

Characteristic properties of recurrent neural networks such as stability and convergence are

addressed too. Based on the introduced model, we show by simulations that the superiority of

joint equalization and decoding can be preserved in the analog “domain”.
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The main motivation for performing joint equalization and decoding in analog instead of using

conventional digital circuits is to improve the energy efficiency and to minimize the area

consumption in the VLSI chips [17]. The proposed continuous-time recurrent neural network

serves as a promising computational model for analog hardware implementation.

The remainder of this chapter is organized as follows: In Section 2, we describe the block

transmission model. Sections 3 and 4 are dedicated to the equalization process, the application

of continuous-time recurrent neural networks and the analog circuit design and its

corresponding performance and energy efficiency. Sections 5 and 6 are devoted to the channel

decoding and the application of continuous-time recurrent neural networks for belief propa-

gation (a decoding algorithm for LDPC codes). For both equalization and decoding cases,

analog hardware design aspects and challenges and the behavior of the continuous-time

recurrent neural network as a dynamical system are discussed. The continuous-time joint

equalization and decoding based on recurrent neural networks is presented in Sections 7

and 8. Simulation results are shown in Section 9. We finish this chapter with a conclusion in

Section 10.

Throughout this chapter, bold small and bold capital letters designate vectors (or finite discrete

sets) and matrices, respectively.3 All nonbold letters are scalars. diagm{B} returns the matrix B

where the nondiagonal elements are set to zeros. diag
υ
fbg returns a matrix where the vector b

is put on the diagonal. 0N is the all-zero vector of length N. 0, 1 and I represent the all-zero, all-

one and the identity matrix of suitable size, respectively. We consider column vectors. ð�ÞH

represents the conjugate transpose of a vector or a matrix, whereas ð�ÞT represents the trans-

pose. zr ¼ ℜðzÞ, zi ¼ ℑðzÞ returns the real and imaginary part of the complex-valued argument

z ¼ zr þ ιzi, respectively. ι ¼
ffiffiffiffiffi

−1
p

. t and l are designated to the continuous-time variable and

the discrete-time index, respectively.

2. Block transmission model

The block transmission model for linear modulation schemes is shown in Figure 1. For details,

see [18]:

• SRC (SNK) represents the digital source (sink). SRC repeatedly generates successive

streams of k bits, i.e., q1, q2, ⋯ ,qM.

• q ðq̂Þ ∈ {0; 1}k is the vector of source (detected) bits of length k.

• q
c
∈ {0; 1}n is the vector of encoded source bits of length n > k. For an uncoded transmission

q
c
¼ q (and thus k ¼ n).

• COD performs a bijective map from q to qc where n > k (adding redundancy). We con-

sider in this chapter binary LDPC codes. Only 2k combinations of n bits out of overall 2n

3

Except for L, �L and Lch which are vectors.
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combinations are used. The set of the 2k combinations represent the code book C. rc ¼ k=n

is the code rate.

• x ∈ ψN is the transmit vector of length N.

• N is the block size. Successive transmit vectors are separated by a guard time to avoid

interference between different blocks. Thus, Figure 1 describes the transmission for a

single block and stays valid for the next block (possibly with a different R).

• ψ¼ fψ1;ψ2;…;ψ2mg, m ∈ ℕ=f0g is the symbol alphabet. There exist 2m�N possible transmit

vectors. The set of all possible transmit vectors is χ. The mapping from qc to x is performed

by M. Each symbol ψ represents m bits. A special class of symbol alphabets are the so-

called separable symbol alphabet ψðsÞ [19, 20].

• ~x is the receive vector of length N. In general ~x ∈ℂ
N.

• We distinguish:

– For an uncoded transmission M · k ¼ m ·N.

– For a coded transmission andN < n=m: One codeword lasts over many transmit blocks.

– For a coded transmission and N ¼ n=m: One codeword lasts exactly over a single

transmit block.

– For a coded transmission and N ¼ M ·n=m: M codewords are contained in a single

transmit block.

• R¼ {rij : i; j∈{1; 2;⋯;N}} is the block transmit matrix of size N ·N. R is hermitian and

positive semidefinite. The block transmit matrix R contains the whole knowledge about

the transmission scheme (transmit and receive filters) and the physical propagation chan-

nel between transmitter(s) and receiver(s) [18].

Figure 1. Block transmission model for linear modulation schemes. SRC (SNK) represents the digital source (sink). DET

is the detector. COD performs the encoding process (adding redundancy). M maps encoded bits to complex-valued

symbols. R is the block transmit matrix.
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• ~n is a sample function of an additive Gaussian noise vector process of length N with

zero mean and covariance matrix Φ~n~n ¼
N0

2 � R where N0

2 is the double-sided noise power

spectral density.

• DET is the detector including equalization and decoding.

The model in Figure 1 is a general model and fits to different transmission schemes like

orthogonal frequency division multiplexing (OFDM), code division multiple access (CDMA),

multicarrier CDMA (MC-CDMA) and multiple-input multiple-output (MIMO). The relation

with the original continuous-time (physical) model can be found in [11, 18]. The model in

Figure 1 can be described mathematically as follows [11]:

~x ¼ R � xþ ~n: (1)

By decomposing R into a diagonal part Rd = diagm{R} and a nondiagonal part R\d = R−Rd,

Eq. (1) can be rewritten as:

~x ¼ Rd � x

|fflffl{zfflffl}

signal

þ R\d � x

|fflffl{zfflffl}

interference

þ ~n
|{z}

additive noise

: (2)

For the j-th element of the receive vector j∈ {1; 2;⋯;N} Eq. (2) can be expressed as

~xj ¼ rjj � xj þ ∑
N

m ¼ 1
m ≠ j

rjm � xm þ ~nj: (3)

We notice from Eqs. (2), (3) that the nondiagonal elements of R describe the interference

between the elements of the transmit vector at the receiver side. For interference-free transmis-

sion R\d = 0. For an interference-free transmission over an additive white Gaussian noise

(AWGN) channel R = I.

Figure 2 shows the channel matrix for a MIMO transmission scheme for different number of

transmit/receive antennas. Figure 3 shows the channel matrix for OFDMwith/without spread-

ing. Figure 4 shows the channel matrix for MIMO-OFDM. In Figures 2–4, the darker the

elements, the larger the absolute values of the entries of the corresponding matrix R, and hence

larger the interference [21].

Remark 1. For a clear distinction between channel matrix and block transmit matrix, we refer to

[11, 18]. Generally speaking, the block transmit matrix R is a block diagonal matrix of “many”

channel matrices.

The detector DET in Figure 1 has to deliver a vector q̂ with a minimum bit error rate compared

to q (conditional to the available computational power) given that COD,M and R are known

at the receiver side. The optimum detection (maximum likelihood detection) for realistic cases

is often infeasible. Therefore, suboptimum schemes are used, mainly based on separating the

detection into an equalization EQ (to cope with interference caused by R\d) and a decoding

DEC (to utilize the redundancy added by COD). In this case, we distinguish between separate

Artificial Neural Networks - Models and Applications90



Figure 2. Visualization of the channel matrix for a MIMO transmission scheme with eight transmit antennas and different

receive antennas.

Figure 3. Visualization of the channel matrix for OFDM with 16 subcarriers and spreading over four subcarriers with/

without interleaving.

Figure 4. Visualization of the channel matrix for a MIMO-OFDM transmission scheme with eight subcarriers and three

transmit antennas.
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and joint equalization and decoding, cf. Figure 5. The superiority of the latter one is widely

accepted: The separate equalization and decoding as in Figure 5(a) in general leads to a

performance loss since the equalizer does not utilize the knowledge available at the decoder

[14]. Each of the components DET, EQ and DEC can be seen as a pattern classifier. By separat-

ing the detection into equalization and decoding, an optimum detection in general cannot be

achieved anymore (even if optimum equalization and optimum decoding are individually

applied). Nevertheless, this is a common practice.

DECI in Figure 5 is a hard decision function. For a coded transmission, DECI is a unit step

function. For an uncoded transmission, COD and DEC are removed from Figure 1 and Figure 5,

respectively. DECI in this case is a stepwise function depending on the symbol alphabetψwhich

maps the (in general complex-valued) elements of the equalized vector �x to the vector of detected

symbols x̂ ∈ψN cf. Figure 8. The map from x̂ to q̂ is then straightforward. In summary

• For an uncoded transmission DECI: ℂN ! ψN.

• For a coded transmission DECI: ℝk ! f0; 1gk.

3. Vector equalization

For an uncoded transmission, the detection DET reduces to a vector equalization EQ as shown

in Figure 6.

The optimum vector equalization rule (the maximum likelihood one) is based on the minimum

Mahalanobis distance and is given as [21]

x̂
ML

¼ arg min
ξ∈χ

1

2
� ξH � R � ξ−ℜfξH � ~xg

� �

: (4)

For each receive vector ~x, the optimum vector equalizer calculates the Mahalanobis distance

Eq. (4) to all possible transmit vectors χ of cardinality 2m�N and decides in favor of that possible

transmit vector x̂ML with the minimum Mahalanobis distance to the receive vector ~x, i.e.,

exhaustive search is required in general. This can be performed for small 2m�N which is usually

Figure 5. Detection: EQ is the equalizer, DEC is the decoder, DECI is a hard decision function. Notice the feedback from

the decoder to the equalizer in (b), i.e., the turbo principle.
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not the case in practice. Therefore, suboptimum equalization schemes are applied, which trade-

off performance against complexity.

4. Continuous-time single-layer recurrent neural networks

for vector equalization

The dynamical behavior of continuous-time single-layer recurrent neural networks of dimen-

sion N′, abbreviated in the following by RNN4, is given by the state-space equations [22]:

ϒe �
duðtÞ

dt
¼ −uðtÞ þW � v ðtÞ þW0 � e,

vðtÞ ¼ ϕðuðtÞÞ ¼ ½ϕ1ðu1ðtÞÞ, ϕ2ðu2ðtÞÞ, ⋯ , ϕN′ðuN′ðtÞÞ�T :

(5)

In Eq. (5), Υe is a diagonal and positive definite matrix of size N′ + N′. v(t) is the output, u(t) is

the inner state, e is the external input. v; u ; e∈ℂ
N′

.ϕj (·) : j ∈ {1, 2, …, N′} is the j-th activation

function. W ¼ fwjj′ : j; j′ ∈ {1; 2;⋯;N′}g∈ℂ
N′

·N′

, W0 ¼ diagvf½w10;w20;⋯;wN′0�
Tg∈ℝ

N′
·N′

are

the weight matrices. The real-valued RNN (all variables and functions in Eq. (5) are real-

valued) is shown in Figure 7, which is known as “additive model” or “resistance-capacitance

model” [23]. In this case, wjj′ ¼
Rj

R
jj′
is the weight coefficient between the output of the j′-th

neuron and the input of the j-th neuron, wj0 ¼
Rj

Rj0
is the weight coefficient of the j-th external

input. We also notice that the feedback W � v in Eq. (5) and Figure 7 is a linear function of the

output v. Moreover, Υe can be given in this case as Υe¼ diagvf½R1 � C1; R2 � C2;…; RN′ � CN′ �Tg.

As a nonlinear dynamical system, the stability of the RNN is of primary interest [16]. This has

been proven under specific conditions by Lyapunov’s stability theory in [24] for real-valued

RNN and in [22, 25] for complex-valued ones, among others. The RNN in Eq. (5) represents a

general purpose structure. Based on N′, ϕ, W, W0 a wide range of optimization problems can

be solved. First and most well-investigated applications of the RNN include the content

addressable memory [24, 26], analog-to-digital converter (ADC) [27] and the traveling sales-

man problem [28]. In all these cases, no training is needed since the RNN is acting as a

dynamical solver. This feature is desirable in many engineering fields like signal processing,

communications, automatic control, etc., and has first been exploited by Hopfield in his

Figure 6. Uncoded block transmission model. Neither encoding at the transmitter nor decoding at the receiver. The

detection reduces to a vector equalization EQ.

4

The abbreviation RNN in this chapter inherently includes the continuous-time and the single-layer properties.
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pioneering work [24, 29], where information has been stored in a dynamically stable RNN. We

focus in the following on the vector equalization.

Remark 2. The dimension of a real-valued RNN is the same as the number of neurons.

Remark 3. Two real-valued RNNs each of N′ neurons are required to represent one complex-

valued RNN (with dimension N′). This is possible by separating Eq. (5) into real and imaginary

parts. However, this doubles in general the number of connections per neuron (and hence the

number of multiplications) because of the required connections (represented by Wi) between

the two real-valued RNNs as it can be seen from the following equation:

Figure 7. Continuous-time single-layer real-valued recurrent neural network. v(t) is the output, u(t) is the inner state, e is

the external input and ϕ(�) is the activation function. This model is known as “additive model” or “resistance-capacitance

model” [23].
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ϒe �
d

dt

�

urðtÞ
uiðtÞ

�

¼ −

�

urðtÞ
uiðtÞ

�

þ

�

Wr −W i

W i Wr

�

�

�

vrðtÞ
viðtÞ

�

þ

�

W0 0
0 W0

�

�

�

er
ei

�

: (6)

Υe in this case is a diagonal positive definite matrix of size 2 · N′ + 2 · N′ and

uðtÞ ¼ urðtÞ þ ιuiðtÞ ; e ¼ er þ ιei
vðtÞ ¼ vrðtÞ þ ιviðtÞ ; W ¼ Wr þ ιW i:

A. Vector equalization based on RNN

The usage of the RNN for vector equalization became known for multiuser interference

cancellation in CDMA environments [30, 31]. However, this was limited to the binary phase-

shift keying (BPSK) symbol alphabet ψ = {−1, +1}. This has been generalized to complex-valued

symbol alphabets in [21] by combining the results of references [20, 22, 32]5. Based thereon, it

has been proven that the RNN ends in a local minimum of Eq. (4) if the following relations are

fulfilled [21], cf. Eqs. (1), (2), (5) and Figures 6 and 7.

e ¼ ~x v ¼ �x N
0

¼ N
W0 ¼ R−1

d W ¼ I−R−1
d � R ϕð�Þ ¼ θðoptÞð�Þ

(7)

and therefore x̂ ¼ DECIðvÞ. Figure 8 shows an example of an eight quadrature amplitude

modulation (8 QAM) symbol alphabet and its corresponding DECI function. The relations in

Eq. (7) are obtained by the comparison between the maximum likelihood function of the vector

equalization and the Lyapunov function of the RNN.

The dynamical behavior of the vector equalization based on RNN can be given as, cf. Eqs. (1),

(5), (7)

ϒe �
duðtÞ

dt
¼ −uðtÞ þ �xðtÞ þ R−1

d � R � ½x−�xðtÞ� þ R−1
d � ~n;

�xðtÞ ¼ θðoptÞ
�

uðtÞ
	

¼ ½θ
ðoptÞ
1

�

u1ðtÞ
	

;θ
ðoptÞ
2

�

u2ðtÞ
	

;⋯;θ
ðoptÞ
N

�

uNðtÞ
	

�T :

(8)

The locally asymptotical stability of Eq. (8) based on Lyapunov functions has been proved in

[21] (based on [22]) for separable symbol alphabets ψ(s). When Eq. (8) reaches an equilibrium

point uep, i.e.,
duðtÞ
dt ¼ 0N ) u ¼ uep, Eq. (8) can be rewritten as

uep ¼ �xep þ R−1
d � R � ½x−�xep� þ R−1

d � ~n: (9)

If additionally, a correct equalization is achieved, i.e., �xep ¼ x, the inner state is

5

For discrete-time single-layer recurrent neural networks for vector equalization, we refer to references [19, 33].
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uep ¼ xþ R−1
d � ~n

|fflfflffl{zfflfflffl}

ne

: (10)

Thus, the RNN as vector equalizer, Eq. (8) acts as “analog dynamical solver” and there is no

need for a training. The covariance matrix of ne is Φnene ¼
N0

2 � R−1
d � R � R−1

d . We define

Σne ¼ diagvf½σ
2
1; σ

2
2;⋯; σ

2
N�

Tg ¼ diagm{Φnene } ¼
N0

2
� R−1

d : (11)

In Eq. (7), θ(opt) (·) is the optimum activation function and depends on the symbol alphabet ψ.

For BPSK (a real-valued case)

θ
ðoptÞðuÞ ¼ tanh

u

σ2

� 	

: (12)

where σ2 is given in Eq. (11).

Remark 4. For separable symbol alphabets, ψ ¼ ψðsÞ ) θ
ðoptÞðu ¼ ur þ ιuiÞ ¼ θ

ðoptÞ
r ðurÞ

þ ιθ
ðoptÞ
i ðuiÞ [19].

B. Analog hardware implementation aspects: equalization

The analog signal processing as a matter of topical importance for modern receiver architec-

tures was recognized in [34], where an analog vector equalizer—designed in BiCMOS

Figure 8. An example of an 8 QAM symbol alphabet and its corresponding DECI function. Each element of the symbol

alphabet (marked with + ) has its own “decisions region” visualized by different colors. The function DECI delivers that

element of the symbol alphabet, where the input argument lies in its corresponding decision region.
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technology—was considered as a promising application for the analog processing of baseband

signals. The equalizer accepts sampled vector symbols in analog form with an advantage that

the equalizer does not require an ADC at the input interface. At very high data rates, the

exclusion of an ADC softens the trade-off between chip area requirement and overall power

consumption. We discuss in the following section the main features/challenges of the analog

implementation of the vector equalizer based on RNN.

Structure: An RNN of dimension N′ (in general 2 ·N′ neurons) is capable to act as a vector

equalizer as long as the block size at the transmitter side N (over all possible symbol alphabets,

coding schemes and block sizes) is as maximum as N′, i.e., N ≤ N′.

Activation function: The definition of the optimum activation function θ
(opt)(·) is not general,

but depends on the symbol alphabet under consideration. Different symbol alphabets need

different activation functions. However, we have proven in [20] that for square QAM symbol

alphabets—the most relevant ones in practice—θ
(opt) (·) can be approximated as a sum of a

limited number of shifted and weighted hyperbolic tangent functions. Square QAM symbol

alphabets are separable ones, cf. Remark 4. The analog implementation of the hyperbolic

tangent well befits the large-signal transfer function of transconductance stages based on

bipolar differential amplifiers [3, 34].

Adaptivity: A vector equalizer must be capable to adapt to different and time-variant interfer-

ence levels. The adaptivity is regulated by the measurement of the block transmit matrix R, a

task performed by a “channel estimation unit” (CEU). The weight matricesW andW0 are then

computed as in Eq. (7) and forwarded to the RNN (Figure 9). Thus, the weight matricesW and

W0 are not the outcome of any training algorithm but related directly to R, cf. Eq. (7). This

represents a typical example for the mixed-signal integrated circuit, where the weight coeffi-

cients are (obtained and) stored digitally, converted into analog values, later used as weight

coefficients for the analog RNN [8].

For the j-th neuron in the additive model Figure 7, the ratio between two resistors Rj and Rjj′

(Rj and Rj0) is used to configure each weight coefficient wjj′ (wj0). According to the additive

Figure 9. Uncoded block transmission model. The detection reduces to a vector equalization EQ. The channel estimation

unit (CEU) estimates the block transmit matrix R.
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model, Rjj′ and Rj0 can assume both positive and negative values, and the absolute value

theoretically extends from Rj to infinite (for wjj′ ∈ [−1, +1]). This puts serious limitations to the

direct implementation of the model. In [3], we showed how this difficulty can be overcome by

using a Gilbert cell as a four-quadrant analog multiplier. A Gilbert cell [35] is composed of two

pairs of differential amplifiers with cross-coupled collectors, and is controlled by a differential

voltage input Gji applied at the base gate of the transistors. When biased with a differential tail

current Iji ¼ Iþji −I
−

ji , the differential output current Iji;w ¼ Iþji;w− I
−

ji;w is a fraction w of the tail

current Iji, as a function of the input voltage Gji:

Iji;w ¼ Iþji;w− I
−

ji;w ¼ f GcðIji ¼ Iþji − I
−

ji ;GjiÞ ¼ w � Iji ∈ ½−Iji; þIji�: (13)

Accuracy: Locally asymptotical Lyapunov stability can be guaranteed for the RNN in Eqs. (5),

(8) if, among others, the hermitian property is verified for the weight matrix W (the symmetric

property in the real-valued case). Inaccuracies in the weights’ representation may jeopardize

the Lyapunov stability and impact the performance of the vector equalizer. The first cause of

weights’ inaccuracy may arise from the limited accuracy of the analog design in terms of

components’ parasitics, devices’ mismatch, process variation, just to name a few. Those inac-

curacies (if modest) are expected to slightly degrade the performance without causing a

catastrophic failure, thanks to the high nonlinearity of the equalization algorithm. Moreover,

it has been shown in [8, 36] that in some cases, they produce beneficial effects: These imperfec-

tions incorporate some kind of simulated annealing which enables escaping local minima by

allowing occasionally “uphill steps” since the Lyapunov stable RNN is a gradient-like system.

This feature is emulated in discrete-time by stochasticHopfield networks [23]. Non-precision of

the weights may also arise from an insufficient resolution of the digital-to-analog converter

(DAC) (Figure 9). On the other hand, an overzealous DAC design increases the chip area, the

power consumption and adds complexity to the interface between the analog vector equalizer

and the digital CEU. In this case, a conservative approach suggests to use a DAC with enough

resolution to match the precision used by the CEU.

Interneuron connectivity and reconfigurability: Scaling the architecture of an analog VLSI

design is not straightforward. A vector equalizer based on recurrent neural networks is com-

posed by the repetition of equal sub-systems, i.e., the neurons. Using a bottom-up approach,

the first step to scale the system involves the redesign of the single neuron in order to handle

more feedback inputs. In a successive step, the neurons are connected together and a system-

level simulation is performed to check the functionality of the system. However, several design

choices must be made during the process and it is not guaranteed that the optimum architec-

ture for a certain number of neurons is still the best choice when the number of neurons

changes. For large N, the block transmit matrix R, defining the weight matrix W, is usually

sparse. If a maximum number of nonzero elements over the rows of R is assumed, the

requirement for a full connectivity between the neurons in Figure 7 can be relaxed, and only a

maximum number of connections per neuron will be necessary. In this case, however, in

addition to the “adaptivity”, the RNN must be reconfigured according to the position of the

nonzero elements in R. The hardware simplification given by the partial connectivity may be

counterbalanced by the necessity of a further routing (e.g., multiplexing/demultiplexing) of the
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feedback. For special cases, where the block transmit matrix can be reordered around the

diagonal, more independent RNNs can be simply used in parallel. In Figures 3(b) and 3(c),

four independent RNNs, each of dimension four, can be used in parallel. Additionally, for

specific transmission schemes such as MIMO-OFDM in Figure 4, the connectivity can be

assumed limited (number of transmit antennas minus one) and fixed (crosstalk only between

same subcarriers, when used simultaneously on different transmit antennas).

Example 1. In Figure 4, eight RNNs (number of subcarriers) each of dimension of three

(number of transmit antennas) can be used in parallel. Each neuron has two feedback inputs.

C. Circuit design

We review here the main features of the analog circuit design of an RNN as vector equalizer

working with the BPSK symbol alphabet and composed of four neurons. Detailed explanation

can be found in reference [3]. The RNN is realized in IHP 0.25 μm SiGe BiCMOS technology

(SG25H3). A simplified schematic of a neuron is shown in Figure 10. Schematics of gray boxes

are presented in Figure 11.

The dynamical behavior of the circuit in Figures 10 and 11 is described as [3]

ϒ �
du′ðtÞ

dt
¼ −u

′ðtÞ þW � v′ðtÞ þW0 � e
′
;

R � It
N−1

� tanh
u

′ðtÞ

2 � V t


 �

¼ v
′ðtÞ;

τ � I ¼ ϒ:

(14)

which is equivalent to Eq. (5). τ = R · C is the time constant of the circuit. R is shown in

Figure 10 and C is a fictitious capacitance between the nodes and uþj and u−j .Vt is the thermal

voltage and It is the tail current in Figure 11. The circuit is fully differential and the differential

currents and voltages are denoted as, cf. Figures 10 and 11:

Iji ¼ Iþji −I
−

ji Ij ¼ Iþj −I
−

j Io ¼ Iþo −I
−

o ;

Iji;w ¼ Iþji;w−I
−

ji;w u′
j ¼ uþj −u

−

j e′
j ¼ eþj −e

−

j

(15)

(1) Performance: Simulation results based on the above described analog RNN are shown in

Figure 12. The interference is described by the channel matrix Rtest.

Rtest ¼

1 0:24 −0:34 −0:57
0:24 1 0:32 0:29
−0:34 0:32 1 0:25
−0:57 0:29 0:25 1

2

6

6

4

3

7

7

5

The black dashed line shows the bit error rate (BER) for a BPSK symbol alphabet in an AWGN

channel (an interference-free channel). Performance achieved by the maximum likelihood
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Figure 10. A simplified schematic of a single neuron as a part of a (four neurons) RNN analog vector equalizer. u′
j is the

inner state, e′
j is the external input and Gji is used for adapting the weight coefficient wji from the output of the i-th neuron

to the input of the j-th neuron. The circuit is fully differential [3].

Figure 11. Details of the circuit building blocks. Gilbert cell used as a four-quadrant analog multiplier, buffer stages, BJT

differential pairs for the generation of the hyperbolic tangent function and a metal-oxide-semiconductor field-effect

transistor (MOSFET) switch used as a sequencer [3].
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algorithm in Eq. (4) is included as a solid black line. The performance of the analog RNN

vector equalizer6 is presented in a solid red line with square markers. Compared to the

optimum algorithm, the signal-to-noise ratio (SNR) loss for the analog RNN vector equalizer

can be quantified in approximately 1.7 dB at a BER of 10−4. This loss in SNR emphasizes the

suboptimality of the RNN as vector equalizer and depends on the channel matrix. Figure 13

shows an example of a transient simulation for the analog RNN vector equalizer. The time

constant is approximately τ = 40 ps. The SNR ratio is set to 2 dB and a series of three receive

vectors are equalized in sequence. Because of the channel matrix and noise, the sampled

vectors at the input of the equalizer ~x present different signs and values, compared to the sent

Figure 12. BER vs. Eb=N0 for the analog RNN vector equalizer. Evolution time equals 10 � τ. BPSK symbol alphabet and

channel matrix Rtest .

Figure 13. An example of a transient simulation for the analog RNN vector equalizer. (a) Inputs ~x (b) Outputs: soft

decisions �x and hard decisions �x .

6

Analog RNN vector equalizer refers to the described analog hardware-implemented RNN for vector equalization.
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vectors x (shown in square brackets). The equalization of each receive vector lasts 10 � τ. First

half of this interval (evolution time) is used to reach a stable state, while the second half of the

interval (reset time) is used to return to a predefined inner state (all-zero state) before the

equalization of a new vector starts. At the end of the evolution time, a decision is made based

on the sign of the output vector (the decision function DECI for BPSK is a sign function). In our

example, a comparison between the sent and the recovered bits shows an error of one bit out of

twelve, equivalent to a BER≈ 1
12, a result in line with the BER shown in Figure 12.

Remark 5. The evolution and reset times are the two limiting factors for the maximum

throughput of the analog RNN vector equalizer. However, they cannot be unlimitedly mini-

mized since the RNN needs a minimum evolution time to reach an equilibrium point

representing a local minimum of the Lyapunov function, i.e., a local minimum of Eq. (4).

(2) Energy efficiency: The energy efficiency of a hardware “architecture” is the ratio between the

power requirement (Watt) of the architecture and its achievement in a given time period. In

our case, the throughput of the equalizer represents the achievement. Combining the value of τ

and the power consumption, the abovementioned analog vector equalizer is expected to win

the competition versus common digital signal processing, thanks to three to four orders of

magnitude better energy efficiency [3].

5. Channel coding

Channel coding (including encoding at the transmitter side COD and decoding at the receiver

side DEC) aims to enable an error-free transmission over noisy channels with maximum

possible transmit rate. This is done by adding redundancy (extra bits) at the transmitter side,

i.e., the bijective map from q to qc (Figure 14,) such that the codewords qc are sufficiently

distinguishable at the receiver side even if the noisy channel corrupts some bits during the

transmission. Figure 14 shows a coded transmission over an AWGN channel.

For every received codeword, the optimum decoding (the maximum likelihood one) needs to

calculate the distance between the received codeword and all possible codewords C, which

makes it infeasible for realistic cases (except for convolutional codes which are not considered

here). We focus on binary LDPC codes and their corresponding suboptimum decoding algo-

rithm: the belief propagationwith BPSK symbol alphabet. LDPC codes [37] belong to the class of

binary linear block codes and have been shown to achieve an error rate very close to the

Shannon limit (a performance lower bound) for the AWGN channel and have been

implemented in many practical systems such as the satellite digital video broadcast (DVB-S2)

Figure 14. Coded transmission over an BER channel.
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[38]. A binary linear block code is characterized by a binary parity check matrix H of size

(n − k) + n for n > k.

6. Continuous-time single-layer high-order recurrent neural

networks for belief propagation

One of the largest drawbacks of RNNs is their quadratic Lyapunov function [39]. Optimization

problems associated with cost functions of higher degree cannot be solved “satisfactorily” by

RNNs. Increasing the order of the Lyapunov function leads to a nonlinear feedback in the

network. In doing so, we obtain the single-layer high-order recurrent neural network, named

differently in literature, depending on the nonlinear feedback [39–42].

Remark 6. High-order recurrent neural networks are in the literature exclusively real-valued.

Figure 15 shows the continuous-time single-layer high-order recurrent neural network, abbre-

viated in the following by HORNN7.

The dynamical behavior is given by

ϒd �
d�uðtÞ

dt
¼ −�uðtÞ þ �W � �f

�

�vðtÞ
	

þ �W0 � �e;

�vðtÞ ¼ �ϕ

�

�uðtÞ
	

¼
h

�ϕ1

�

�u1ðtÞ
	

; �ϕ2

�

�u2ðtÞ
	

;⋯;�ϕ
�n

�

�u
�n
ðtÞ

	iT

;

ϒd ¼ diag
v

�

h

�R1 �
�C1;

�R2 �
�C2;…;

�R
�n
� �C

�n

iT
�

: (16)

The parameters in Eq. (16) can be linked to Figure 15 in the same way as Eq. (5) linked to

Figure 7. �f ð�vÞ is a real-valued continuously differentiable vector function. In addition,
�f ð0

�n
Þ ¼ 0

�n
. It is worth mentioning that the term “high-order” in this case refers to the inter-

connections between the neurons rather than the degree of the differential equation describing

the dynamics. As for RNNs, this is still of first order, cf. Eq. (16).

Remark 7. In the special case �f ð�vÞ ¼ �v, the HORNN reduces to the (real-valued) RNN.

In order to apply HORNNs to solve optimization tasks, their stability has to be investigated. A

property without which the behavior of dynamical systems is often suspected [39]. This was

the topic of many publications [39–42]. A common denominator of the locally asymptotical

stability proof of the HORNN based on Lyapunov functions is

• �ϕ( � ) is continuously differentiable and a strictly increasing function.

• The right side of the first line of Eq. (16) can be rewritten as a gradient of a scalar function.

7

The abbreviation HORNN in this chapter inherently includes the continuous-time, single-layer and real-valued proper-

ties.
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A. Belief propagation based on HORNN

Originally proposed by Gallager [37], belief propagation is a suboptimum graph-based

decoding algorithm for LDPC codes. The corresponding graph is bipartite (n parity nodes

and n – k check nodes) and known as Tanner graph [43]. This is shown in Figure 16 for the

Hamming code with the parity check matrix HHamming Eq. (17) where n = 7, k = 4. The belief

propagation algorithm iteratively exchanges “messages” between parity and check

nodes.

Figure 15. Continuous-time single-layer real-valued high-order recurrent neural network. �vðtÞ is the output, �uðtÞ is the

inner state, �e is the external input and �ϕð�Þ is the activation function. �f ð�vÞ is a real-valued continuously differentiable

vector function with �f ð0
�n
Þ ¼ 0

�n
[21].
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HHamming ¼

0 1 1 1
1 0 1 1
1 1 0 1

1 0 0
0 1 0
0 0 1

�

�

�

�

�

�

3

5

2

4 (17)

For every binary linear block code characterized by the binary parity check matrix H of size (n

− k) + n for n > k, three binary matrices Pnh · nh , Snh ·nh and Bnh ·n can be uniquely defined [44,

45] such that Eq. (16) and Figure 15 perform continuous-time belief propagation if the follow-

ing relations are fulfilled:

Figure 16. Tanner graph of the systematic Hamming code n = 7 and k = 4.
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�u ¼ L, (18a)

�e ¼ B � Lch, (18b)

�ϕð�Þ ¼ tanh
�

2

� 	

; (18c)

�v ¼ �ϕðLÞ, (18d)

�W ¼ P, (18e)

�W0 ¼ Inh ·nh , (18f)

�f j ¼ 2 � atanh

(

∏
j′∈pos½Sðj, :Þ¼1�

�v
j′

)

for j; j′∈f1; 2; …; nhg; (18g)

�n ¼ nh: (18h)

In Eq. (18)8,

• k is the length of the information word (q in Figures 1 and 14).

• n is the length of the codeword (qc in Figures 1 and 14).

• nh ¼ 1T



1 · ðn−kÞ
�
�H � 1ðn · 1Þ ∈ ½kþ 1; n � ðn−kÞ� is the number of nonzero elements in H.

• Lch;ðn · 1Þ is the vector of intrinsic log-likelihood ratio (LLR), which depends on the

transition probability of the channel. For qc;j (the j-th element of qc for j ∈ {1; 2;⋯;n}) it is

given as

Lch;j ¼ ln
pð _xj ¼ ~xjjqc;j ¼ 0Þ

pð _xj ¼ ~xjjqc;j ¼ 1Þ:
(19)

In the last relation, _xj is the variable of the conditioned probability density function

pð _xjjqc;jÞ. ln(�) is the natural logarithm. For an AWGN channel, N ð0, σ2nÞ : Lch;j ¼
~x
j

2�σ2n
.

• Lðnh · 1Þ is the “message” sent from the variable nodes to the check nodes.

• �fðnh · 1Þ is the “message” sent from check nodes to variable nodes.

• Iðnh ·nhÞ is an identity matrix of size nh ·nh.

• pos½Sðj, :Þ ¼ 1� delivers the positions of the nonzero elements in the j-th row of the matrix

S.

8

L, �L and Lch are vectors.
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The dynamical behavior of belief propagation can be described based on Eqs. (16), (18) and

Figures 14, 15, and 16 [45]

ϒd �
dLðtÞ

dt
¼ −LðtÞ þ P � �f

�

�vðtÞ
	

þ B � Lch;

�vðtÞ ¼ tanh
LðtÞ

2


 �

;

�LðtÞ ¼ BT ��f
�

�vðtÞ
	

þ Lch:

(20)

�LðtÞ is the soft-output of the decoding algorithm, cf. Figures 5 and 14. The discrete-time

description is given as [44]

L½lþ 1� ¼ P � �f ð�v½l�Þ þ B � Lch;

�v½l� ¼ tanh
L½l�

2


 �

;

�L½l� ¼ BT ��fð�v½l�Þ þ Lch:

(21)

B. Dynamical behavior of belief propagation

In a series of papers, Hemati et. al. [12, 17, 46–49] also modeled the dynamics of analog belief

propagation as a set of first-order nonlinear differential equations Eq. (20). This was motivated

from a circuit design aspect, where ϒd (the same is valid for ϒe) can be seen as a bandwidth

limitation of the analog circuit, realized taking advantage of the low-pass filter behavior of

transmission lines Figure 17. We have shown in [45] that the model in Figure 17 also has

important dynamical properties when compared with the discrete-time belief propagation

Eq. (21) [44]. Particularly, the equilibrium points of the continuous-time belief propagation of

Eq. (20) coincide with the fixed points of the discrete-time belief propagation of Eq. (21). This

has been proved in [45]. In both cases

Lep ¼ P ��f tanh
Lep

2


 �
 �

þ B � Lch: (22)

The absolute stability of belief propagation Eqs. (20), (21) was proven for repetition codes (one

of the simplest binary linear block codes) in [44, 45]. In this case

�Lep¼ 1ðn· nÞ � Lch: (23)

Far away from repetition codes, it has been noticed that iterative decoding algorithms (belief

propagation is one of them) exhibit depending on the SNR a wide range of phenomena

associated with nonlinear dynamical systems such as existence of multiple fixed points, oscil-

latory behavior, bifurcation, chaos and transit chaos [50]. Equilibrium points are reached at

“relatively” high SNR. The analysis in reference [50] is limited to the discrete-time case.

Remark 8. The HORNN in Figure 15, Eqs. (18), (20) for belief propagation acts as a computa-

tional model.

A Continuous-Time Recurrent Neural Network for Joint Equalization and Decoding – Analog Hardware...
http://dx.doi.org/10.5772/63387

107



C. Analog hardware implementation aspects: decoding

Many analog hardware implementation aspects have been already mentioned in Section 4-B.

We mention here only additional aspects exclusively related to the analog belief propagation

based on HORNN.

Structure: In practice, different coding schemes (different parity check matrices H) with vari-

ous (k, n) constellations are applied to modify the code rate rc ¼ k=n depending on the channel

state. The HORNN in Figure 15 is capable to act as a continuous-time belief propagation

(decoder) as long as the number of neurons �n in Figure 15 equals (or is larger than) the

maximum number of nonzero elements over all parity check matrices and all (k;n) constella-

tions, i.e., �n ≥ maxH nh.

Adaptivity: No training is needed. �W0 and
�W are directly related to the parity check matrix

H. In contrast to the analog RNN vector equalizer, the weight coefficients are binary, i.e., the

weight matrices �W0 and
�W define a feedback to be either existent or not. In such a case for

Figure 15, �R
jj′
, �Rj0 ∈ f�Rj;∞g. Moreover, there is no need for high-resolution DAC for the

weight coefficients.

Interneuron connectivity: No full connection is needed since the matrix P for LDPC codes is

sparse. The number of connections per neuron must equal the maximum number of nonzero

elements in P row-wise over all considered coding schemes and equals maxH P � 1ðnh · 1Þ. If this

is fulfilled and if interneuron connectivity control is available, the structure in Figure 15

becomes valid for all considered coding scheme.

Vector function connectivity: For different coding schemes, the number of the arguments �v′j

to evaluate the function �f j changes, cf. Eq. (18g). The maximum number of the arguments

depends on the number of the nonzero elements in S row-wise and equals maxH S � 1ðnh · 1Þ.

Thus, implementing the function �f j according to this maximum number enables evaluating the

function �f j for all considered coding schemes.

Figure 17. A simple model for analog decoding as presented in [46].
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Remark 9. For a specific coding scheme, the interneuron connectivity can be made fixed. The

resulted HORNN structure in this case is valid also for all codeword lengths resulted after

performing a puncturing of the original code.

Remark 10. Both, the interneuron connectivity and the weight adaptation play a significant

role, in the equalization as well as in the decoding. It can safely be said that they represent the

major challenge of the circuit, since the analog circuit must be capable to perform equalization

and decoding for a given number of possible combinations of block size, symbol alphabet,

coding scheme, etc. Particularly for the decoding, the advantage of having a non-full connec-

tivity is counterbalanced by a double (and very complex) (de)multiplexing of the signals (once

for the vector function �f and once for the interneuron connectivity).

7. Joint equalization and decoding

Turbo equalization is a joint iterative equalization and decoding scheme. In this case, a symbol-

by-symbol maximum aposteriori probability (s/s MAP) equalizer exchanges in an iterative

way reliability values L with a (s/s MAP) decoder [51, 52]. This concept is inspired from the

decoding concept of turbo codes, where two (s/s MAP) decoders exchange iteratively reliabil-

ity values [53]. Despite its good performance, the main drawback of the turbo equalizer is the

very high complexity of the s/s MAP-equalizer for multipath channels with long impulse

response (compared with symbol duration) and/or symbol alphabets with large cardinality.

Therefore, a suboptimum equalization (and a suboptimum decoding) usually replace the s/s-

MAP ones (Figure 18).

One discrete-time joint equalization and decoding approach has been introduced in [52] and is

shown in Figure 19. ~x,Rd andR are as in Eq. (2) and z
−1 is a delay unit. We notice that there are two

different (iteration) loops in Figure 19: the equalization loop (the blue one) on symbol basis (in the

sense of ψ) and the decoding loop (the dashed one) on bit basis. a ¼ f1; 2; 3;⋯g; ρ ∈ ℕ, i.e., after

each ρ equalization loops, one decoding loop is performed. The conversion between symbol basis

and bit basis (u to Lch) is performed by θS=Lð�Þ, the way around (�L to �x) by θL=Sð�Þ. The expressions

for θL=Sð�Þ and θL=Sð�Þ can be found in [52]. However, for BPSK, they are given as

θS=LðuÞ ¼
2

σ2
� u;

θL=Sð�LÞ ¼ tanh
�L

2

 !

:
(24)

Figure 18. Two examples for joint equalization and decoding. Notice the feedback from the decoder to the equalizer, i.e.,

turbo principle.
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σ
2 is given in Eq. (11). If we consider only the equalization loop in Figure 19, we notice that it

describes exactly the dynamical behavior of discrete-time recurrent neural networks [19, 25, 33,

54–56]

u½lþ 1� ¼ ½I−R−1
d � R� � �x½l� þ R

−1
d � ~x;

�x½l� ¼ θL=SðθS=Lðu½l�ÞÞ:
(25)

Remark 11. If θL=S

�

θS=LðuÞ
	

¼ θ
ðoptÞðuÞ, Eqs. (8), (25) share the same equilibrium/fixed points.

For BPSK, it can be easily shown based on Eqs. (12), (24) that this is fulfilled.

8. Continuous-time joint equalization and decoding

Motivated by the expected improvement of the energy efficiency by analog implementation

compared with the conventional digital one, we map in this section the joint equalization

and decoding structure given in Figure 19 to a continuous-time framework. s/s MAP DEC in

Figure 19 is replaced by a suboptimum decoding algorithm: the belief propagation. Moreover,

equalization and decoding loops in Figure 19 are replaced by RNN and HORNN as

discussed previously in Sections 4-A and 6-A, respectively. The introduced structure serves

as a computational model for an analog hardware implementation and does not need any

training.

Figure 20 shows a novel continuous-time joint equalization and decoding based on recurrent

neural network structures. The dynamical behavior of the whole system is described by the

following differential equations:

Figure 19. Joint equalization and decoding as described in [52]. Lext represents the “knowledge” obtained by exploiting

the redundancy of the code.
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ϒe �
duðtÞ

dt
¼ −uðtÞ þW � �xðtÞ þW0 � ~x; (26a)

LchðtÞ ¼ θS=L

�

uðtÞ
	

; (26b)

ϒd �
dLðtÞ

dt
¼ −LðtÞ þ P � f

�

LðtÞ
	

þ B � LchðtÞ; (26c)

�LðtÞ ¼ BT � f
�

LðtÞ
	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

LextðtÞ

þLchðtÞ; (26d)

�xðtÞ ¼ θL=S

�

�LðtÞ
	

; (26e)

f j ¼ 2 � atanh ∏
j′∈ pos½Sðj, :Þ¼1�

tanh
Lj′

2


 �( )

: (26f)

• Eq. (26a) and Figure 20(a) describe the continuous-time vector equalization, cf. Eqs. (1),

(5), (7), (8).

• Eq. (26c) and Figure 20(b) describe the continuous-time belief propagation, cf. Eqs. (16),

(18), (20).

Comparing Figure 20 with Figures 7 and 15, we notice that

• The functionϕ(�) in Figure 7 (the optimum activation function θðoptÞð�Þ) has been split into

two functions θS=Lð�Þ and θL=Sð�Þ in Figure 20(a). For BPSK symbol alphabet and based on

Eqs. (12), (24), it can be easily shown that θðoptÞðuÞ ¼ θL=S

�

θS=LðuÞ
	

, cf. Remark 11.

• The functions �ϕð�Þ and �f ð�Þ in Figure 15, Eq. (18) have been merged to one function f ð�Þ in

Figure 20(b), Eq. (26f) f ðLÞ ¼ �f
�

�ϕðLÞ
	

. �LðtÞ and �xðtÞ are the soft output of the decoder

and the equalizer, respectively.

A. Special cases

The novel structure in Figure 20 is general and stays valid for the following cases:

• Separate equalization and decoding: In this case, Figure 20(a) is modified such that no

feedback from decoder to equalizer is applied. This is shown in Figure 21(a). Only at the

end of the separate equalization and decoding process, the output is given as

�L ¼ Lext þ Lch. We distinguish between two cases

1. Equalization and decoding take place separately at the same time.

2. Successive equalization and decoding: only after the end of the equalization process,

Lch are forwarded to the decoder and the decoder starts the evolution. We focus on

this case.
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• Coded transmission over an AWGN channel: In this case, R ¼ I and hence based on

Eq. (7) W ¼ 0, W0 ¼ I. Under these conditions, Eq. (26a) becomes linear and can easily be

solved uðtÞ ! ~x and LchðtÞ in Eq. (26b) becomes time independent Lch. In this case,

Eq. (26c) reduces to Eqs. (16), (18).

• Uncoded transmission over an “interference-causing” channel: In this case, P ¼ 0, B ¼ 0

and Eq. (26c) becomes L ¼ 0nh . Under these conditions, Eq. (26a) reduces to Eqs. (5), (7), (8)

(notice, however, Remark 11).

B. Throughput, asynchronicity and scheduling

The diagonal elements in Υd define the duration of the transient response the HORNN needs

in order to converge eventually (in case of convergence). The larger they are, the longer is the

transient response and consequently the less is the decoding throughput. The same is valid for

Υe. The diagonal elements of Υe based on our analog RNN vector equalizer are in the range of

a few tens of picoseconds.

Unequal diagonal elements in Υe (and Υd) represent some kind of continuous-time

asynchronicity [46]. Asynchronicity in discrete-time RNNs is desirable since it provides the ability

to avoid limit cycles, which can probably occur in synchronous discrete-time RNNs [54, 57].

Assuming Υd ¼ τd � I and Υe ¼ τe � I, we notice that the ratio τe=τd is comparable to the

scheduling problem in the discrete-time joint equalization and decoding case. More precisely,

how many iterations ρ within the equalizer should be performed before a decoding process

takes place, cf. Figure 19. This is optimized usually by simulations and is case dependent.

From a dynamical point of view, the case τe=τd ≪ 1 (or τd=τe ≪ 1) could be seen as a singular

perturbation (in time). In this case, one part of Figure 20 can be seen as “frozen” compared

with the other part.

Remark 12. We notice that the parameters of the transmission model (block transmit matrix,

symbol alphabet, block size, channel coding scheme) are utilized to define the parameters of

the continuous-time recurrent neural network structure in Figure 20 such that no training is

needed. This represents in practice a big advantage especially for analog hardware. However,

to enable different coding schemes and symbol alphabets, either a full connectivity or a vector

and interneuron connectivity controls are needed. Both structures are challenging from a

hardware implementation point of view.

Remark 13. For the ease of depiction, Figures 20 and 21 assume that one transmitted block

contains exactly one codeword. This is not necessarily the case in practice. As an example, if

one transmitted block contains two codewords, one RNN and two parallel HORNNs will be

needed. On the other hand, if one codeword lasts over two transmitted blocks, two parallel

RNNs and one HORNN is needed.

9. Simulation results

We simulate the dynamical system as given in Eq. (26) and Figure 20 based on the first Euler

method [58]. We assume:
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• BPSK modulation scheme (symbol alphabet ψ ¼ {−1; þ 1}).

• Each transmitted block contains one codeword, cf. Remark 13.

• Υd ¼ Υe ¼ τ � I.

• Channel coding scheme: An LDPC code with k ¼ 204, code rate 0:5 (n ¼ 408) and column

weight 3 taken from [59].

• Multipath channels [60]:

–Proakis-a abbreviated in the following by its channel impulse response ha leading to a

small interference.

–Proakis-b abbreviated in the following by its channel impulse response hb leading to a

moderate interference.

The impulse response of ha and hb are

ha ¼ ½ 0:04 −0:05 0:07 −0:21 −0:5 0:72 0:36 0 0:21 0:03 0:07 �;
hb ¼ ½ 0:407 0:815 0:407 �:

The block transmission matrix R is a banded Toeplitz matrix of the autocorrelation function of

the channel impulse response [61]. The following cases are considered:

• Uncoded transmission over AWGN channel. The bit error rate can be obtained analyti-

cally and is given as 1
2 � erfc

Eb

N0

n o

[62]. erfcð�Þ is the complementary error function and Eb is

the energy per bit.

• Coded transmission over AWGN channel and continuous-time decoding at the receiver

(HORNN-belief propagation).

• Uncoded transmission over (the abovementioned) multipath channels and continuous-

time equalization at the receiver (RNN-equalization).

• Coded transmission over (the abovementioned) multipath channels. We distinguish

between joint equalization and decoding (Figure 20) and separate equalization and

decoding (Figure 21). In the latter case, equalization is performed firstly, and consequently

the decoding.

The evolution time for the whole system in all cases is 20 � τ, i.e., all simulated scenarios deliver

the same throughput. For separate equalization and decoding, the evolution time of the

equalization equals the evolution time of the decoding and equals 10 τ. The simulation results

are shown in Figure 22. We notice the following:

• Joint equalization and decoding outperforms the separate one, which is a fact we know

from the discrete-time case. Our proposed model in Figure 20 is capable of

“transforming” this advantage to the continuous-time case.

• For the channel ha, the BER (for continuous-time joint equalization and decoding) is close

to the coded BER curve.
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• For the channel hb, there exists a gap between the obtained results and the coded AWGN

curve. This was expected, since hb represents a more severe multipath channel compared

with ha.

• If only equalization performance is considered, we compare between “Uncoded & EQ”

curves and “Uncoded BER” curves. In Figure 22(a), the vector equalizer based on contin-

uous-time recurrent neural networks is capable to remove already all interferences caused

by the multipath channel ha, whereas in Figure 22(b), the “Uncoded & EQ” curve

approaches an error floor.

Remark 14. Interleaving and antigray mapping often encountered in the context of iterative

equalization and decoding can be easily integrated in the proposed model in Figure 20.

Antigray mapping will influence the functions θS=Lð�Þ and θL=Sð�Þ, whereas interleaving affects

the matrix B.

10. Conclusion

Joint equalization and decoding is a detection technique which possesses the potential for

improving the bit error rates of the transmission at the cost of additional computational

complexity at the receiver. Joint equalization and decoding is being considered only for the

discrete-time case. However, for high data rates, the energy consumption of a digital imple-

mentation becomes a limiting factor and shortens the lifetime of the battery. Improving the

energy efficiency revives the analog implementation option for joint equalization and

decoding algorithms, particularly taking advantage of the nonlinearity of the corresponding

algorithms.

Continuous-time recurrent neural networks serve as promising computational models for analog

hardware implementation and stand out due to their Lyapunov stability (the proved existence of

Figure 22. BER vs. Eb=N0 for evolution time equals 20 � τ. Continuous-time (joint) equalization and decoding. BPSK

symbol alphabet.
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attracting equilibrium points under specific conditions) and special suitability for analog VLSI.

They have often been applied for solving optimization problems even without the need for a

training. The drop of the training is particularly favorable for analog hardware implementation.

In this chapter, we introduced a novel continuous-time recurrent neural network structure,

which is capable to perform continuous-time joint equalization and decoding. This structure is

based on continuous-time recurrent neural networks for equalization and continuous-time

high-order recurrent neural networks for belief propagation, a well-known decoding algo-

rithm for low-density parity-check codes. In both cases, the behavior of the underlying dynam-

ical system has been addressed, Lyapunov stability and simulated annealing are a few

examples. The parameters of the transmission system (channel matrix, symbol alphabet, block

size, channel coding scheme) are used to define the parameters of the proposed recurrent

neural network such that no training is needed.

Simulation results showed that the superiority of joint equalization and decoding preserves, if

this is done in analog according to our proposed model. Compared with the digital implemen-

tation, the analog one is expected to improve the energy efficiency and consume less chip area.

We confirmed this for the analog hardware implementation of the equalization part. In this

case, the analog vector equalization achieves an energy efficiency of a few picojoule per

equalized bit, which is three to four orders of magnitude better than the digital counterparts.

Additionally, analog hardware implementation aspects have been discussed. We showed as an

example the importance of the interneuron connectivity, especially pointing out the challenges

represented either by the hardware implementation of a massively distributed network, or by

the routing of the signals using (de)multiplexers.
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