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1. Introduction  

The research of power system stabilizer (PSS) for improving the stability of power system 
has been conducted from the late 1960's. Conventionally lead-lag controller has been widely 
used as PSS. Root locus and Bode plot to determine the coefficient of lead-lag controller (Yu, 
1983; Larsen and Swann, 1981; Kanniah et al., 1984), pole-placement and eigenvalue control 
(Chow & Sanchez-Gasca, 1989; Ostojic & Kovacevic, 1990) and a linear optimal controller 
theory (Fleming & Jun Sun, 1990; Mao et al., 1990) have been used. These methods, using a 
model linearlized in the specific operating point, show a good control performance in the 
specific operating point. But these approaches are difficult to obtain a good control 
performance in case of operating conditions such as change of load or three phase fault, etc. 
Therefore, several methods based on adaptive control theory (Chen et al., 1993; Park & Kim, 
1996) have been proposed to give an adaptive capability to PSS for nonlinear characteristic 
of power system. These methods can improve the dynamic characteristic of power system, 
but these approaches cannot be applied for the real time control because of long execution 
time. 
Recently the research for intelligence control method such as fuzzy logic controller (FLC) 
and neural network for PSS has greatly improved the dynamic characteristic of power 
system (Hassan et al., 1991;  Hassan & Malik, 1993). Fuzzy rules and membership functions 
shape should be adjusted to obtain the best control performance in FLC. Conventionally the 
adjustment is done by the experience of experts or trial and error methods. Therefore it is 
difficult to determine the suitable membership functions without the knowledge of the 
system. Recently, evolutionary computations (EC) that is a kind of a probabilistic optimal 
algorithm is employed to adjust the membership functions and fuzzy rules of FLC. 
The EC is based on the natural genetics and evolutionary theory. The results of this 
approach show a good performance (Abido and Abdel-Magid, 1998, 1999). 
EC is based on the principles of genetics and natural selection. There are three broadly 
similar avenues of investigation in EC: genetic algorithm (GA), evolution strategy (ES), and 
evolutionary programming (EP) (] Fogel, 1995). GA simulates the crossover and mutation of 
natural systems, having a global search capability (Goldberg, 1989), whereas ES simulates 
the evolution of an asexually reproducing organism. ES can find a global minimum, and by 
combining another EC it also could be efficient local search technique (Gong et al., 1996 ).  
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The performance of EC is influenced by parameters such as size of population, fitness, 
probability of crossover, and mutation, etc. If these parameters are not adequately selected, 
execution time will be longer and premature convergence to local minimum can occur. To 
solve problems above, several approaches have been proposed. To enhance the performance 
of GA, the population size, the probability of crossover, mutation and operation method 
should be adaptively modified in each generation (Arabas et al., 1994; Schlierkamp-Voosen 
& Muhlenbein, 1996). To enhance the performances of ES and EP, the mutation parameters 
should be adapted while running ES and EP (Goldberg, 1989; Fogel et al., 1991). 
In conventional ES, parameter values and operator probabilities for the GA and ES are 
adapted to find a solution efficiently. In this paper, however, we propose adaptive 
evolutionary algorithm (AEA). The ratio of population to which GA and ES will apply is 
adaptively modified in reproducing according to the fitness. We use ES to optimize locally, 
while the GA optimizes globally. The resulting hybrid scheme produces improved and 
reliable results by using the “global” nature of the GA as well as the “local” improvement 
capability of the ES.  
AEA was applied to search the optimal parameters of the membership functions and the 
suitable gains of the inputs and outputs for fuzzy power system stabilizer (FPSS). The 
effectiveness of FPSS is demonstrated by computer simulation for single-machine infinite 
bus system (SIBS) and multi-machine power system (MPS). To show the superiority of FPSS, 
its performances are compared with those of conventional power system stabilizer (CPSS). 
The proposed FPSS shows the better control performances than the CPSS in three-phase 
fault under a heavy load, which is system condition in tuning FPSS. To show the robustness 
of the proposed FPSS, it is applied to the system with disturbances such as change of the 
mechanical torque and three-phase fault under nominal and heavy load conditions. 

2. Adaptive evolutionary algorithm 

2.1 Motivation 

GA, one of the probabilistic optimization methods, is robust and is able to solve complex 
and global optimization problem. But GA can suffer from the long computation time before 
providing an accurate solution because it uses prior knowledge minimally and does not 
exploit local information (Renders & Flasse, 1996). ES, which simulates the evolution of 
asexually reproducing organisms, has efficient local search capability. To solve complex 
problem, however, it better to a hybrid EC (Gong et al., 1996). 
In this paper, to reach the global optimum accurately and reliably in a short execution time, 
we designed an AEA by using GA and ES together. In AEA, GA operators and ES operators 
are applied simultaneously to the individuals of the present generation to create the next 
generation. Individual with higher fitness value has the higher probability of contributing 
one or more chromosomes to the next generation. This mechanism gives greater rewards to 
either GA or ES operation depending on what produces superior offspring. 

2.2 Adaptive evolutionary algorithm 
In AEA, the number of individuals created by GA and ES operations is changed adaptively. 
An individual is represented as a real-valued chromosome that makes it possible to 
hybridize GA and ES operations. 
ES forms a class of optimization technique motivated by the reproduction of biological 

system and the population of individuals evolves toward the better solutions by means of 
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the mutation and selection operation. In this paper, we adopted a (μ, λ)-ES. That is, only the 

λ offspring generated by mutation competes for survival and the μ parents are completely 

replaced in each generation. Also, self-adaptive mutation step sizes are used in ES. 

For AEA to self-adapt its use of GA and ES operators, each individual has an operator code 

for determining which operator to use. Suppose a ‘0’ refers to GA, and a ‘1’ to ES. At each 

generation, if it is more beneficial to use the GA, ‘0’s should appear at the end of 

individuals. If it is more beneficial to use the ES, ‘1’s should appear. After reproduction by 

roulette wheel selection according to the fitness, GA operations (crossover and mutation) are 

performed on the individuals that have the operator code of ‘0’ and the ES operation 

(mutation) is performed on the individuals that have an operator code of ‘1’. Elitism is also 

used. The best individual in the population reproduces both the GA population and ES 

population in the next generation. The major procedures of AEA are as follows: 

1)  Initialization: The initial population is randomly generated. Operator code is randomly 
initialized for each individual. According to the operator code, GA operations are 
performed on the individuals with operator code ‘0’, while ES operations are applied 
where the operator code is ‘1’. 

2)  Evaluation and Reproduction: Using the selection operator, individual chromosomes 
are selected in proportional to their fitness, which is evaluated by the defined objective 
function. After reproduction, GA operations are performed on the individuals having 
an operator code of ‘0’ and the ES operations are performed on the individuals having 
an operator code ‘1’. At each generation, the percentages of ‘1’s and ‘0’s in the operator 
code indicate the performance of GA and ES operators.  

3)  Preservation of Minimum Number of Individuals: At each generation, AEA may fall 
into a situation where the percentage of the offspring by one operation is nearly 100% 
and the offspring by other operation dies off. Therefore, it is necessary for AEA to 
preserve certain amount of individuals for each EC operation. In this paper, we 
randomly changed the operator code of the individuals with a higher percentage until 
the numbers of individuals for each EC operation become higher than a certain amount 
of individuals to be preserved. The predetermined minimum number of individuals to 
be preserved is set to 20% of the population size. 

4)  Genetic Algorithm and Evolution Strategy: The real-valued coding is used to represent 
a solution (Michalewicz, 1992; Mitsuo Gen and Cheng, 1997). Modified simple 
crossover and uniform mutation are used as genetic operators. The modified simple 
crossover operator is a way to generate offstrings population, selecting two strings 
randomly in parent population, as shown in Fig. 1. If crossover occurs in k-th variable, 
selecting randomly two strings in t-th generation, offstrings of t+1-th generation are 
shown in Fig. 1.  

In uniform mutation, we selected a random k-th gene in an individual. If an individual and 

the k-th component of the individual is the selected gene, the resulting individual is as 

shown in Fig. 2. 

Only the λ offspring generated by mutation operation competes for survival and the μ 

parents are completely replaced in each generation. Mutation is then performed 

independently on each vector element by adding a normally distributed Gaussian random 

variable with mean zero and standard deviation (σ), as shown in Eq. (1). After adapting the 

mutation operator for ES population, if the improved ratio of individual number is lesser 
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than δ, standard deviation for the next generation is decreased in proportion to decreased 

rates of standard deviation (cd), Otherwise, standard deviation of the next generation is 

increased in proportion to increased rates of standard deviation  (ci,), as shown in Eq. (2) 

(Fogel, 1995). 

 

<  Before Crossover > <  After Crossover >

Sv = [V1,  ... , Vk,  ... , Vn ]
t

Sw = [W1, ... , Wk, ... , Wn]
t

Sv    = [V1,   ... ,  Vk, Vk+1 ... ,  Vn ]
' ' '

Sw   = [W1,  ... , Wk, Wk+1 ... , Wn ]
' ' '

t+1

t+1

Crossover point

Vj = a1  Vj  +  a2  Wj

Wj = a1  Wj  +  a2  Vj

where, '

'

a1, a2 : Random numbers from [0, 1]

Vj : j-th gene of the vector Sv

Wj : j-th gene of the vector Sw
'

n : Number of parameters

'

 

Fig. 1.  Modified simple crossover method 
 

<  Before Mutation >

Sv = [V1,  ... , Vk,  ... , Vn ]

<  After Mutation >
t

Sv    = [V1,   ... ,  Vk, Vk+1 ... ,  Vn ]
't+1

Mutation point

where,
'

Vk : Random value between upper bound and lower bound
 

Fig. 2.  Uniform mutation method 
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where, N(0,σt ) : Vector of independent Gaussian random variable with mean of zero and 

standard deviations σ 
                     Vkt : k-th  variable at t-th generation 

                   φ(t) : Improved ratio of individual number after adapting mutation operator for 
population of ES in t-th generation  

                      δ : Constants 

5) Elitism: The best individual in a population is preserved to perform GA and ES 
operation in the next generation. This mechanism not only forces GA not to deteriorate 
temporarily, but also forces ES to exploit information to guide subsequent local search 
in the most promising subspace. 
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3. Design of fuzzy power system stabilizer using AEA 

Conventionally, we have used the knowledge of experts and trial and error methods to tune 

FLC’s for a good control performance, but recently many other ways using EC are proposed 

to modify fuzzy rule and shape of fuzzy membership function (Abido and Abdel-Magid, 

1998, 1999). Scaling factors of input/output and parameters of membership function of FPSS 

are optimized by means of AEA using GA and ES adaptively, as described in chapter 2. 

Fig. 3 shows the architecture for tuning scaling factors of input/output and membership 

function shape of FPSS using AEA. As shown in Fig. 3, the rotor speed deviation of 

generator and the change rate for rotor speed deviation are used as inputs of FPSS. The 

control signals of the FPSS are used for enhancing power system damping by 

supplementary control signals of generators. 
 

G

FPSS de(t)

dt

AEA

Excitor
and AVR

Vt

Umax

Umin

e(t)

(t)

ref

Vt θ V00 0

Generator

ω

ω

 

Fig. 3.  Configuration for tuning of FPSS using AEA. 

The FPSS parameters used in this paper are given below. 
- Number of input/output variables : 2/1 
- Number of input/output membership functions : 7/7 
- Fuzzy inference method : max-min method 
- Defuzzification method : center of gravity 
Because deviation and change-of-deviation are used as input variables of the FPSS, 

proportional-derivative (PD)-like FPSS is used. Rule base for the PD-like FPSS from the two-

dimensional phase plane of the system in terms of deviation (e) and change-of-deviation 

(de) is shown in Table 1. As shown in Table 1, the phase plane is divided into two semi-

planes by means of switching-line. Within the semi-planes, positive and negative control 

signals are produced, respectively. The magnitude of the control signals depends on the 

distance of the state vector from the switching line. 
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When AEA is tuning the membership functions, fuzzy rules are used for PD-type, as shown 

in Table 1, where, linguistic variable NB means “Negative Big”, NM means “Negative 

Medium”, NS means “Negative Small”, etc. Fig. 4 shows triangular membership function 

used in this paper. Because we use 7 fuzzy variables (PB, PM, … ,NM, NB) respectively, for 

input/output of FPSS, the total membership functions will be 21, so 63 variables that include 

the center and width of all the membership function will be adjusted, but it takes a long 

calculation time to tune 63 variables using AEA, and suffers from undesirable converging 

characteristic. In this paper, we fixed center of ZE to 0 and positive and negative 

membership functions are constructed symmetrical for the 0. So the number of parameters 

of FPSS will be reduced to 21, which means 3 centers and 4 widths for each variable as 

shown in Fig. 4.  

 

      de
  e 

NB NM NS ZE PS PM PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NM NS ZE PS PM PM 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PM PB PB PB 

Table 1. Fuzzy rules of proportional-differential type 

 

 

Fig. 4.  Symmetrical membership functions 

The flowchart for the design of FPSS using the proposed AEA is shown in Fig. 5. The 
procedure for the design of FPSS using AEA is as follows: 
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Initilize Population 

Evaluation 

p> N

Reproduction

p= p+ 1

Preservation of Minimum Number of Individuals 

GA 

 • Crossover and mutation 

ES 

 • Mutation 

Elitism 

g> G

END 

g= g+ 1

No 

Yes 

No 

Yes 

 
where, P : Number of population 
G : Specified generation 

Fig. 5.  Flowchart for the design of FPSS using AEA 

Step1) Initialize population 
Strings are randomly generated between upper bounds and lower bounds of the 
membership function parameters and scaling factors of FPSS. The operator code is 
randomly set to decide if each string is individual of GA or ES. The configuration of 
population is described in Fig. 6. Also scaling factors of the FPSS are tuned by the AEA. 
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S1 P11 • • • P19 W11 • • • W112 SF11 SF12 SF13 * 

S2 P21 • • • P29 W21 • • • W212 SF21 SF22 SF23 * 

 • 
• 

Sn Pn1 • • • Pn9 Wn1 • • • Wn12 SFn1 SFn2 SFn3 * 

       
where,      n : population size 

Pij : Center of the membership functions 
Wij : Width of the membership functions 
SFij : Scaling factors 

* : Operator code 

Fig. 6.  String architecture for tuning membership functions and scaling factors. 

Step 2) Evaluation 
Each string generated in Step 1 is evaluated using the fitness function in Eq. (3). As shown in 

Eq. (3), the absolute deviation between the rotor speed and the reference rotor speed of 

generator is used. The flowchart for evaluation part is shown in Fig. 7. 

 
( )

0

1

1 | |
T

ref t
t

Fitness
ω ω

=

=
+ −∫

  (3) 

where,  ωref   : Reference rotor speed of generator  

              ω(t) : Rotor speed of generator 

                 T  : No. of data acquired during specified time 
Step 3) Reproduction 
We used roulette wheel to reproduce in proportion to fitness. After reproduction, the 

individual operator code of ‘0’ is inserted in the population of GA, the individual operator 

code of ‘1’ is inserted in the population of ES. 

Step 4) Preservation of Minimum Number of Individuals 
Among GA and ES, depending on which is stronger, we guarantee minimum number of 

individuals to offsprings being disappearing by the remaining iterations. 
Step 5) GA and ES operation 
The individual with operator code of ‘0’ applied crossover and mutation in GA operators 

and generates offsprings. The individual with operator code of ‘1’ apply mutation in ES 

operator and generates offsprings. 
Step 6) Elitism 
We use elitism reproducing the best individual of fitness to GA and ES population by each 

one. 

Step 7) Convergence criterion 
We iterate Step 2 – Step 6 until being satisfied of the specified generation. 

4. Simulation  studies 

4.1 Simulation cases of single-machine infinite bus system 
We performed nonlinear simulation for SIBS in Fig. 8 to demonstrate the performance of the 
proposed FPSS. A machine has been represented by third order one-axis nonlinear model, as  
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Power Flow Calculation 

 λ Newton Raphson method 

Calculation of Initial Values 

 λ Calculate of initial values needed differential equation analysis 

t> 10[sec]

 Fitness Calculation 

t= t+ Δt

Yes 

Disturbance Applying 

 λ Apply of disturbances such as three-phase fault,  change  

   of mechanical torque etc.    

Calculation of Output of FPSS 

 λ Compute output of FPSS using fuzzy inference and  

   defuzzification.  

Differential Equation Analysis of Generator 

 λ Solve differential equations of generator using Runge  

   Kutta  

Calculation of Deviation Absolute Value 

 λ e(t) =  |  ωref - ω(t) |  

No 

 

Fig. 7 Flowchart for evaluation part 

shown in appendix. Details of the system data are given in Yu, 1983. Table 2 shows the 

simulation coefficients of AEA used in nonlinear simulation. The execution time in PC 586 

(300 MHz) takes about 30 minutes to tune the parameters of FPSS under the condition in 

Table 2. Fig. 9 shows membership functions shape of FPSS tuned by AEA, where scaling 

constant of deviation is 0.24, scaling constant of deviation rate is 3.50 and scaling constant of 
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output part is 2.75. We reviewed the performance of FPSS proposed in this paper and 

compared it with CPSS (Yu, 1983). In CPSS, time constants (T1, T2) were designed based on 

phase compensation as in Eq. (4), where washout filter (Tw) is 3 sec, stabilization gain (Kpss) 

is 7.09, and T1, T2 are 0.1 sec, 0.065 sec respectively. 

 w 1

w 2

sT 1 sT

1 sT 1 sT
pss

V K
s

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (4) 

where, Vs : Output of PSS 
 

~

Vt e θj

R jX

Voo 0

G

jB

 

Fig. 8.  Single-machine infinite system used in performance evaluation  

 

AEA 
Methods 

SIBS MPS 

Size of population 50 100 

Crossover probability 0.95 0.95 

Mutation probability 0.005 0.005 

δ 0.5 0.5 

Cd 0.95 0.95 

CI 1.05 1.05 

Number of Generation 100 200 

Table 2. Coefficients for simulation using AEA 
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(a) Membership function of deviation 

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
e
g

re
e

E r r o r  r a t e

 
(b) Membership function of change-of-deviation 
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(c) Membership function of output part 

Fig. 9.  Tuned membership function of FPSS 

Fig. 10 (a) shows the fitness values by AEA in each generation. Fig. 10 (b) shows the number 

of individuals for GA and ES in the AEA. As shown in Fig. 10, the number of individuals of 

GA is higher than that of individuals of ES in early generation. But, from generation to 

generation, the number of individuals of ES goes higher than that of individuals of GA. The 

AEA produces the improved reliability by exploiting the “global” nature of the GA initially 

as well as the “local” improvement capabilities of the ES from generation to generation. 

Analysis conditions used for comparing control performance of CPSS with FPSS optimized 

by AEA are summarized in Table 3. Table 3 is classified into four cases according to the 

power system simulation cases used in designing FPSS and in evaluating the robustness of 

FPSS. As shown in Table 3, Case-1 is used to design FPSS and tune scaling constant of 

input/output variable and membership functions of FPSS by AEA. We used Case-2 and 

Case-4 in evaluating the robustness of FPSS. 
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1) Heavy load condition 
Fig. 11 shows generator angular velocity and the phase angle both without PSS and with 
CPSS and FPSS under Case-1 in Table 3. As shown Fig. 11, the FPSS shows the better control 
performance than CPSS in terms of settling time and damping effect. To evaluate the 
robustness of FPSS, Fig. 12 shows generator response characteristic in case that PSS is not 
applied. In this case, CPSS and proposed FPSS are applied under Case-2 of Table 3. As 
shown in Fig. 12, FPSS shows the better control performance than CPSS in terms of settling 
time and damping effect. 
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(b) Number of individuals of GA and ES in AEA 

Fig. 10.  Fitness and number of individuals of GA and ES in each generation 

 

Simulation 
cases 

Operating 
conditions 

Disturbanc
e 

Fault time
[msec] 

Case-1 A 40 

Case-2 

Heavy load 
Pe = 1.3 [pu] 

Qe = 0.015 [pu] B - 

Case-3 A 40 

Case-4 

Nominal load 
Pe = 1.0 [pu] 

Qe = 0.015 [pu] 
B - 

A: Three phase fault 
B:  Mechanical torque was changed as 0.1 [pu] 

Table 3. Simulation cases used in evaluation of controller performance 
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(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 11.  Responses of generator when three-phase fault was occurred in heavy load 

 
(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 12.  Responses of generator when mechanical torque was changed into 0.1[pu] in heavy 
load 

2) Nominal load condition 
    To evaluate the robustness of FPSS, Fig. 13-14 show generator response characteristic in 
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 of 
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Table 3. As shown in Fig. 13-14, the FPSS shows the better control performance than CPSS in 
terms of settling time and damping effect. 
 

 
(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 13.  Responses of generator when three-phase fault was occurred in nominal load 

 

 
(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 14.  Responses of generator when mechanical torque was changed into 0.1[pu] in 
nominal load 
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3) Dynamic stability margin 
To evaluate the dynamic stability margin (He & Malik, 1997) of CPSS and FPSS, a simulation 

study is conducted with the initial operating condition of light, nominal and heavy load as 

given in Table 3. The mechanical torque is increased gradually. The dynamic stability 

margin is described by the maximum active power in which the system losses synchronism. 

Table 4 shows the dynamic stability margin. In Table 4, we can find FPSS increases the 

dynamic stability of generator. 
 

                                     Methods 
              Conditions 

CPSS FPSS 

Maximum active power [pu] 1.02 1.06 
Light 
load Maximum generator phase angle 

[rad] 
2.44 2.46 

Maximum active power [pu] 1.22 1.27 
Nominal 

load Maximum generator phase angle 
[rad] 

2.35 2.45 

Table 4. Dynamic stability margin (SIBS) 

4.2 Simulation cases of multi-machine power system 
To demonstrate the performance of the proposed FPSS, we performed nonlinear simulation 
for WSCC 3-machine, 9-bus system (Anderson & Found, 1977) as in Fig. 15. Constants of 
generator and exciter, load admittance, and load condition used in generator dynamic 
characteristic analysis are shown in Appendix (Abido & Abdel-Magid, 1999). Coefficients 
for simulation of AEA are shown in Table 2. We compared the proposed FPSS with the 
conventional power system stabilizer, CPSS, for multi-machine power system. In CPSS, time 
constants (T1, T2) were designed based on phase compensation as in Eq. (5), where washout 
filter (Tw) is 1.5 sec, stabilization gain (Kpss) is 15, and T1, T2 are 0.29 sec, 0.029 sec 
respectively. 

 
2

w 1

w 2

sT 1 sT

1 sT 1 sT
pss

V K
s

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (5) 

As shown in Table 5, simulation cases used in comparing control performance of FPSS with 
CPSS are classified into Case-1 to Case-4. Case-1 was for the power operating condition used 
in designing FPSS. Case-2 and Case-4 were for evaluating the robustness of FPSS 
 

Simulation 
cases 

Operating 
conditions 

Disturbanc
e 

Fault time
[msec] 

Case-1 A 70 

Case-2 
Heavy load 

B 70 

Case-3 A 70 

Case-4 
Nominal load 

B 70 
 

A: Three phase fault in bus-7 
B: Three phase fault between  bus-5 and bus-7 
Table 5. Simulation cases used in evaluation of controller performance 
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2 3

4

5 6

7

G1 G2

8 9

Load A Load B

Load C

1     ~      : Bus ,     Load A ~ Load C : Load,     G 1, G2 : Generator9

1

 

Fig. 15.  WSCC 3-machine, 9-bus system 

1) Heavy load condition 
Fig. 16 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS 
under Case-1 in Table 5. As shown Fig. 16, the FPSS shows the better control performance 
than CPSS in terms of settling time and damping effect. To evaluate the robustness of FPSS, 
Fig. 17 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS 
under Case-2 in Table 5. As shown in Fig. 17, FPSS shows the better control performance 
than CPSS in terms of settling time and damping effect. 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 16.  Responses of generator when three-phase ground fault was occurred at bus-7 under 
heavy load condition 
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(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 17.  Responses of generator when three-phase ground fault was occurred at bus-5 and 
bus-7 under heavy load condition 
2) Nominal load condition 
To evaluate the robustness of FPSS, Fig. 18-19 shows generator response characteristic in 
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 in 
Table 3. As shown in Fig. 18-19, the FPSS shows the better control performance than CPSS in 
terms of settling time and damping effect. 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 18.  Responses of generator when three-phase ground fault was occurred at bus-7 under 
nominal load condition 
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(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 19.  Responses of generator when three-phase ground fault was occurred at bus-5 and 
bus-7 under nominal load condition 

3) Dynamic stability margin 
Table 6 shows the dynamic stability margin (He and Malik, 1997) of CPSS and FPSS when 

the mechanical torque was increased gradually. In Table 6, we can find FPSS increases the 

dynamic stability of generator. 

 

CPSS FPSS                 Methods 
Conditions 

G1 G2 G1 G2 

A 3.04 2.44 3.11 2.51 Heavy 
load 

B 2.25 1.39 2.25 1.46 

A 2.84 2.29 2.91 2.36 Nominal 
load 

B 2.52 1.58 2.52 1.63 

A : Maximum active power [pu] 
B : Maximum generator phase angle [rad] 

Table 6. Dynamic stability margin (MPS) 

5. Conclusions 

In this paper, we tuned membership functions shape and input/output gain of FPSS using 

AEA that is algorithm that ratio of population to which GA and ES will adapt is adaptively 
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modified in reproduction according to the fitness. In the SIBS and MPS, we analyzed 

simulation results of FPSS and CPSS. The results are as following:  

၃ As a result of applying AEA to the design of FPSS, in the early generation, it is shown 
the number of population of GA is higher than that of population of ES, also the 
number of population of ES grows as the number of generation increases. This shows 
that the global search is executed through GA in the early generation and the local 
search is executed adaptively by means of ES as the number of generation increases. 

၄  FPSS showed the better control performance than CPSS in terms of settling time and 
damping effect when three- phase fault under heavy load that is used in tuning FPSS 
occurs. To evaluate the robustness of FPSS, we analyzed dynamic characteristic of 
generator for changeable mechanical torque in heavy load, and change of mechanical 
torque and three-phase fault in nominal. FPSS showed the better damping effect than 
CPSS. 

၅  As result of finding dynamic stability margin and successive peak damping ratio, FPSS 
more increased dynamic stability margin and showed the better result than CPSS in 
terms of successive peak damping ratio.  
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7.Appendix 

A. System Model 

' 1
[ ' ( ') ]

'

q

q d d d fd

do

dE
E X X I E

dt T
= − + − −  

ref

d

dt

δ ω ω= −  

[ ' ( ') ]
2

ref

m q q q d d q

d
T E I X X I I

dt H

ω ω
= − − −  

1
( )

ef a

ref t s fd

a

dE K
V V V E

dt T Ta
= − + −  

 

     where,                                                      2 2
t d qV V V= +  

e

1
[R ( ' sin ) ( ')( ' cos )]d d e q qI E V X X E Vδ δ∞ ∞= − + + −

Δ
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1
[R ( ' cos ) ( ')( ' sin )]q q e d dI E V X X E Vδ δ∞ ∞= − − + −
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e

'
' [R ( ' cos ) ( ')( ' sin )]

q

d d q e d d

X
V E E V X X E Vδ δ∞ ∞= + − − + −

Δ
 

e

'
' [R ( ' sin ) ( ')( ' cos )]

d

q q d e q q

X
V E E V X X E Vδ δ∞ ∞= − − + + −

Δ
 

2
eR ( ')( ')e d e qX X X XΔ = + + +  

B. Nomenclature 

δ    : Rotor angle of generator 

ω    : Rotor speed of generator 

ωref : Reference rotor speed of generator  

H   : Inertia constant of generator 

Tm  : Mechanical input of generator 

Xd  : d-axis synchronous reactance of generator 

Xd ’ : d-axis transient reactance of generator 

Xq  : q-axis synchronous reactance of generator 

Eq’  : q-axis voltage of generator 

Efd  : Generator field voltage 

Tdo‘ : d-axis transient time constant of generator 

Id      : d-axis current of generator 

Iq      : q-axis current of generator 

Vt   : Terminal voltage 

Vref : Reference  voltage 

Vs    : PSS signal 

Voo  : Voltage of infinite bus 

 Ka  : AVR gain    

Ta    : Exciter time constant 

Re   : Equivalent resistance of transmission line 

Xe   : Equivalent reactance of transmission line 

C. Multi-machine Power System 

1. Constants of generator and exciter 

       Parameters
 

Generators 

H 
[sec] 

Xd 
[pu] 

X’d 

[pu] 
Xq 

[pu] 
T’do 

[pu] 
T’qo 
[pu] 

G1 6.4 0.8958 0.1198 0.8645 6.0 0.535 

G2 5.4 1.3125 0.1813 1.2578 5.89 0.6 

2. Load admittance 

Load Nominal load Heavy load 

Load A 1.261 - j0.504 2.314 – j0.925 

Load B 0.878 – j0.293 2.032 – j0.677 

Load C 0.969 – j0.339 1.584 – j0.634 
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3. Loading conditions 

                            Generators 
Loading condition 

G1 G2 

P [pu] 1.35 0.80 
Nominal load 

Q [pu] 0.02 - 0.12 

P [pu] 1.65 1.05 Heavy 
load Q [pu] 0.53 0.35 
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