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1. Introduction 

The methods of computed tomography – X-ray computed tomography, magnetic resonance 

imaging, single-photon emission computed tomography, positron emission tomography, 

ultrasonic reflectivity tomography and others (Webb, 1998) are now widely used in the 

practice of medical imaging and their importance increasingly grows. These methods allow 

the real time reproduction and visual analysis of the inner spatial structure of tissue on the 

display, which on whole helps increase the quality of diagnostics. However, in the context 

of problems to be resolved in oncology, the efficiency of currently available commercial 

tomography methods remains relatively low. One of the reasons is the lack of methods that 

would allow reliable differentiation between malignant and benign tumors on reconstructed 

tomograms. The recent clinical studies (Boas et al., 2001; Gibson et al., 2005) show that 

rapidly developing diffuse optical tomography (DOT) is very likely to help out. DOT is 

unique in its ability to separately reconstruct the spatial distributions of optical parameters 

(absorption and scattering coefficients) which helps visualize the spatial pattern of blood 

volume and oxygen saturation. As a result, it becomes possible to differentiate and spatially 

localize such phenomena as cancerous tissue vascularisation and angiogenesis and hence 

detect cancer in the early stage of its development. 

DOT implies that tissue is probed by near-infrared radiation from the so-called therapeutic 

window (700-900 nm) where absorption by tissue is minimal. Position dependent 

measurements are taken, i.e. near-infrared light from an array of sources is observed with an 

array of receivers. Then an inverse problem, i.e. the tomographic reconstruction problem is 

solved to infer the spatially localized optical properties of tissue. The main problem of DOT 

is the low spatial resolution because of the multiple scattering of photons that do not have 

regular trajectories and are distributed in the entire volume V being probed. As a result, 

each volume element significantly contributes to the detected signal. The basic equation of 

DOT is written as 

 
(1) 
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where g(rs ,rd ) is the optical projection measured for source position rs and receiver position 
rd (usually the relative signal disturbance due to optical inhomogeneities), f (r) is the sought 
function of optical inhomogeneity distribution (later on the object function), and W(r,rs ,rd ) is 
a weight function which provides for the contribution of each volume element to the signal 
formed between the points rs and rd . Equation (1) and hence the inverse problem of DOT are 
strongly nonlinear because of the nonlinear dependence of photon flux on optical 
parameters. The local linearization of the inverse problem is performed, as a rule, by using 
multistep reconstruction algorithms (Arridge, 1999; Yodh & Chance, 1995) based on the 
variational formulation of the equation that describes the radiation transport model. A 
classical example of these algorithms is the Newton-Raphson algorithm with the Levenberg-
Marquardt iterative procedure (Arridge, 1999). The multistep algorithms allow gaining 
relatively high spatial resolution (0.3~0.5 cm) for diffusion tomograms, but they are not as 
fast as required for real time diagnostics. The reason is that the forward problem of DOT, i.e. 
the problem of radiation propagation through tissue is solved numerically many times and 
at each step of linearization it is necessary to adjust the matrix of the system of algebraic 
equations that describe the discrete reconstruction model. 
As shown in our earlier papers (Kalintsev et al., 2005; Konovalov et al., 2003; 2006b; 2007a; 
2007b; Lyubimov et al., 2002; 2003), there exists a unique opportunity to make the 
reconstruction procedure much faster by changing over in equation (1) from volume 
integration to integration along an effective trajectory from source to receiver. The photon 
average trajectory method (PAT method) we have developed finds such a trajectory using a 
probabilistic interpretation of light energy transfer by photons from source to receiver. The 
method introduces the density of the conditional probability P[r,τ (rs ,0) → (rd ,t)] that a 
photon migrating from a space-time source point (rs ,0) to a space-time receiver point (rd ,t) 

reaches a point r ∈V at time τ (0 ≤τ ≤ t) . The effective trajectory is a photon average 
trajectory (PAT) described by the mass center of the spatial distribution P over a time t . If 
we deal with absorbing inhomogeneities, then in the approximation of perturbation theory 
by Born or Rytov, integral (1) can be written as the fundamental equation of the PAT 
method (Kravtsenyuk & Lyubimov, 2000; Lyubimov et al., 2002; 2003) 

 
(2) 

where L is the PAT from the source point rs to the receiver point rd , l is distance along the 

PAT, and v(l) is a factor meaning the inverse relative velocity of the mass center of the 

distribution P along the PAT. The volume integral in the braces is the sought object function 

f (r) averaged over the spatial distribution of the photons that contribute to the signal 

recorded at time t . If denote the averaging operator by <·> , we can write (2) in a more 

compact form as 

 
(3) 

Equation (3) is an analog of the Radon transform and can be inverted for the function  

< f (r) > with the fast algorithms of projection tomography. 
It is well known (Kak & Slanay, 1988; Herman, 1980) that there are two different approaches 
to the solution of type (3) integral equations. The first is based on their analytical solution 
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and the use of the resulted inversion formulas for finding the object function in discrete 
points of space. The second consists in the representation of the integral equation as a 
system of linear algebraic equations which is solved for the set of unknowns that define the 
discrete values of the object function. Replacing volume integral (1) by trajectory integral (3) 
in both the approaches makes it possible to change over from multistep to single-step 
reconstruction. For the first approach this means that the integral formulas for inverting 
equation (3) are linear and no linearization steps are needed. For the second approach the 
single-step reconstruction means that the system of algebraic equations describing the 
discrete model is only once inverted and the matrix needs no adjustment. 
In our previous papers we provided some examples of 2D reconstruction from data 
simulated for the time-domain measurement technique to show that the PAT method can be 
implemented with integral algorithms (Konovalov et al., 2003; 2007b; Lyubimov et al., 2003) 
as well as with algebraic ones (Konovalov et al., 2006b; 2007a; Lyubimov et al., 2002). 
Compared with the multistep algorithms, the former give a terrific gain (a factor of about 
100) in calculation time, but are too inaccurate in the reconstruction of optical 
inhomogeneities near the boundaries of the study object. This is since the implementation of 
the integral inversion formulas has to be done through a linear (or rough piecewise-linear) 
approximation of PATs that really bend near boundaries because of avalanche photon 
migration outside the object. The algebraic algorithms are not so fast, but successfully treat 
the bended trajectories partly compensating for this shortcoming. However on the whole 
one must admit that the integral and algebraic algorithms inverting equation (3) are severely 
behind the multistep algorithms in accuracy because they reproduce the function < f (r) > , 
i.e., reconstruct the tomograms that are a priori blurred due to averaging. In fact the 
singlestep reconstruction helps localize an inhomogeneity, but it cannot say anything about 
its size and shape. In order to compensate for blurring and get useful information for the 
successful structure analysis and proper diagnosis in the end, the reconstructed tomograms 
must be subject to posprocessing. 
This chapter describes two methods of postprocessing that are complementary and used 
successively one after another. The first implies iterative restoration with the use of the 
spatially variant blurring model by Nagy et al. (2004) which is described by a system of 
linear algebraic equations, whose matrix contains information on blurring in different 
regions of the image being restored. The system is inverted using iterative algorithms which 
solve systems with very sparse matrices. The method was developed for restoring aerospace 
photographs and we adapted it to diffuse optical images (Konovalov et al., 2007b) as well as 
to X-ray radiograms taken in X-pinch rays (Konovalov et al., 2006c). Section 2 of this chapter 
gives a detailed description of the method and gives examples on the restoration of model 
diffusion tomograms reconstructed with the PAT method. It is shown that space-varying 
restoration helps significantly clear the blurring and offset inhomogeneity shape distortions 
present on blurred tomograms. Unfortunately, the method is incapable of the accurate 
restoration of step functions and inhomogeneities defined by constant values of optical 
parameters are still reproduced with blurred boundaries. The second phase of 
postprocessing implies the use of nonlinear color interpretation methods (Mogilenskikh, 
2000) developed at the Russian Federal Nuclear Center – Zababakhin Institute of Applied 
Physics for the purpose of getting more informative images of hydrodynamic plasma 
objects. The methods are based on the generation of nonlinear analytical and statistical 
functions of correspondence (hereafter correspondence function – CF) between image 
intensity and color space. They are described in Section 3 of this chapter. Nonlinear CFs are 
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applied to restored tomograms to segment and identify inhomogeneity boundaries. It is 
shown that in case of simple model objects (absorbing macro-inhomogeneities in a 
homogeneous scattering medium) it is possible to find a combination of nonlinear CFs 
which allows the boundaries of inhomogeneities to be reconstructed completely. Section 4 
formulates basic inferences and outlines further research to improve the methods of 
diffusion tomogram postprocessing. 

2. Space-varying restoration of diffusion tomograms 

2.1 Validation of linear spatially variant blurring model 
In the theory of linear systems and transforms (Papoulis, 1968) the image blurring caused by 
systematic errors of a visualization system is described with a model of a linear filter. Such a 
model is successfully used in projection tomography for estimating the accuracy of the 
spatial structure reproduction (Konovalov et al., 2006a; Very & Bracewell, 1979). It 
introduces into consideration a point spread function (PSF) that is defined as the image of an 
infinitesimally small point object and specifies how points in the image are distorted. A 
diffuse optical tomograph in general is not a linear filter because of the absence of regular 
rectilinear trajectories of photons. However, the PAT method that we use for reconstruction 
possesses a number of features which in our opinion warrant the application of a model of a 
linear filter in the given particular case of DOT. These features are as follows: 
a. Our concept proposes the conditional PATs to be used for reconstruction as regular 

trajectories. 
b. The PATs are close to straight lines inside the object and bend only near its boundaries. 
c. The algorithms where all operations and transformations are linear are used for 

reconstruction. 
Therefore, the PSF at the first order approximation may be assumed for describing the 
blurring due to reconstruction. 
Let us consider at once the variance of the PSF against spatial shift. The time integral of the 
function P[r,τ (rs ,0) → (rd ,t)] for each τ describes instantaneous distribution of diffuse 
photon trajectories. At time moment τ = t this distribution forms a zone of the most probable 
trajectories of photons migrated from (rs ,0) to (rd ,t) . This zone is shaped as a banana 
(Lyubimov et al., 2002; Volkonskii et al., 1999) with vertices at the points of source and 
receiver localizations on the boundary of the scattering object. The effective width of this 
zone estimates the theoretical spatial resolution and is described by the standard rootmean-
square deviation of photon position from the PAT as follows 

 
(4) 

where R(τ ) is a radius-vector describing the PAT. According to equation (4), as the object 
boundary is approached, the theoretical resolution tends to zero. In the center, the resolution 
is worst and depends on the object size. Thus, the resolution and, therefore, the PSF 
describing the PAT tomogram blurring are strongly variant against the spatial shift. It 
means that the spatially variant blurring model may exclusively be assumed for restoration 
of the PAT tomograms. 
The generic spatially variant blurring would require a point source at every pixel location to 
fully describe the blurring operation. Since it is impossible to do this, even for small images, 
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some approximations should be made. There are several approaches to the restoration of 
images degraded by the spatially variant blurring. One of them is based on a geometrical 
coordinate transformation (Sawchuk, 1974) and uses coordinate distortions or known 
symmetries to transform the spatially variant PSF into one that is spatially invariant. After 
applying a spatially invariant restoration method, the inverse coordinate distortion is used 
to obtain the result. This approach does not satisfy us because the coordinate transformation 
functions need to be known explicitly. Another approach considered, for example, in (Fish 
et al., 1996), is based on the assumption that the blurring is approximately spatially 
invariant in small regions of the image domain. Each region is restored using its own 
spatially invariant PSF, and the results are then sewn together to obtain the restored image. 
This approach is laborious and also gives the blocking artifacts at the region boundaries. To 
restore the PAT tomograms, we use the blurring model recently developed by Nagy et. al. 
(2004). According to it the blurred image is partitioned into many regions with the spatially 
invariant PSFs. However, rather than deblurring the individual regions locally and then 
sewing the individual results together, this method interpolates the individual PSFs, and 
restores the image globally. It is clear that the accuracy of such method depends on the 
number of regions into which the image domain is partitioned. The partitioning where the 
size of one region tends to a spatial resolution seems to be sufficient for obtaining a 
restoration result of good quality. 

2.2 Description of blurring model 
Let f be a vector representing the unknown true image of the object function f (r) and let < f 
> be a vector representing the reconstructed image < f (r) > blurred due to averaging. The 
spatially variant blurring model of Nagy et al. (2004) is described by a system of linear 
algebraic equations 

 (5) 

where A is a large ill-conditioned matrix that models the blurring operator (blurring 
matrix). If the image is partitioned into m regions, the matrix A has the following structure 

 
(6) 

where Aj is a matrix that contains information on the spatially invariant PSF assigned to the 
 j -th region of the image and Dj is a diagonal matrix satisfying the condition 

 

(7) 

where I is the identity matrix. The piecewise constant interpolation implemented implies 
that the i-th diagonal entry of Dj is one if the i -th pixel is in the j-th region, and zero 
otherwise. The matrix Aj is uniquely determined by a single column aj that contains all of the 
non-zero values in Aj . This vector aj is obtained from the invariant PSF PSFj corresponding 
to the j -th region as follows 

 
(8) 
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where the operator vec(·) transforms matrices into vectors by stacking the columns. 
 

 

Fig. 1. Standard boundary conditions: (a) zero, (b) periodic, (c) reflexive ( fc is obtained by 
the transposition of columns f , fr by the transposition of rows f , frc by the transposition of 
rows and columns) 

The blurring matrix A accounts for a priori information on the extrapolation of the restored 

image beyond its boundaries, i.e. boundary conditions. This is necessary to compensate for 

near-boundary artifacts caused by Gibbs effect. The blurring model implements three type 

of “standard” boundary conditions: zero, periodic and reflexive. The zero boundary 

conditions correspond to image extension by zeros (Figure 1(a)). The periodic boundary 

conditions assume that the image is periodically repeated (extended) in all directions 

(Figure 1(b)). Finally, the reflexive boundary conditions mean that the image is specularly 

(i.e., normally) reflected at the boundary (Figure 1(c)). The matrix Aj is banded block 

Toeplitz matrix with banded Toeplitz blocks (Kamm & Nagy, 1998) if the zero boundary 

conditions are used, or the banded block circulant matrix with banded circulant blocks 

(Andrews & Hunt, 1977) for the periodic boundary conditions, or the sum of banded block 

Toeplitz matrix with banded Toeplitz blocks and the banded block Hankel matrix with 

banded Hankel blocks (Ng et al., 1999) for the reflexive boundary conditions. The “banding” 

of matrix Aj means that the matrix-vector multiplication product DjA jz , where z is any 

vector defined into the image domain, depends on the values of z in the j -th region, as well 

as on values in other regions within the width of the borders of the j -th region. The matrix-

vector multiplication procedure is implemented by means of the 2D discrete fast Fourier 

transform and is fully described in (Nagy & O’Leary, 1997). Note that the standard 

boundary conditions may give the bandpass artifacts, if the image contains complex 

structures adjoining to the boundary. In this case a special approach to image extrapolation 

is needed (Konovalov et al., 2006c). 

To simulate the invariant PSF corresponding to an individual region, first of all we must 
choose a characteristic point and specify a point inhomogeneity in it. It is advisable to 
choose the center of the region for location of the point inhomogeneity. Then we must 
perform two steps as follows: 
a. Simulate optical projections from the point inhomogeneity. 
b. Reconstruct the tomogram with PSF by the PAT method. 
The optical projections from the point inhomogeneity are simulated via the numerical 
solution of the time-dependent diffusion equation with the use of the finite element method 
(FEM). To guarantee against inaccuracy of calculations, we optimize the finite element mesh 
so that it is strongly compressed in the vicinity of the point inhomogeneity location. For 
FEM calculations the point inhomogeneity is assigned by three equal values into the nodes 
of the little triangle on the center of the compressed vicinity. The example of the mesh for 
the circular scattering object 6.8 cm in diameter is given in Figure 2. 
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Fig. 2. High-resolution finite element mesh with the compressed vicinity 

 

Fig. 3. The 5×5 array of the invariant PSFs corresponding to individual regions of the image 
domain 
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Fig. 4. The step sequences describing the restoration algorithms 

Figure 3 presents the array of the invariant PSFs calculated for the case of image partitioning 
into 5×5 regions. 

2.3 Restoration algorithms 

After constructing the blurring matrix A , an acceptable algorithm should be chosen to solve 

system (5) for unknown vector x. Because of the large dimensions of the linear system, 

iterative algorithms are typically used to compute approximations of f. They include a 

variety of least-squares algorithms (Bjorck, 1996), the steepest descent algorithms (Kaufman, 

1993), the expectation-maximization algorithms (Bertero & Boccacci, 1998), and many others. 

Since non of the iterative algorithm is optimal for all image restoration problems, the study 

of iterative algorithms is an important area of research. In present paper we consider the 

conjugate gradient algorithm CGLS (Bjorck, 1996) and the steepest descent algorithm 

MRNSD (Kaufman, 1993). These algorithms represent two different approaches: a Krylov 

subspace method applied to the normal equations and a simple descent scheme with 

enforcing a nonnegativity constraint on solution. The step sequences describing the 

algorithms are given in Figure 4. The operator E·E denotes a Euclidian norm, the function 

diag(·) produces the diagonal matrix containing the initial vector. 

Both CGLS and MRNSD are easy to implement and converge faster than, for example, the 

expectation-maximization algorithms. Both the algorithms exhibit a semi-convergence 

behavior with respect to the relative error Efk − fE/E f E, where fk is the approximation of f at 

the k -th iteration. It means that, as the iterative process goes on, the relative error begins to 

decrease and, after some optimal iteration, begins to rise. By stopping the iteration when the 

error is low, we obtain a good regularized approximation of the solution. Thus, the iteration 
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number plays the role of the regularization parameter. This is very important for us, as the 

matrix A is severely ill-conditioned and regularization must be necessarily incorporated. To 

estimate the optimal iteration number, we use the following blurring residual that measures 

the image quality change after beginning the restoration process: 

 
(9) 

Like the relative error, the blurring residual has a minimum that corresponds to the optimal 

iteration number. Note that we do not know the true image (vector f) in clinical applications 

of DOT. However, using criterion βk → min , it is possible to calibrate the algorithms in 

relation to the optimal iteration number via experiments (including numerical experiments) 

with phantoms. In general many different practical cases of optical inhomogeneities can be 

considered for calibration. In clinical explorations, the particular case is chosen from a priori 

information, which the blurred tomograms contain after reconstruction. Further, 

regularization can be enforced in a variety of other ways, including Tikhonov (Groetsch, 

1984), iteration truncation (Hanson & O’Leary, 1993), as well as mixed approaches. 

Preconditioned iterative regularization by truncating the iterations is an effective approach 

to accelerate the rate of convergence (Nagy et al., 2004). In general, preconditioning amounts 

to finding a nonsingular matrix C , such that C ≈ A and such that C can be easily inverted. 

The iterative method is then applied to preconditioned system 

 (10) 

The appearance of matrix C is defined by the regularization parameter λ < 1 that 

characterizes a step size at each iteration. In this paper we consider two methods for 

calculating λ: generalized cross validation (GCV) method (Hanson & O’Leary, 1993) and 

method based on criterion of blurring residual minimum. In the first case we assume that a 

solution computed on a reduced set of data points should give a good estimate of missing 

points. The GCV method finds a function of λ that measures the errors in these estimates. 

The minimum of this GCV function corresponds to the optimal regularization parameter. In 

the second case we calculate blurring residual (9) for different numbers of iterations and 

different discrete values of λ, taken with the step Δλ. The minimum of blurring residual 

corresponds to optimal number of iterations and the optimal regularization parameter. 

The main reason of choosing MRNSD for PAT tomogram restoration is that this algorithm 

enforces a nonnegativity constraint on the solution approximation at each iteration. Such 

enforcing produces much more accurate approximate solutions in many practical cases of 

nonnegative true image (Kaufman, 1993). In DOT (for example, optical mammotomography), 

when the tumor structure is detected, one can expect that the disturbances of optical 

parameters are not randomly inhomogeneous functions, but they are smooth or step 

nonnegative ones standing out against a close-to-zero background and forming the 

macroinhomogeneity images. Indeed, the typical values of the absorption coefficient are 

between 0.04 and 0.07 cm-1 for healthy breast tissue, and between 0.07 and 0.1 cm-1 for breast 

tumor (Yates et al., 2005). Thus, we have the nonnegative true image f (r). This a priori 

information gives the right to apply constrained MRNSD and change negative values for 

zeros after applying unconstrained CGLS. 
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2.4 Restoration results 
To demonstrate the effect of blurring reduction on PAT-reconstructed tomograms, a 
numerical experiment was conducted, wherein circular and rectangular scattering objects 
with absorbing inhomogeneities were reconstructed from model optical projections and 
then restored. In this chapter we present processing results for five objects whose 
description and parameters are given in Table 1. To simulate the optical projections, we 
solved the timedependent diffusion equation with the instantaneous point source for 
photon density by the FEM. The signals of the receivers were found as photon fluxes on the 
object boundary. Each optical projection was calculated as logarithm of the non-perturbed 
signal determined for the homogeneous medium to the signal perturbed due to 
inhomogeneities. For all objects from Table 1 we used the measurement ratio 32×32 (32 
sources and 32 receivers). The circular objects were reconstructed by the backprojection 
algorithm with convolution filtering (Konovalov et al., 2003; 2007b; Lyubimov et al., 2003) 
and the rectangular ones with the modified multiplicative algebraic reconstruction 
technique (Konovalov et al., 2006b; 2007a). To restore the reconstructed tomograms, in all 
cases we partitioned the image domain into 5×5 regions and applied the reflexive boundary 
conditions. 
 

 

Table 1. Description and parameters of the model scattering objects: fobj, absorption 
coefficient of the object; f inh , absorption coefficient of the inhomogeneities; D , diffusion 
coefficient; n , refraction index; RIC, randomly inhomogeneous component 

Figure 5 shows results of restoration for the circular object with the inhomogeneity 1 cm 
inndiameter in comparison with its blurred tomogram. The results are presented as gray 
level images. The axes are graduated in centimeters and the palette scale is in inverse 
centimeters. The points on the images present the positions of the sources on the boundary 
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of the object. The circle on the left image shows the true boundary of the inhomogeneity. It 
is seen that restoration allows getting closer to its actual size. 
 

 

Fig. 5. Reconstruction and restoration results for the circular object with the inhomogeneity 
1 cm in diameter: blurred tomogram (left) and results of its restoration by CGLS and 
MRNSD (center and right) 

Figure 6 shows pseudo-3D plots representing the same results for the circular object with 
two inhomogeneities that form a periodic structure. Digits on the plots show the values of 
the modulation transfer coefficient estimated as the relative depth of the dish between two 
peaks. This figure demonstrates that restoration helps significantly increase the modulation 
transfer coefficient and hence the spatial resolution of tomograms. For all restorations 
presented in Figures 5 and 6 we used the unpreconditioned algorithms (CGLS and 
MRNSD). The optimal iteration number obtained by the criterion of blurring residual 
minimum is equal to 15 in the case of CGLS and to 9 in the case of MRNSD, respectively. 
 

 

Fig. 6. Reconstruction and restoration results for the circular object with two 
inhomogeneities 1 cm in diameter: blurred tomogram (left) and results of its restoration by 
CGLS and MRNSD (center and right) 

Figure 7 presents the restoration results obtained with the use of preconditioned MRNSD. 
The left image corresponds to the regularization parameter calculated by the GCV method ( 
λ = 0.003 ). To obtain the central restoration, we used preconditioner with λ = 0.1. This value 
of the regularization parameter was found by the criterion of blurring residual minimum. 
The right image in Figure 7 shows the result of restoration by unpreconditioned MRNSD for 
comparison. The optimal iteration number in the cases of preconditioned algorithm was 
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equal to 3. Thus, preconditioners allow the restoration procedure to be accelerated. But, as it 
follows from Figure 7, preconditioned algorithms distort the form of inhomogeneities being 
restored. We can conjecture that the image partitioning into 5×5 regions is not enough to 
obtain good quality of restoration by preconditioned algorithms. As we save computational 
time, in future the image partitioning number may be increased. 
 

 

Fig. 7. Comparison of the restoration results obtained with the use of preconditioned 
MRNSD (left and center) and unpreconditioned one (right) for the circular object with two 
inhomogeneities 1.4 cm in diameter 

Figure 8 demonstrates results obtained in the testing of unpreconditioned MRNSD for noise 
immunity. The left image shows the 20%-noised sinogram that is a gray level map of optical 
projection distributions over the index ranges of the source and the receiver. The sinogram 
abscissa is the receiver index and the sinogram ordinate is the source index. The palette scale 
is graduated in relative units. Despite the fact that the reconstructed tomogram (center) is 
strongly blurred, the restored image (right) has only low distortion in the shape of 
inhomogeneities. Thus, the restoration algorithm demonstrates good immunity to 
measurement noise. 
 

 

Fig. 8. 20%-noised sinogram (left), blurred tomogram (center) and restoration with 
unpreconditioned MRNSD (right) for the circular object with two inhomogeneities 1.4 cm in 
diameter 

Figure 9 compares the spatially variant model by Nagy and a spatially invariant model that 
is described by one PSF defined in the center of the tomogram domain. In the latter case the 
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centers of inhomogeneities are seen to be abnormally shifted from their true positions 
marked with crosses. 
 

 

Fig. 9. Restoration results for the circular object with two inhomogeneities 1.4 cm in 
diameter, obtained with spatially variant (left) and spatially invariant (right) blurring 
models 

Finally Figure 10 presents reconstruction and restoration results for the rectangular object 
with two inhomogeneities 1 cm in diameter (and without RIC). Here unpreconditioned 
MRNSD was applied. 
 

 

Fig. 10. Reconstruction and restoration results for the rectangular object with two 
inhomogeneities 1 cm in diameter: blurred tomogram (left) and the result of its MRNSD 
restoration (right) 

The results presented thus confirm that blurring of PAT tomograms can be reduced through 
iterative restoration. The spatially variant model helps adequately estimate the actual size of 
inhomogeneities, but as follows, for instance, from Figure 6, further processing is needed to 
reconstruct inhomogeneity boundaries and get reliable information on its shape because 
even after restoration inhomogeneity profiles have a “gaussian” form, being far from the 
ideal steps typical of true images. 

3. Segmentation with nonlinear CFs 

3.1 CF generation algorithms 
To segment restored diffusion tomograms, i.e. to reconstruct the boundary and shape of 
optical inhomogeneities, we use nonlinear color interpretation methods (Konovalov et al., 
2007; Mogilenskikh, 2000) based on the generation of nonlinear analytical and statistical 
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functions of correspondence between image intensities (values of the restored object 
function) and palette colors. A palette is an ordered set of colors from color space where 
each color is assigned a number. If the pallet is linear, then the set of its colors create a 
straight trajectory in color space. The curvilinear trajectory corresponds to the nonlinear 
palette. 
The analytical CFs imply the use of nonlinear color coordinate scales for attaining 
correspondence between intensity and color in a cell. Elementary functions and their 
algebraic combinations are used for this purpose. What particular combination is taken 
depends on the operator and a priori information contained in restored tomograms. 
The nonlinear statistical CFs are generated using statistical information on the distribution 
of colors of an initially chosen palette (as a rule, linear) over image cells. The algorithm we 
have implemented can be described in brief by the following steps. 
a. A linear CF is generated, i.e. a color G ( fkl ) from the linear palette chosen is assigned to 

image intensity fkl in a cell with indexes k and l . 

b. The number of cells cells

G
N ( f kl ) of each color from the palette is calculated; then a weight 

vector, whose size is equal to the number of colors in the palette, is calculated as 

 

(11) 

where Ncol is the number of colors in the palette, Ncells is the total number of cells in the 
image and norm(·) is a normalization operator. 

c. The statistical CF is calculated from the collected statistics as a spline. We use the 
following simple spline: 

 (12) 

d. The nonlinear CF is generated by summing the statistical CF (12) and the initial linear CF. 
 

Our experience (Konovalov et al., 2007) suggests that combinations of nonlinear analytical 
and statistical CFs give best results in the context of the segmentation problem solution. 
Indeed, the use of the statistical CF is needed to ultimately get a step palette. And before 
that it is advisable to “focus” the boundary of the inhomogeneity, which is clearly 
“gaussian” after space-varying restoration, by applying a nonlinear smooth function. Also 
inhomogeneity images after restoration exhibit a large percentage of background (zero or 
almost zero) values and before applying the statistical CF it is advisable to somewhat “level” 
statistics with respect to background values and inhomogeneity intensities. 
Note that such a segmentation method based on the generation of nonlinear CFs compares 
favorably with the standard threshold filtration where some part of the image is rejected 
and replaced by a background value of the object function which may result in the loss of 
important details in the reproduction of randomly inhomogeneous structures. Nonlinear 
CFs are applied to all pixels in the image and if their parameters are well chosen, we 
manage not to lose, but effectively segment the informative details of the image. 

3.2 Examples of nonlinear CF application to restored tomograms 
For the analytical CF we tried power and exponential functions and found the latter to be 
more effective. An exponential function written as G( f ) = exp(B1 f ) + B2 was parametrized so 
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that the coefficients B1 and B2 were determined from the equality of volumes of the figures 
bounded by the object function f (x, y) before and after image transformation that consisted in 
the successive application of the analytical and statistical CFs. The statistical CF was 
automatically generated with the algorithms described in Section 3.1. For the purpose of 
parametrization we had to state and solve the problem of minimizing the difference between 
figure volumes. Since image transformation on the whole does not have the analytical 
representation, the optimal parameters were found with a simple direct search algorithm 
(Lagarias et al., 1998) that does not require the numerical or analytic calculation of gradients. 
 

 

Fig. 11. Examples of nonlinear CF application to the restored tomogram of the rectangular 
object with two inhomogeneities 1.0 cm in diameter 
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Figure 11 illustrates examples of nonlinear CF application to the restored tomogram of the 
rectangular object with two inhomogeneities 1.0 cm in diameter (see the right image of 
Figure 10). The left column of images shows the effects of the analytical CFs (top down): the 
power function G( f ) = f 2 , the power function G( f ) = f , the exponential function G( f ) = 
exp( f ) and the parametrized exponential function G( f ) = exp(B1 f ) + B2 . The right column 
demonstrates what was obtained after applying statistical CFs. Image intensities are 
normalized. It follows from Figure 11 that for “simple" models (absorbing macro-
inhomogeneities in a homogeneous scattering medium), it is possible to obtain such a 
combination of nonlinear CFs that allows the true structure of inhomogeneities to be 
reconstructed almost completely. Indeed, if apply subtraction to the lowest right image of 
Figure 11 and the normalized true image of the inhomogeneities, we obtain the three-tone 
pattern shown in Figure 12 (coincidence is in grey and difference is in black and white). 
 

 

Fig. 12. The three-tone pattern characterizing how the result of postprocessing agrees with 
the true image 

Figure 13 shows an object defined on a finite element mesh, which models a randomly 
inhomogeneous medium with macro-inhomogeneities and Figure 14 demonstrates results of 
its reconstruction (upper left), restoration (upper right) and nonlinear postprocessing (lower 
left and right). 
 

 

Fig. 13. The rectangular object with two inhomogeneities 1.0 cm in diameter and RIC 
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Fig. 14. Reconstruction and postprocessing results for the object of Figure 13 

The lower left image resulted from the successive application of the parametrized 
exponential and statistical CFs to the restored tomogram and the lower right image was 
obtained after applying the statistical CF without preprocessing with analytical functions. It 
is seen that our segmentation method in the case of the complex model of Figure 13 give 
inhomogeneity shape distortions and artifacts (the upper structure on the lower left image) 
which may however be removed on the basis of a priori information contained in restored 
tomograms. The lower right image demonstrates an attempt to segment inhomogeneities 
with no use of analytical CFs. One must admit that the visual examination of reproduced 
results in this case is much more inconvenient. 
In conclusion we should note that the two-step postprocessing of one image on Intel PC 
with the 1.7-GHz Pentium 4 processor and 256-MB RAM in MATLAB takes less than 30 
seconds. The reconstruction of blurred tomograms takes to 5 seconds if integral algorithms 
are applied and to 30 seconds if iterative algebraic ones are used. The total time is thus 
below 1 minute. The comparative analysis of computational speed presented in (Lyubimov 
et al., 2002) suggests that the use of the well-known package TOAST (Temporal Optical 
Absorption and Scattering Tomography, Schweiger & Arridge, 2008) which implements the 
Newton-Raphson algorithm will make the time of restoration several times longer. It should 
also be noted that there are good prospects for making the postprocessing procedure yet 
faster by using not MATLAB, but a faster programming environment and optimizing the 
measurement ratio. Our investigation (Konovalov et al., 2007a) suggests that the number of 
sources can be reduced from 32 to 16 almost with no loss in reproduction quality. 

4. Conclusion 

In this chapter we have demonstrated the effective application of two-step postprocessing to 
the diffuse optical tomograms restored from model optical projections with the photon 
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average trajectory method. The first step involves iterative restoration with the spatially 
variant blurring model and the second is segmentation with nonlinear palettes and 
nonlinear functions of correspondence between image intensities and palette colors. The 
first step helps reduce blurring due to averaging over the spatial distribution of diffuse 
photons and get information on the actual size of reproduced inhomogeneities. The 
boundary and shape of inhomogeneities are segmented at the second step. It is shown that 
the true image can almost completely be reconstructed for simple model objects (circular 
absorbing macro-inhomogeneities in a homogeneous scattering medium). For complex 
models of randomly inhomogeneous media, the proposed method of postprocessing may 
give distortions and artifacts. Therefore of certain interest is further investigation into 
methods that would help optimize the algorithms of correspondence function generation 
and obtain images without artifacts. 
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