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Hungary 

1. Introduction 

More and more applications (path planning of a robot, collision avoidance methods) require 
3D description of the surround world. This chapter describes a 3D projective reconstruction 
method and its application in an object recognition algorithm. 
The described system uses 2D (color or grayscale) images about the scene taken by 
uncalibrated cameras, tries to localize known object(s) and determine the (relative) position 
and orientation between them. The scene reconstruction algorithm uses simple 2D 
geometric entities (points, lines) produced by a low-level feature detector as the images of 
the 3D vertices and edges of the objects. The features are matched across views (Tél & Tóth, 
2000). During the projective reconstruction the 3D description is recovered. The developed 
system uses uncalibrated cameras, therefore only projective 3D structure can be detected 
defined up to a collineation. Using the Euclidean information about a known set of 
predefined objects stored in database and the results of the recognition algorithm, the 
description could be updated to a metric one.  
Projective reconstruction methods 
There are many known solutions to the projective reconstruction problem. Most of the 
developed methods use point features (e.g. vertices), but there are extensions to use higher 
order features, such as lines and curves (Kaminski & Shashua, 2004). The existing methods 
can be separated into three main groups. The view tensors describe the algebraic 
relationships amongst coordinates of features in multiple images that must be satisfied in 
order to represent the same spatial feature in 3D scene (Faugeras & Mourrain, 1995). These 
methods estimate fundamental matrix from two views (Armangué et al., 2001) or trifocal 
tensor from three views (Torr & Zisserman, 1997). The factorization based methods use the fact 
that collecting the weighted homogeneous (point) projection vectors into a large matrix 
(measurement matrix), the rank must be four, because it is a product of two rank four 
matrices. An iterative solution to solve this problem can be found in (Han & Kanade 2000). 
In bundle adjustment methods the reprojection errors between original image feature locations 
and an estimated projection of spatial feature locations are minimized. The solution for the 
problem can be found applying e.g. nonlinear least squares algorithm (Levenberg-
Marquardt). 
Object recognition methods 
The aim of object recognition methods is to recognize objects in the scene from a known set 
of objects, hence some a-priori information is required about the objects. These types of O
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methods are called model based object recognition methods, where predefined object 
databases are used to store the required information about the objects. There are many 
classification types of the applied (and stored) object models, such as object-centered or 
viewer-centered models, physical or geometrical models, rigid or deformable models, etc. 
The dimensionality of the used information is also changed in different recognition systems, 
there are 2D only, mixed and 3D only systems. The developed algorithms are usually 
evaluated against set of different criteria, such as search complexity, discriminative power 
and robustness. The appearance based methods use 2D images as object representations. Using 
multiple views, the stored information can be reduced to a minimal set. Here the intensity 
distribution of the images is used as the basis of the comparison of the similarity of the 
projected intensity image among views. The two different strategies are global ones, e.g. 
eigenface (Belhumeur et al., 1997) or local approach, where local properties of the images 
(neighborhood of edges or corner points) are used to improve the discriminative power, e.g. 
GLOH (Mikolajczyk & Schmid, 2005)). 
The aspect graph methods use the changes in the projected geometry of the objects and group 
views bounded by transitions of the geometry (Schiffenbauer, 2001). The information 
reduction is based on the determination of general views, which are equivalent with each 
other.  
The indexing based methods use those properties of the data that are invariant against a 
selected group of transformations. In this case the transformation describes the relationship 
between the object data as stored in the database and scene information, therefore the 
transformations could be rigid (translation and rotation), similarity (rigid and scaling), etc., 
up to the most general projective one (collineation). The most widely used methods are 
based on the geometric hashing (Wolfson & Rigoutsos, 1997). In this case subsets of features 
(points) are selected that can be used to form a basis and define local coordinate system with 
that basis. Calculating the coordinates of all of the remaining features in this coordinate 
system and quantizing the calculated coordinates a hash table is constructed. During the 
query a similar method is applied and vote is generated into the respecting entry of the hash 
table.  
Euclidean update methods 
The last step of the reconstruction is (if the robot control application requires) the update of 

the reconstructed data from projective to a metric one. There are several algorithms that 

address this issue. One group of applications uses known a-priori information to recover 

metric information. In (Boufama et al., 1993) e.g. the coordinates of known points, points 

laying on the plane of the given (reference) frame, known alignment of points on vertical or 

horizontal line and known distance between points are used to involve metrical information 

into the reconstruction. In (Faugeras, 1995) an update sequence is described, that converts 

the reconstruction from projective to affine, then from affine to Euclidean. The proposed a-

priori information is either the known motion of the camera, parallelity of lines (for affine) 

or angle between lines (for Euclidean) reconstruction. 

The other type of methods uses the hypothesis of fixed (but unknown) intrinsic camera 

parameters. These algorithms are known camera self-calibration methods. This yields the 

intrinsic parameters of the cameras using only imaging information. (Hartley, 1993) 

supposes that the cameras have common calibration matrices and uses nonlinear 

minimizations to calculate camera matrices. A huge nonlinear minimization is achieved to 

get the final description. 
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The chapter is divided in sections as follows. Section 2 gives an overview of the most 
important methods of projective reconstruction. The main part of the chapter is section 3 
dealing with object recognition based on a new indexing method. Section 4 presents a 
method of Euclidean reconstruction assuming uncalibrated cameras for robot applications if 
the goal is to find the relative position and orientation between the gripper and the 
recognized object. Section 6 contains the conclusions and some directions of future 
developments. Section 7 is the Appendix summarizing the basic results of projective 
geometry and notations used in the chapter.  

2. Projective reconstruction 

The developed system uses two types of reconstruction algorithms, the first uses point 
features only and the other uses point and line features together.  

2.1 Cost function for points 
Using the pinhole camera model the projection equation for points can be written into linear 

form jiijij QPq =ρ . In this case the scale factor ijρ  denotes the projective depth of the given 

point. If there are m  cameras and Pn  points in the scene, then the number of projected 

image points (and scale factors) are Pnm× . But only Pnm+  are independent amongst 

them, therefore the projective depths should be decomposed into camera dependent and 
feature dependent parts. The decomposition equation can be written as a product of two 

other quantities: jiij γπρ = . Using this decomposition, the projection of a point is described 

by jiijji QPq =γπ . This decomposition has some advantages: i) the system is described with 

the minimum number of parameters, therefore the parameterization is consistent. ii) the 

number of unknowns is greatly reduced. E.g. 120)(43),(40,3 =<<≤→== ijjiP NNnm ργπ . 

If the ijρ  projection depths were known, the joint projection matrices iP  and the projective 

shape jQ  could be determined by using a rank 4 decomposition method, this is the base of 

the factorization methods.  
In order to minimize a physically meaningful quantity, the weighted reprojection error used 
in the cost function has the form 

 ∑ ∑
= =

−=⋅
m

i

n

j
jiijjiijP

P
E

1 1

22)( QPqγπω  (1) 

where the unknowns are jiji QP ,,,γπ .  

2.2 Cost function for points and lines 
At first sight it seems a natural choice to extend the decomposition algorithm to lines simply 
writing the line projection equations into similar form as in the points-only case using the 

line projection matrix iG , see (A7) in Appendix: 

 ∑ ∑
= =

−=⋅
m

i

n

j
jiijjiijL

L
E

1 1

22)( ΛGlλπω  
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But unfortunately i) the projective depth could not directly be interpreted for lines, ii) the 
mapping between elements of the point and the line projection matrices is a non-linear 
function, iii) there exists no distance metric that can easily (linearly) be expressed with the 
terms of 2D line. 
Therefore the original error function (1) was modified. The calculation of projective depths 
was eliminated using a cross product instead of difference, namely 

( ) 0~ =×→ jiijjiij QPqQPq . This error is an algebraic distance, it describes the incidence 

relation between the true (2D feature point) and the projected point. For lines, similar error 
metric (geometric configurations) was defined: 

• The incidence relation of 2D line feature and a projected 3D point is 0),( =tkiik ΛQPl , 

where ),( tk ΛQ  is the t’th point on the Λ  3D line in Plücker representation (A3). The 

points can be extracted from Plücker matrix using SVD, see (A5) and (A25). This form 

can be used during the calculation of P matrices (resection phase). 

• The identity relation of the 2D line feature and a projected 3D line is 0)( =× kiik ΛGl . 

This form can be used during the calculation of Λ  vectors (intersection phase). 

• The containment relation of 3D line and a plane. The plane can be determined as a 

backprojected 2D line: ik
T
iik lPS = . The line kΛ  lies on the plane if 0)( =kik ΛSU , where 

)( ikSU  is defined by (A10) in Appendix. This form can be used during the calculation 

of Λ  vectors (intersection phase). 

2.3 Minimization of the cost functions 

It can be seen, that the cost functions )(⋅PE  and )(⋅LE  are nonlinear in the unknowns and 

their minimization is similar. A possible solution could be the use of the Levenberg-
Marquardt method and general initial values to directly minimize this cost function. But 
fortunately the parameters to be estimated can be separated into different groups, because 
they are "independent" from each other (e.g. 3D features are independent from each other, 
because they depend only on the objects in the scene and they are not influenced by the 
projections). This is the well-known resection-intersection method that holds every group of 
parameters fixed, except those, that are currently minimized. Therefore the minimization of 

)(⋅PE  can be achieved in repeated steps. After every iteration the revaluation of the ωij 

weighting factors are achieved and the actual value of the cost function is calculated. If the 
cost is less than a desired threshold (or maximum allowed number of iterations is reached), 
the algorithm terminates. The estimation of the given entity can be calculated by making the 

derivative of )(⋅PE  by the respecting entity to zero and the solution can be found in closed 

form for each of the features, see (Tél  & Lantos, 2007) for details. 
For the more general mixed case the detailed calculations are as follows. The error function 
for the intersection phase is  

 ∑ ∑∑ ∑
= == =

+×=⋅
m

i

n

k
ikiik

m

i

n

j
jiijijQI

LP
fE

1 1

22
,

1 1

22
, ),()()( lPQPq Λωω  

where )(),( kiikikif ΛGllP ×=  or kikikif ΛSUlP )(),( = . 

During this phase, the Pi (therefore the Gi) projection matrices are held fixed. After some 
manipulation the )(⋅IE  can be written into the following form: 
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∑ ∑∑ ∑
= == =
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ijI
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2
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where iijijI PqA ×= ][,  and iikikI GlB ×= ][,  or )(, ikikI SUB = . The estimation for the j’th 

feature can be calculated by making the derivative of )(⋅IE  by jQ  and kΛ  to zero, 

respectively. After the differentiation the solution for each iQ  and kΛ  can be found in 

closed form. During the calculation of jQ  an additional constraint must be introduced, in 

order to eliminate trivial all zero case. The solution of the problem for jQ  is the normalized 

eigenvector corresponding to the smallest eigenvalue of the matrix ∑
=

=
m

i
ijI

T
ijIijQijR

1
,,

2
,, AAC ω  

During the calculation of kΛ  lines, two additional constraints must be fulfilled. The first 

one is the elimination of the trivial (all zero) case, the second one is the Plücker constraint 
for vector kΛ , see (A3). The measurement error part is similar to the point-case but here the 

matrix is ∑
=

=
m

i
ikI

T
ikIikikI

1
,,

2
,, BBD Λω . The error function with the constraint can be written into 

the matrix equation 0)( , =+ kikI
T
k ΛΔDΛ α . Taking the derivative by kΛ  and rearranging 

the terms yields ):( αα −=  kkikI ΔΛΛD α=, . The matrix Δ  in (A4) is invertible and 

ΔΔ =−1 , therefore the (approximate) solution of the problem for kΛ  is the vector 

corresponding to the smallest singular value of the matrix ikI ,ΔDD =Δ . 

The error function for the resection phase is  

∑ ∑∑ ∑
= == =
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jiijijQR

LP
tE

1 1

22
,

1 1

22
, )),(()()( Λωω Λ QPlQPq  

During this phase the jQ  and jΛ  entries are held fixed. Again the cameras are independent 

from each other. After some manipulation )(⋅RE  can be rewritten into the form 
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The estimation for the i’th camera can be calculated by making the derivative of )(⋅RE  by iP  

to zero. Note, that in this case the error function contains only the “point-form” P  of the 
projection matrices. An additional constraint must be introduced, in order to eliminate 
trivial 0p =  case. The solution of the problem is the normalized eigenvector corresponding 

to the smallest eigenvalue of the matrix  
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2.4 Initialization of the entities 
The parameters of the cost function are estimated using an iterative method, therefore an 
initial estimation for its values is required. The developed initialization algorithm: 
1. Choosing a subset (pair) of views and subset of points that can be seen on all of the 

selected images (note: the developed algorithm chooses the views that have the largest 
number of point correspondences). Using these points a rank 4 factorization method is 
achieved. This gives initial estimation for the given projection matrices and for selected 
points. 

2. Calculate the projection matrix of a new (not yet processed) view using the points 
detected on that view and have the spatial coordinates already determined. This can be 
achieved in closed form using SVD. 

3. Calculate the spatial coordinates of the not-yet initialized points, that have projection on 
the images with determined projection matrix, by using triangulation-like method  
(Hartley & Sturm, 1997). This means the determination of a point which has minimal 
distance from the rays connecting the image points and the camera focal points in least 
squares sense. The solution can be found using SVD. 

4. In order to initialize the line features, the algorithm uses the fact that ij
T
iij lPM =  yields 

a plane that goes through the optical center of the camera and the projected image of 
the line. Theoretically these planes intersect in the spatial line. Taking more than two 

views, the solution can be found using SVD. The matrix ( )Tmjij MMA "=  is a rank 

2 matrix, therefore the two left null vectors yield two points whose join yields the 
desired line equation. 

The algorithm repeats steps 2 and 3 until all of the projection matrices are calculated. 

2.5 Minimization remarks 
The two developed algorithms have some common properties.  

• Handling of missing data (features having no projection on the given view) during the 
minimization is simple, the algorithms skip those entries in the error function that do 
not have valid qij, lik respectively. 

•  In order to eliminate the effect of the outliers (caused by badly matched feature 
projections), the camera matrices are estimated only from some subsets of the features 
in each iteration cycle. These features are selected in a random way and the projection 
matrix yielding the smallest reprojection error is used in the further steps. The ωij 
weights can be used to make the algorithm more robust, e.g. decrease the influence of 
features with larger error. 

3. Object recognition 

The developed object recognition method uses permutation and projective invariant based 
indexing to recognize known object(s) in the scene. A verification step is achieved to finalize 
the results. 

3.1 Invariants 
During the recognition process two sets of entities are used. The first one is the feature sets 
of the object as stored in the object database. The second one is the features of the recovered 
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scene. Some elements (a subset) represent the same entity in different context (e.g. two 
representations of the geometric primitives in different coordinate systems). In order to 
determine the pairing of the two representations of the same entities the process requires the 
usage of those properties which are not changing (invariant) between representations. 

Formally this can be written into the following form. Let T∈T denote the (linear) 

transformation between representations and G  denote the geometric structure that 

describes the configuration. The number of functionally independent invariants can be 
calculated as  

 )dim()dim()dim( GI TTGN +−= , (2) 

where GT  denotes the isotropy subgroup (if exists), that leaves G  unaffected using T  and 

)dim(⋅  denotes the dimension of the given entity. 

In case of projective invariants the relation between the two representations (Euclidean 
object database vs. output of the projective reconstruction) can be described with a 3D 
projective transformation (collineation). The number of parameters which describe the used 
entities are as follows. 

• 3D point can be described with a 4-vector determined up to a scale. The degree of 
freedom is 3. 

• 3D line can be described with a 6-vector determined up to a scale and a constraint 
(Plücker). The degree of freedom is 4. 

• 3D projective transformation can be described with a 4x4 matrix determined up to a 
scale. The degree of freedom is 15. 

Using these values the minimum number of entities to determine the invariant(s) is: 

• 6 points yield 301536 =+−×  independent invariant 

• 4 points and a line yield 1015)434( =+−+×  independent invariant 

• 2 points and 3 lines yield 3015)4332( =+−×+×  independent invariants 

• 3 points and 2 lines yield 2015)4233( =+−×+×  independent invariants 

• 4 lines yield 211544 =+−×  independent invariants 

The basic element of the projective invariants is the cross ratio and its generalizations for 
higher dimensions, see (A12), (A14) and (A15). In the following, using the different geometric 
configurations to calculate invariants, it is supposed that the elements are in general positions. 
Apart from the trivial degenerate cases, the nontrivial configurations will be determined. 
An invariant could be undetermined, if one or more determinants are zero. This means 
coincident point(s) and/or lines. All of these cases are eliminated from further investigation.  
Invariants of 6 points 
As shown in (2) and also e.g. in (Quan, 1995), the number of independent solutions is 3. 
Using the ratio of product of determinants, a possible combination of independent 
invariants are: 
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There are many ways to create a geometric configuration to represent the situation from 

which it is possible to calculate the cross ratio. Taking two points 1Q  and 2Q  as the axis, 

and using the remaining points 6,5,4,3, =iiQ , four planes (pencil of planes) can be formed. 

The cross ratio of these planes can be determined as the cross ratio of points created as the 
intersection of these planes with an arbitrary line not intersecting the axis. 
Invariant of 4 points and a line 

Let 2,1,, =iiLQ  denote two arbitrary distinct points on the line. In this case the invariant in 

the determinant form is: 

||||

||||

322,1,412,1,

422,1,312,1,

QQQQQQQQ

QQQQQQQQ

LLLL

LLLLI
⋅
⋅

=  

The geometrical situation is similar to the 6 point case, but the axis of the pencil of planes is 
the line.  
Invariants of 3 points and 2 lines 

Let the two lines be denoted by L  and K , and 2,1,, ,, =iiKiL QQ  are two points on these 

lines, respectively. As shown above, there must be two independent invariants for this 
configuration. 

||||

||||

212,1,312,1,

312,1,212,1,
1

QQQQQQQQ

QQQQQQQQ

KKLL

KKLLI
⋅
⋅

= , 
||||

||||

212,1,322,1,

322,1,212,1,
2

QQQQQQQQ

QQQQQQQQ

KKLL

KKLLI
⋅
⋅

=  

A possible geometric configuration to determine the cross ratio is the three planes formed 

by L  and points 3,2,1, =iiQ , and the plane generated by the three points. Using the line 

K  to cut through these planes, the intersection of the line and the planes gives four points. 
The other invariant  can be determined by interchanging the role of the lines. 
Invariants of 2 points and 3 lines 

Let 3,2,1, =iiL  and 2,1, =jjQ , be the three lines and two points, respectively. 

Geometrically, four planes could be defined from a pair of a point and a line. For example, 

let the four planes: ),( 11 QL , ),( 21 QL , ),( 12 QL  and ),( 22 QL . The remaining line 3L  

intersects these planes and the four intersection points on the line determine the cross ratio. 
The other two invariants could be calculated using lines 1,3 and 2,3 in plane definition. 
Invariants of 4 lines 

Let 4,3,2,1, =iiL  be the four lines. This configuration has 211544 =+−×  projective 

invariants, because there is an isotropy subgroup of any collineation of 3D projective space 
that leaves the four lines in place (Hartley, 1992). Algebraically the invariants can be written as: 

||||

||||
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1

QQQQQQQQ
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2

QQQQQQQQ

QQQQQQQQ

⋅
⋅

=  

where ji ,Q  denotes the j’th point on the line iL . 

3.2 Projective and permutation Invariants 
It is shown in (A13), that there are six possible values for the cross ratio for four collinear 
points. Using higher dimensional configurations, the situation is worse, 6 points has 6!=720 
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possible labeling. Therefore in order to use the invariants for indexing in the object database, 
the complexity of the query must be reduced. This means that the effect of labeling 
(permutations of the geometric entities) must be eliminated.  
As it was shown previously, the invariants of different geometric configurations of points 
and lines can be written as the ratio of product of determinants. According to the simplest 

generalization of the form, at least 3+N  points required in an N -dimensional space, thus 

||||

||||
),,,,,,(

2121321

3121221
32121

+++

+++
+++ ⋅

⋅
=

NNNN

NNNN
NNNNI

QQQQQQQQ

QQQQQQQQ
QQQQQQ

""
""… . 

It can be seen, that in this case the changing of the labeling of the first 1−N  points leaves 

the value of the invariant intact (the sign changes of the four determinants cancel each 
other), the permutation of the last four points yields the six different values. Therefore the 
permutations inside the invariant can be separated as  

)),,,(),,(()),,,,,(( 32121113211 +++−+++ = NNNNNNNNN II QQQQQQQQQQQ πππ ……  

where π  denotes the permutations of the elements. Interchanging the elements between  π1 

and π2 yields other invariants. Putting together, the projective and permutation invariants 
must fulfill two requirements: 

• Problem 1: Eliminate the effect of the six possible values of the cross ratio. This can be 
accomplished using algebraic or stereographic permutation invariants. 

• Problem 2: Eliminate the effect of interchanging the elements between 1π  and 2π . 

Permutation invariants for cross ratio 
In the solutions proposed by (Meer et al, 1998), (Csurka & Faugeras, 1999), the elimination of 
the effect of the different labeling inside the cross ratio is achieved in an algebraic way using 
higher order symmetric polynomials. The developed method follows a different method, 
applies a stereographic projection and a periodic function to give a solution for Problem 1. 
Stereographic permutation invariants for cross ratio 
As it can be seen in Fig. 1 (left), the plot of the six possible permutations of the cross ratio is 

symmetrical to the value 5.0  and (projectively) ∞ . By pairs equating the three basic 

functions (occurs in cross-ratio) }1,/1,{ xxx −  yields 1/1 ±=→= xxx  and 5.01 =→−= xxx , 

the mapping of these values could be calculated. (Note that the third possible combination 

xx −= 1/1  does not give real solution.) 

 
Fig. 1. Effect of permutations inside cross ratio (left), stereographic projection (right) 
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Considering Table 1 (note, that in projective manner the values ∞  and −∞  represents the 

same) it can be concluded, that the key values of the six mappings are ),2,1,5.0,0,1( ∞− , 

because they form a closed set respecting to these mappings. In order to generate 
permutation invariants, application of such periodic function(s) is required that gives same 
value to the six possible combinations of the basic functions. This could be achieved in a two 
step process. 
 

X -1 0 0.5 1 2 ∞  
1/x -1 ∞  2 1 0.5 0 

1-x 2 1 0.5 0 -1 ∞  

Table 1. Key values mappings inside cross ratio 

Stereographic projection 
In order to define a periodic function, the mapping of the infinite line (possible values of 
cross ratios) onto a circle is required. This could be achieved with the stereographic 
projection (used in the developed system, Fig. 1, right) or gnomonic projection. The 
parameters of the circle can be determined from the following constraints 

• The values in the same pair must be mapped on the opposite side of the circle 

• The infinity on the line must be mapped into the “north pole”. Therefore the value 0.5 
must be on the “south pole” (at point P). 

• The arrangement of the (six) key values must be symmetrical. 

• The mapping is continuous. 
This yields, that the values )0,1,,2,1,5.0( −∞  are mapped onto the angles 

)3/5,3/4,,3/2,3/,0()( πππππ=POB� , respectively. Note, that the )()(2 POBPNB �� =× , 

because )(POB�  is the central angle and )(PNB�  is the respecting inscribed angle. The 

radius of the circle can be determined as 
))(tan(22

))(tan(
PNA

PA
r

r

PA
PNA

�
� −

=→
−

= . 

Substituting the values ,5.0,1( == PA  )3/1))(tan(,6/)( == PNBPNB �� π  gives 

4/3=r . The PDF (probability density function) of the stereographic permutation 

invariants is shown in Fig. 2. 

 

Fig. 2. Probability density function of stereographic permutation invariants 
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Fig. 3. The effect of nonlinear periodic functions (upper line) to the approximations of 
uniformly distributed PDF (lower line) 

Application of a periodic function 
Using the output of the stereographic mapping, the aim is to define a periodic function that 

fulfills the 5,,0)),6/(()( …=+= kkIJIJ pp π  requirement. From the practical point of view, 

the outputs of the tested functions are mapped into ]1,0[  interval. In order to apply a simple 

(Euclidean) distance function during the indexing, a nonlinear transformation must be 
defined such a way, that the output density must be close to the uniform one.  Amongst the 

several possibilities, the following functions (whose period is π/6, against xx =))(arcsin(sin  

whose period is 2π) are tested (see Fig. 3 and note, the first row shows only one period of 
functions): 

• )3(sin2
1 IJp =  

• |))3(arcsin(sin|)/2(2 IJp π=  

• )|))3(arcsin(sin|)/2(arcsin()/2(3 IJp ππ=  

• 86.0)))6/((6)((57.04 +−−= πIJIJJ pbpbp , where  

        )|))3(arcsin(sin|)/1(arcsin()/1( IJpb ππ=  

Examining the PDF of the invariants applying the different functions, it can be seen that the 
Jp4 gives the PDF closest (most similar) to the uniform distribution.  
The output of the periodic function gives the solution to the Problem 1.  
Elimination of the effect of element interchanges 
The next step is to eliminate the effect of interchanging the elements between two 
permutation groups (giving solution to the Problem 2). The number of possible combinations 

is ⎟
⎠
⎞⎜

⎝
⎛ +

4
3N . Therefore the permutation invariant is not a single value but a vector J . In order 
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to remove the effect of the initial labeling of 3+N  points, the vector must be sorted. The 
applicability of the following configurations is checked: 6 points, 1 line + 4 points, 2 lines + 3 
points, 3 lines + 2 points, 4 lines, 5 lines.  
Configuration: 6 points 
In case of six points, interchanging the elements between the permutation groups yields the 
invariant vector  

 

⎟
⎟
⎠

⎞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)II)(1I(

)II)(1I(
J,

)II(I

)II(I
J,

II

II
J,

)1I(I

)1I(I
J,

1I

1I
J,

I

I
J

,
)1I(I

)1I(I
J,

1I

1I
J,

I

I
J),I(J,

)1I(I

)1I(I
J,

1I

1I
J,

I

I
J),I(J),I(JS

231

132

231

132

23

13

32

23

3

2

3

2

31

13

3

1

3

1
3

21

12

2

1

2

1
21J

 (3) 

where 1I , 2I  and 3I  are the invariants belonging to the permutation group 

)6,5,4,3()2,1( 21 ππ  of points, )(⋅S  denotes the sorting operator. The number of points in the 

configuration is six but the vector J  has 15 elements. Therefore no one-to-one mapping 

exists between the points and the elements of the vector. Instead, the mapping exists 
between pairs of points and the respecting vector element. The first five elements in (3) 
depend on 6,,2),( 1 …=iiQQ , the next four depend on 6,,3),( 2 …=iiQQ , and so on. 

Finally the last element depends on )( 65QQ . This means, that building a 6x6 table, 

according to the indexing with J , the ordering of the points between two sets of respecting 

six point configurations can be determined in the following way. 
We describe our concept for the 6-point case. Similar technique can be used for other feature 

combinations. The object database contains objects and the objects contain also points, from 

which different subsets containing 6 points can be built. The database contains Euclidean 

information belonging to the subset of points. From this information using the the 

homogeneous coordinates of the points the invariants can be computed. By using the 

nonlinear function Jp4 the 15 (normalized) components of the vector J can be computed and 

sorted and the permutation p after sorting can be determined. This pair of J and p are 

precomputed and stored in the database before application. In the scene we can choose 6 

point features and from their 3D projective coordinates we can determine another pair of J 

and p in a similar way during application. The basis for finding corresponding sets of points 

are the J’s both in object database and scene. The J’s are compared using Euclidean distance 

and a tolerance. Corresponding sets of points are marked and the collineation mapping 

points from scene into points from database is determined. This collineation makes it 

possible to map further points from the scene into database and check for correspondence. 

Thus the set of corresponding points belonging to the same object can be enlarged. In the 

success indices a  and b  identify the sets in database and scene, respectively. The main 

problem is that the order of the points in database and scene may be different. The details 

are as follows. 

After sorting of the vectors aJ  and bJ , let ap  and bp  contain the permutation indices of 

the elements, therefore if 15,,1),()( …== iii ba JJ , then element indexed by )(iap  

corresponds to )(ibp . Defining the vector V  according to Table 2 yields that the pair 

( ))( iapV  corresponds to ( ))( ibpV , e.g. }3,2{)6())1(( == VpV a  corresponds to 
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}5,4{)13())1(( == VpV b . Let A  be a 66×  (symmetric) table, where ( ) ( ))())(( ii ab pVpVA = . 

The i’th point in the set 'a' corresponds to j’th point in the set 'b', iff every element in the i’th 
row of A  contains the index j. 
For example a query from the scene into the database contains the sorted vector and 
permutation: 

(
)9739.09517.07257.07185.07054.04341.04270.0

3269.03196.00667.00420.00344.00322.00247.00075.0Ja "=
 

( )133154521181149710126pa =  

The resulted entry from the database gives: 

(
)9816.09513.07315.07219.07037.04367.04270.0

3309.03209.00909.00572.00468.00441.00338.00103.0Jb "=
 

( )912162107811541514313pb =  

The vector V is given in detailed form in Table 2. 
  

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

V 1,2 1,3 1,4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6 

Table 2. Possible pairings in the six points configuration 

Using the permutation vectors 6)1( =ap  corresponds to 13)1( =bp , yields that pair 2,3 

corresponds to pair 4,5. Write 2,3 into the position 4,5 (and 5,4) of the 66×  table and 
continuing the process gives the results in Table 3. 
 

 1 2 3 4 5 6 

1 * 5,6 1,6 3,6 2,6 4,6

2 5,6 * 1,5 3,5 2,5 4,5

3 1,6 1,5 * 1,3 1,2 1,4

4 3,6 3,5 1,3 * 2,3 3,4

5 2,6 2,5 1,2 2,3 * 2,4

6 4,6 4,5 1,4 3,4 2,4 * 

Table 3. Determine correspondences in six points configuration 

Searching for the common elements row-wise (e.g. 6 in the first row in Table 3) gives the 
final pairings of the features: 1-6, 2-5, 3-1, 4-3, 5-2, 6-4. 
A fault tolerant method is also developed. For example some numerically close elements in 
the corresponding vectors are swapped by sorting process, hence the table does not yield a 
valid solution, see the cells underlined in Table 4. 
The solution to the problem is the following. Fill another 6x6 table from the original one 
such that the element in (i,j) contains the number of occurrences of j’th value in i’th row of 
the original table. Then repeat the following process:   
1. Search for a maximum value in this new table. The row-column index gives the pairing.  
2. Fill the row and the column with zeros of the pair already found. If the current 

maximum value is less than the desired parameter (tipically 4, tolerating only one mis-
match), the pairing is not possible. 
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 1 2 3 4 5 6 1 2 3 4 5 6 

1 * 5,6 1,5 3,5 4,5 2,5 1 1 1 1 5 1 

2 5,6 * 1,6 3,6 4,6 2,6 1 1 1 1 1 5 

3 1,5 1,6 * 2,3 1,4 1,2 4 2 1 1 1 1 

4 3,5 3,6 2,3 * 3,4 1,3 1 1 5 1 1 1 

5 4,5 4,6 1,4 3,4 * 2,4 1 1 1 5 1 1 

6 2,5 2,6 1,2 1,3 2,4 * 

 

2 4 1 1 1 1 

Table 4. Determine correspondences in six points configuration (fault tolerant version) 

Configuration: 1 line, 4 points 
The calculation of the permutation invariant from the projective one is very simple, 

applying the function ( )⋅J  to the only one projective invariant. But no method is currently 

known to determine pairings from permutation and projective invariants, therefore this type 
of configuration is not used during indexing. 
Configuration: 2 lines, 3 points 
As mentioned earlier, the geometric configuration for this case could be traced back to the 
five coplanar points case. Therefore the results of (Meer et al, 1998) could be used, namely 
interchanging the elements between the permutation groups yields the vector 
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The elements of the vector can be determined by exchanging the first element with the 

elements at 5,,2 … , respectively. 

But this is unnecessary, because the lines and points can be clearly distinguished, therefore 
the first element should only be exchanged with the second and the third one. Interchanging 

the two lines means applying II /1→  mapping of the invariant (see the algebraic form). 

This means, that the permutation invariant vector should contain only 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1
21 ),(),(

I

I
JIJIJSJ .  

If the pairing of the points and lines between two sets is required, the simplest solution is to 
calculate the vector defined in (4), because there is a one-to-one mapping between the five 

points and the five elements of D2J . A possible additional check is to pair points generated 

by line intersection with a similar one. 
Configuration: 3 lines, 2 points 
This configuration yields six planes, because a plane can be formed from a line and a point, 
where the point and the line are not coincident. In the projective 3D space the points and 
planes are dual to each other (principle of duality), therefore the results of the six points case 
can be used. 
Configuration: 4 lines 
The calculation of the permutation invariant from the projective one is simple, applying the 
appropriate function to the projective invariants. But no method is currently known to 
determine pairings from permutation and projective invariants, therefore this type of 
configuration is not used during indexing. 
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Configuration: 5 lines 
In order to be able to use line only configuration, from which the pairing can be determined, 
compound configuration must be used. The simplest one is 5 lines in general position. From 
5 lines five different 4-lines configuration can be extracted. A 4-lines configuration gives two 
independent invariants. Applying a function 5,,1,),( 2,1, …=→ iJJJf iii  yields five different 

invariants. From these invariants the pairing could be determined. 
Let the i’th configuration be the one from which the i’th line is excluded (1st configuration is 
built from lines 2,3,4,5, etc.). Let the unsorted 5-vectors be aJ  and bJ . Let the permutation 

vectors containing the output of the sorting be ba pp , , respectively. This means that the 

))(( iaa pJ  invariant equals to ))(( ibb pJ , therefore the (eliminated) lines )(iap , )(ibp  

correspond to each other. 

3.3 Object database 
The aim of the application of the object database is to recognize known, predefined 
(previously stored) object(s) in the scene. The stored information in the database is the 
invariant vectors computed from the 3D Euclidean description of the objects represented by 
homogeneous coordinates as described in the previous section. During the query the input 
is computed from the output of the projective reconstruction of the scene. The two sets of 
invariants must be paired (matched) in order to determine the corresponding feature 
configurations. Some additional attributes also stored that is required during verification. 
The developed system uses different tables for each of the possible configurations (six 
points, etc.). The attributes are the name of the candidate object, type and id of the stored 
features and the permutation of the features. These values will be used in a later processing 
step (verification). 
Metric definition and feature transformation 
The usage of the database algorithms (indexing) requires the definition of a metric that 
describes the similarity of the feature combinations. A definition of a metric uses a distance 

function ( )⋅d  that describes the (dis)similarity of the elements between two sets, where 

0=d  denotes identical configurations and the dissimilarity is larger as d  increasing. 

Therefore d  forms a metric, because i) d  is a non-negative (real) number, ii) the relation is 

symmetrical, iii) fulfills the triangle inequality. In order to be able to compare the two 
feature sets, application of a feature transformation is required. This feature transformation 
maps the configuration properties into a D-dimensional vector space, where the distance 
between the vectors is defined. The distance between feature vectors must somehow 
correspond to the original (theoretical) distance between the features from them it was 
derived (eliminating false positives). Usually this means, that the distance between vectors 
is the lower bound of the original distance (this means that the small vector distance may 
yield dissimilar feature distance, but similar feature combinations always yield small vector 
distance). The properties used in the feature transformation are task dependent, in this case 
the feature configuration is described by an invariant vector defined in previous section. 
Therefore the feature transformation maps from features (described by its coordinates) into 
(vector)space of invariants. Many distance function can be created that fulfill the 
requirement of the definition. The most widely used functions can be described as 

p
D
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p
ii baL
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Using the different values of p yields the Manhattan metric )1( =p , Euclidean metric )2( =p  

and maximum metric )( ∞=p . In the developed system the Euclidean metric is used. 

Query into the database 
The query process extracts those elements from the database that are closest to the querying 
element (exact matching is not probable due to noise during feature detection). This is the 
well-known nearest neighbors (kNN) problem. In our case the invariants are higher 
dimensional vector valued entities. The standard R-tree algorithm is very inefficient for 
higher dimensions (Moenne-Loccoz, 2005), due to the curse of dimensionality. The developed 
method uses X-tree (Berchtold et al., 1996). The query into the database extracts the closest 
candidates to the query vector (typically 2-5 are used). A tolerance is applied to eliminate the 
truly false matches. The remaining candidates are further processed in the verification step. 

3.4 Verification 
Because of the feature transformation the query eliminates only the false positives (those 
configurations, that are surely do not yield a valid answer to the query), the remaining 
candidates must be post-processed with a verification process. (Note: the query process 
should yield sufficiently small number of candidates in order to prevent the post-processing 
of the whole database.) 
Collineation between 3D feature sets 
Denote H  the 44×  matrix of the invertible linear transformation (collineation), ii YX ,  the 

4-length coordinate vector of corresponding 3D homogeneous points. Let the corresponding 
line pair be iL  and iK , described by ii KL ,44×  skew-symmetric Plücker matrices, see 

(A5). Let ri ,LX  be points on the line iL  and si ,KY  be points on the line iK , respectively.  

Let pi ,KΩ  be planes that contains iK . If the iX  and iY , iL  and iK  represent the same 

entities in different coordinate frames (related by H ), then the relation between them can be 

written into the form ii HXY ~  and T
ii HHLK ~ , or using the entity-dependent scaling 

factors with equality iii HXY =μ , T
iii HHLK =ν . The aim is to determine H  from a given 

set of point and line pairs in a noisy environment (LS solution is preferable), in a closed 
form. The solution must handle any number of combinations of points and lines. The 
unknowns are the 16 elements of the H  matrix (and optionally the ),,1( Pi ni …=μ  scaling 

factors for points and the ),,1( Li ni …=ν  scaling factors for lines).  

Geometric solution 
Using point and line pairs together, the equations contain the unknowns in quadratic or 

mixed form. Therefore the direct applications of these functions are not advisable. Instead 

geometric constraints are introduced in order to calculate the desired collineation. Let  H  be 

assumed in vector form   

=×116h ( ) ( )TTTTTTHHH 4321)4,4()4,1()1,1( hhhh=""  

Point-point relations 
For points, the constraint equation is the scaling factor free algebraic distances  

 0)()( =− T
aii

T
bii bYaY hXhX  
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where the pairs { , } {4,1},{4,2},{4,3},{2,3},{3,1},{1,2}a b = .  

The part of the coefficient matrix belonging to this point pair is 
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Line-line relations 
In order to eliminate the higher order members of the cost function, the line-type entities 
should be eliminated, points and planes relations must be used. The points on the line and 
planes, whose intersection is the given line can be extracted from the Plücker matrix of the 
line using SVD, see (A5) and (A25). Any linear combination of two points and two lines can 
be used as pairs instead of the original ones (resulted from SVD). 
The two possible constraint types are: 

• The transformed points ri ,LX  should lie on the plane si ,KΩ . Algebraically this means 

( ) 0,, =s
T

r ii KL ΩHX  where 2,1, =sr . The part of the coefficient matrix belongs to this 

configuration is  
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A plane can be constructed from a transformed point ri ,LX  and the line si ,KΩ . If the point 

lies on the line, the plane equation must be invalid, 0Ω = . Using the representation in (A5), 

let ( )T
iO

T
iD

T
i ,, KKK = , where iD,K  and iO,K  are 3-vectors. The plane can be generated 

using the matrix 
[ ]
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,,
. Applying to the transformed point, the plane 

equation becomes ( )rr iii ,, LKK HXΛΩ =  where 2,1=r . The part of the coefficient matrix 

belongs to this configuration is  
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Estimation of H  
The equations (4), (5) and (6) yield linear constraints for the elements of the collineation H . 
Collecting these coefficients into a matrix A , the equations can be written into the form 

0Ah = . Applying an additional constraint 1=h  in order to avoid the trivial 

solution 0h = , the problem can be solved in a closed form, using SVD, as the vector 
corresponding to the smallest singular value. 
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An optional step is a nonlinear refinement. This uses nonlinear Euclidean distance-like 
values, therefore it can be used only if the destination frame is a metric frame. For points, 
the error function is the Euclidean distance  

2
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Xh
−=⋅  where 3,2,1=j .   

For lines, the error function uses the direction difference between the orientation of the lines 
and the distance between lines. Let iDiD ,, ,LK  be the direction vector of the lines iK , iL , 

respectively. Similarly, let iPiP ,, ,LK  be a point of the lines ii LK , , respectively. Using the 

notations and the results of (A17) and (A18), the distance between lines yields: 
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where 3,2,1=j .  The direction error can be calculated as the angle between direction vectors 

of the lines  
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The suitably weighted sum of these error functions are minimized with a Levenberg-
Marquardt nonlinear least squared optimizer. 
Verification with collineation 
In the developed object recognition system the output of the query is an ordered (matched) 
feature set (corresponding configurations). Initially these configurations contain only as 
many (minimum number) of features as required by indexing. During the verification 
process a 3D homogeneous transformation (collineation) is calculated (as described 
previously), that maps projective coordinates of the scene features into the Euclidean space 
of the candidate object. Checking those remaining object features that are not yet on the 
candidate list, corresponding scene features are searched (closest mapped scene feature, 
within a given distance threshold). If a sufficient pair is found, it is appended onto the 
support list of the given configuration. If the number of supports is above a limit, the whole 
transformation is stored for final consolidation processing. 

3.5 Consolidation 
Taking the space of the h vectors produced from the calculated collineation matrices in the 
verification case, the values are different due to the following effects. 

• Numerical differences between the calculated values of the same object-scene 
transformation caused by noise and other disturbance effects. This causes (small) 
variations around the true value of the transformation. 

• Object-scene transformation using different objects: the collineation that describes the 
mapping between the Euclidean frame attached to the object in database and the 
common projective frame in the scene is object specific. This could yield significantly 
different transformations. Note, that searching for a given collineation, other valid 
collineation data behaves as outlier (pseudo-outlier, see: (Wang & Suter, 2004)) 
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• Outliers yielded by invalid object-scene matching (real outliers). This effect can cause 
o significantly different values scattered randomly in the space 
o accidentally occurrence nearby a valid transformation 

Therefore the consolidation of the collineations is required. This could be achieved using a 
clustering. The requirements for this method are: 

• Determine the valid collineations from the voting space (determination of the cluster 
centers). Note, that regarding to the experiments the form of the clusters are not 
(hyper)spherical. 

• Detect the valid (possible more than one) collineation(s) in the voting space. This 
requires that the method be able to handle multiple structures. 

• Eliminate or tolerate the effect of outliers. Note that in extreme cases the total 
percentage of real and pseudo outliers could be above 50%. 

• Must be able to handle higher dimensional data (the 3D collineation yields 16-
dimensional vectors). 

Usually the clustering problems are solved with k-means clustering method, but the 
application of this method in the consolidation phase in not possible, because the number of 
clusters (valid object-scene transformations) is not known in advance. There are many 
clustering algorithms that can solve this problem, for example MUSE (Miller &  Stewart, 
1996), MDPE (Wang & Suter, 2004), FAMS (Georgescu et al., 2003), NDD clustering (Zhang 
et al., 2007). 
In the developed system two nonparametric clustering methods have been used, FAMS and 
NDD clustering. The FAMS is an iterative clustering method that estimates the densest 
regions (modes) of the multivariate space. The NDD clustering method is a noniterative 
algorithm that is capable to estimate shape free clusters based on the normalized density 
derivative of the multivariate space. The output of both algorithms is the clusterized data 
space formed from the collineations. The individual collineation estimates are extracted 
from each cluster by checking the errors of the collineations to the support feature pairs 
(original object and transformed scene features). After the determination of the clusters (the 
valid member collineations of each cluster), the transformations are upgraded using the data 
of the members only (refinement). 

4. Euclidean reconstruction 

In a typical robot control system metrical information (e.g. distance between the gripper and 
the object) is required, hence the Euclidean update of the projective reconstruction must be 

achieved. Taking the projection equation for points (without indices) PQq =ρ  it can be 

seen, that the result remains the same, if a collineation and its inverse is applied to this 

equation, namely ( )( )HQPHq 1−=ρ . The same is true for lines. In order to select the metric 

information ( Q  contains Euclidean coordinates) from the many possible projective 

solutions, the value of H  must be fixed. The method must avoid the sensitive camera 
calibration during the reconstruction of scene. 
The developed method uses a-priori information, namely known 3D Euclidean data from 
object database that can be used together with the projective reconstruction to determine 
relative position and orientation between recognized objects. 
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As described earlier, in order to achieve the object recognition tasks, the used information 
about objects are stored in object database. The entries in the database consist of indices 
(created from invariants) and attributes. These attributes contain the coordinates of the 3D 
features of the objects, stored in object dependent (attached) metric coordinate system. There 
could be many source of information, for example CAD systems, processed range images 
(acquired by calibrated laser range sensors) or the applied stereo camera system itself is also 
capable to produce metric 3D information for object database using calibrated 
reconstruction. In this latter case, unlike during the free scene reconstruction, the cameras 
are calibrated and fixed, the objects are shown in prepared environment one-by-one. 

4.1 Transformation decomposition 
The coordinates of the features of the recognized objects are known in two coordinate 
systems, see Fig. 4: 

• Common projective frame of the scene, in this coordinate system every feature is 
described with its projective coordinates. This system is common for every object in the 
scene though it contains no Euclidean information. The projective information of the 
features is the output of the projective reconstruction.  

• Euclidean frame of an object (attached to the object) as stored in the object database. 
This information is object dependent and contains metrical data. Every object has its 
own Euclidean frame. 

 

 

Fig. 4. Coordinate frames used during the calculation of the Euclidean transformation  

Using this twofold description of the recognized features makes it possible to determine the 
relative Euclidean transformation (position, orientation) between object frames as occurs in 
the scene. If one of the frames is absolute (known in world reference frame), then it is 
possible to describe the scene in the absolute Euclidean coordinate frame. 
The candidate collineations between the common projective frame of the scene and the local 
frame of the recognized objects are already determined as the output of verification step of 
the object recognition. From the members of the given cluster in consolidation the 
collineation is updated from the candidates, therefore this is the most accurate estimation 
that is available. But there exists no internal constraint that could be applied to the elements 
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of the collineation during projective reconstruction. This means that the elements depend 
only on the data from which they are estimated, there is no inter-dependency between 
elements.  
However the calculation of the Euclidean transformation between objects allows 

introducing such additional constraints. Let the collineations of two recognized objects be 

AH  and BH , respectively. Let us suppose, that the collineations describe the mapping from 

scene frame into Euclidean object frames. In this case the displacement that describes the 

mapping from metric frame of the object A into metric frame of object B, can be calculated as 

( ) AB HHD 1−= . But matrix ⎟
⎠
⎞

⎜
⎝
⎛=× 144 Ts
z

tΩ
D  describes a metric (Euclidean) transformation, 

therefore there are some constraints that must be fulfilled: 

• Ω  should  be a rotation matrix 

o Orthogonality condition: IΩΩΩΩ == TT  

o Non-reflection condition: 1|| +=Ω  

• The 0
2
=Tz  

• The value of  s  should not be too small or too large (valid scaling) 

Due to noise and other disturbances the matrix Ω  is not a rotation matrix. The aim is to 

determine the “closest” rotation matrix R  to matrixΩ . Find R  minimizing 
2
F

ΩR −  such 

that 0IRR =−T  and 1|| +=R , where 
F
⋅  denotes the vector compatible Frobenius norm of 

the matrix.  

The solution can be found factorizing the matrix Ω . The possible (most commonly used) 
matrix factorization algorithms that yield orthogonal matrix are the following: 

• Singular Value Decomposition (SVD) gives TVUΛΩ =  where U  and V  are 

orthogonal matrices. The drawbacks of the algorithm are: 
o Small perturbation could yield very different orthogonal factorization (though the 

singular values remain stable). 
o Theoretically there are infinite many ways as a rotation matrix can be composed 

from two other rotations.  

• QR decomposition gives QRΩ = , where Q  is an orthogonal and R  is a lower-

triangular matrix, respectively. The drawback is that the given orthogonal matrix is 
basis-dependent. 

• Polar decomposition gives RSΩ = , where R  is an orthogonal and S  is a symmetric 

positive definite matrix, see (A21) and (A22) in Appendix. If 1|| −=R  (reflection 

included), then the decomposition can be written into the form: SIRΩ )()( −−=  

Using the polar decomposition let the original displacement matrix be factorized into the  form: 

�
�	��
�	��
�	��
�	��
�	�
ΣΔΘTP

0
0S

0
0V

0
0R

0
tI

x
0I

D ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=× 1111144 TTTTTs  

where s  is a scale, the matrices are responsible for perspectivity )(P , translation )(T , 

rotation )(Θ , mirroring )(Δ  and stretch (transformed shear, Σ ), respectively.  
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Using the above decomposition the constraints can be expressed as the limit on physically 
meaningful quantities.  

• The perspectivity must be an identity matrix, this means that 0
2
=Tx . 

• The mirroring must be an identity matrix: IV = . 

• The stretch must be an identity matrix: IS =  or in a more general case a diagonal 

matrix, yielding isotropically or anisotropically scaled Euclidean transformation. 

• The value of s  should not be too small or too large (valid scaling). 
The translational part t  is unconstrained. 
The output of the algorithm is the Euclidean (metric) transformation between the two 
reference frames of the objects A  and B , that describes the relative position and orientation 
between two recognized objects. This information can be directly used in a robot control 
system. 

5. Results 

The developed system was tested against simulated and real data. The accuracy of the 
algorithm was tested with simple simulated scenes, where the precise value of the data is 
known. In the reconstrcution part, the base of the evaluation criteria is the reprojection error. 
For points this is the distance between the true (original) and the reprojected 2D coordinates. 
In case of lines, the reprojection error consists of two parts, the angle between the original 
2D line and the reprojected line, and a distance as the maximum of distances of the 
endpoints of the original line segments from reprojected line. Result of the simulations 
shows that the accuracy of the reconstruction depends approximately linearly on the noise 
added to position of the detected 2D features, Fig. 5. 
A sample image from the sequence overlaid with reconstructed features can be seen in Fig. 
6. The original images are 1024x1024 in size, the images of the reconstructed points are 
denoted with dark crosses, the lines are drawn with white.  
 

 

Fig. 5. Reprojection error of projective reconstruction as the function of noise level 
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Fig. 6. A sample image of the simulated scene used during the numerical experiments 

 

Fig. 7. Result of the object recognition using simulated scene 
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Checking the numerical results, the errors between the original (detected by a feature 
detector) and the reprojected (estimated) image features are in the range 0…3 pixels for 
points, the angle error between lines are in the range 0..5 degree. 
The quality of the reconstruction depends on i) the accuracy of the matching algorithm, but 
outliers produced by false matches are eliminated using the robust version of the 
reconstruction; ii) the relative placement of the cameras, e.g. image sequence taken by 
cameras moving linearly away from the scene yields poor results. 
Fig. 7 shows the result of the recognition of the simple scene. On the left side, the features 
stored in the database are overlaid onto one of the image used in the reconstruction. The 
right side shows (from a new viewpoint) the alignment of the object features (red) as stored 
in the database and the transformed scene features (green). 
 

 

Fig. 8. Result of the projective reconstruction overlaid onto a real scene image 

 

Fig. 9. Feature alignment on the recognized object from real scene 
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The accuracy of the displacement calculation is also checked during simulations. The 
experiments show, that the translation error remains within 3% range of the original scene 
size, the rotation error (in Euler form) is within -3…3 degree. 
The algorithm was also tested with real data in order to demonstrate its applicability. Fig. 8 
shows the features from the projective reconstruction. The alignment of the features on the 
recognized object is presented in Fig. 9. 

6. Conclusion 

The chapter describes a 3D projective reconstruction algorithm and its application in an 
object recognition system. The process first recovers the projective structure of the scene 
from 2D feature correspondences between images, then uses projective invariants to 
recognize known object(s) in the scene. Using the metric information attached to the objects 
in the database the system is able to determine the Euclidean structure of the scene and 
calculate the relative position and orientation between recognized objects. 
The novelties of the presented system appear on three levels. First, both of the reconstruction 
methods are iterative, but the calculation can be achieved in closed form inside every 
iteration step because of separation of the unknown parameters. In order to handle point and 
line features together, geometric constraints are used in the error function to be minimized. 
Both of the algorithms can handle missing features (one or more features cannot be seen on 
one or more views). The output of the projective reconstruction is 3D projective information 
about  the scene, namely homogeneous coordinates of point and line features. 
Second, the object recognition method uses indexing based on permutation and projection 
invariants. For different combinations of point and line features the generalized (higher 
dimensional) cross ratios (invariants against projective transformations) are determined. 
These values are mapped with a novel, stereographic based transformation and a periodic 
function to eliminate the effect of permutation of features inside the cross ratios. A new 
collineation based verification process was developed to eliminate false positive object 
candidates. 
As a final step, the system determines closest Euclidean transformation decomposing the 
nearly metric collineation between the recognized objects. This transformation is calculated 
from the collineations describing the mapping from the projective scene into the metric 
coordinate system attached to each of the object. 
The further development of the system can be the inclusion of 2D imaging information 
beside projective invariants into the object recognition. This could reduce the computational 
complexity by selecting a region of interest and supporting feature selection used in the 
indexing. This also improves the selectivity of the recognition algorithm and eliminates false 
matches. The current implementation needs the choice of a large number of parameters. 
Another research direction is the automatisation of their selection for typical application in 
robotics. 

7. Appendix 

Points, lines, planes and transformations in projective spaces 

A point in projective n -space nP  is given by a )1( +n -vector of coordinates 

T
nxx ),,( 11 += …x . At least one of these coordinates should differ from zero. These 
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coordinates are called homogeneous coordinates. Two points represented by the vectors x  

and y  are equal iff there exists a nonzero scalar λ  such that ii yx λ= , for every i  

)11( +≤≤ ni . This will be indicated by yx ~ . 

A collineation from mP  to nP  is a mapping represented by a )1()1( +×+ nm  matrix H  by 

which points are transformed linearly: Hxxx ~′6 . 

In the projective plane 2P  points are denoted by  the 3 -vector Twyx ),,(=q . A line l  is also 

denoted by a 3 -vector. A point q  is on the line l  iff 0=qlT . In this sense points and lines 

in 2P  are dual entities. A line l  passing through the points 1q  and 2q  is given by  

21~ qql × .  

In the 3D projective space  3P  points are denoted by  the 4 -vector TWZYX ),,,(=Q . In 3P  

the dual entity of the point is the plane, which is also denoted by a 4 -vector. A point Q  is 

located on the plane Π  iff 0=QΠT . A 3D line L  can be given by the linear combination of 

two points  2211 QQ λλ +  or by the intersection of two planes ∩ 21 ΠΠ . 

Transformations in the images are represented by homographies of 22 PP → . A homography 

is represented by a 33×  matrix H . Again H  and Hλ  represents the same homography. A 

point is transformed as Hqqq ~′6 . Points and lines are transformed according to  

 Hqqq ~′6  and lHll T−′~6 .  (A1) 

Similar reasoning gives in 3D space 3P  the following equations for transformations of 

points and planes by a 44×  matrix: 

 T : TQQQ ~′6  and ΠTΠΠ T−′~6 . (A2) 

Plücker representation of lines 

Let the points TT WWZYX ),(),,,( 1111111 XQ ==  and TT WWZYX ),(),,,( 2222222 XQ ==  

define the line L  in 3D projective space 3P . The Plücker representation of the line is given by 

the direction of the line DWW LXX :1221 =− and the normal of the plane spanned by the 

vectors OLXX :21 =× . The Plücker representation is a 6-vector satisfying 

 TTT
O

T
D LLLLLL ),,,,,(:),(: 654321== LLL  (A3) 

 0
2

1
:),(

2

1

3333

3333
635241 ==⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=++=⋅

××
×× LΔL

L
L

0I
I0

LLLL T

O

DT
O

T
DO

T
D LLLLLL . (A4) 

The Plücker matrix Λ  of the line is the skew-symmetric matrix  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−= ×
0L

LL
QQQQΛ T

D

DOTT ][
~: 1221  (A5) 
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Point and line projection matrices 

The projection matrix for points is given as PQq ~  where 

 
( )133343 ××× = pΠP

. (A6) 

Let l  be the projection of the 3D line L  and 21 ,qq  be the projections of the points 

TT W ),( 111 XQ = , TT W ),( 222 XQ =  defining the 3D line. Then )()(~~ 2121 PQPQqql ××  

and the projection of the line can be written as GLqql =× 21~  and  

 ( )T−
×= ΠΠΠpG ][  (A7) 

is the line projection matrix. 
Line on a plane in 3D 
Plane:  

 TTT DDCBADCzByAx )(),,,(0 AS ==→=+++  (A8) 

Line in Plücker representation:  

 TT
O

T
D ),(: LLL =  (A9) 

Intersection point:   

 LSU
L
L

0A

AI

LSU

)(:
][

)(

31

33 =⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

×

××


	���� 
��� 	� O

D
T

D
 (A10) 

Line on the plain:  

 0LSUSL =⇔⊂ )(  (A11) 

Cross ratio and generalizations 

Let M  and N  be two distinct points in n -dimensional projective space nP . Any point on 

the line spanned by M  and N  can be parametrized as NMQ νμ +=  where ),( νμ  are the 

homogeneous coordinates of the point Q  on the line. Let 4,3,2,1, =iiQ  be four ponts on 

the line spanned by M  and N  having homogeneous coordinates 4,3,2,1),,( =iii νμ , on the 

line. With the notation iii νμλ /=  the cross ratio of the four points on the line is defined as  
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Since there are 24!4 =  possible permutations of four points hence the six different values of 

the cross ratios are 

 λλλλλλλλλλλλλλ /)1(),1/(),1/(1,/1,1,: 654321 −=−=−==−==  (A13) 
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The concept of cross ratio in determinant form makes it possible to introduce higher 
dimensional invariants based on the properties of determinants: 
Multiplication with a scalar:  

 nn QQQQQQ ………… 2121 αα =  (A14) 

Multiplication with a matrix: 

 nn QQQTTQTQTQ ………… 2121 ⋅=  (A15) 

Similarly to the 1D case, the ratio of products of determinants is invariant to projective 

transformation (multiplication with a nonzero scalar and/or matrix), if each iQ  occures as 

often in the numerator as in the denominator, because the effect of α ’s and T ’s cancels 

each other, respectively. 
Distance between 3D lines 

Let uKP ss += 0)(  and vLQ tt += 0)(  be two 3D lines in general situation then their 

transversal  vuDD tsts −+= 0),(  is orthoganal to both lines, where  000 LKD −= , and is the 

solution of the constrained optimum problem  

 0),(,,0),(,,),(min
2

2,
>=<>=< tststs

ts
DvDuD  (A16) 

Let  >=<>=<>=<>=<>=< vDuDvvvuuu ,,,,,,,,, 00 edcba , then the solution is  
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 (A17) 
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)()(
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bdaecdbe
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−

−−−
+==

vu
DDD  (A18) 

Polar decomposition 

The polar decomposition problem can be formulated as given Q  find R  such that 

 0IRRQR
R

=−− T
F

,min
2

  (A19) 

where F  denotes Frobenius norm )()( 22
AAAA T

i k
ikFik traceaa ==→= ∑∑ . With the 

notations ( )321 rrrR =  the constraint is equivalent to  111 =rrT , 021 =rrT , 031 =rrT , 122 =rrT , 

032 =rrT , 133 =rrT , therefore six Lagrange multiplicators 332322131211 ,,,,, λλλλλλ  are 

needed which can be collected in a symmetric matrix Λ . Thus the solution yields:  

 1)( −=⇒==+⇒=+− QSRRSQΛIR0RΛQR 
	�
symmetric

 (A20) 

 TTTSVDT UQUΣQSRUUΣSUΣUQQ 2/112/1 −− ==⎯→⎯=⎯→⎯⎯⎯ →⎯  (A21) 
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 RSVΣVUVQVΣUQ ==⎯→⎯⎯⎯ →⎯ ))(( TTTSVD
 (A22) 

Norm  square minimization under  constraint 
The problem to be solved is given by 

 
2
2

min Ax
x

 subject to 1
2 =x  (A23) 

and its  solution can be determined using eigenvalue technique or SVD: 

 λ  is the minimal eigenvalue of AAT , x  is the unit norm eigenvector to λ  (A24) 

 →=⎯⎯ →⎯ TSVD
VΣUAA  first column 1v  of  V 11 / vvx =→ ,  2

1
2
2

min σ=Ax  (A25) 
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This book presents research trends on computer vision, especially on application of robotics, and on advanced

approachs for computer vision (such as omnidirectional vision). Among them, research on RFID technology

integrating stereo vision to localize an indoor mobile robot is included in this book. Besides, this book includes

many research on omnidirectional vision, and the combination of omnidirectional vision with robotics. This

book features representative work on the computer vision, and it puts more focus on robotics vision and

omnidirectioal vision. The intended audience is anyone who wishes to become familiar with the latest research

work on computer vision, especially its applications on robots. The contents of this book allow the reader to

know more technical aspects and applications of computer vision. Researchers and instructors will benefit from

this book.
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