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Abstract

The use of insulation materials is considered as one of the most effective means of
conserving energy in various fields. Thermal insulation materials enable systems to
achieve  energy  efficiency.  Many  different  thermal  insulation  materials  have  been
developed to reduce heat flow by limiting conduction, convection, and/or radiation
while performing one or more functions. These functions may vary in the context of
thermal design, numerical simulations, and a wide range of engineering problems, such
as determining the heat loss, temperature field, isolation, and cooling conservation, and
in a variety of  other technologies.  One of  the most  effective ways to identify and
determine performance is effective thermal conductivity. The thermal measurement
performance is usually evaluated in a temperature and signal gradient for single or
combined homogeneous/heterogenous materials. The two main categories of thermal
conductivity measurement techniques are steady‐state methods and transient methods.
The aim of this chapter is to present various measurement methods and to investigate
their  suitability  for  method  purposes.  This  chapter  presents  new  and  accurate
experimental  techniques  and  methods  for  measuring  the  thermal  conductivity  of
several  most  commonly  used  insulation  materials.  Some  of  these  methods  are
commonly used in the field for measuring the thermal property of insulation materi‐
als.  On  the  other  hand,  different  insulation  measurement  practices  are  presented
depending upon the overall structures. The analysis predicting the thermal conductiv‐
ities of insulation materials is also discussed.

Keywords: heat transfer, insulation material, mathematical model, measurement
method, tests, thermal conductivity
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1. Introduction

The development of technologies leads to changes in demand. Insulation materials are created
in several forms including porous form, blanket or batt form, rigid form, natural form, foamed
structure, and reflective structure. Fiber and polymer products are the most commonly used
types of thermal insulation. Many studies have examined the impact of various parameters on
the thermal performance of insulation materials. Extensive investigations have focused on heat
transfer in these materials in the context of their numerous and varied applications. The thermal
conductivity in these applications is one of the most important challenges facing thermal,
mechanical, material, and civil engineers. In various fields, the accuracy of different techni‐
ques for evaluating thermal conductivity and other properties is widely debated as a funda‐
mental parameter. As a result of the wide range of thermal properties of insulation materials,
there is no single measurement method for all thermal conductivity measurements [1].

The accuracy of manufacturers’ claimed values for thermal properties is sometimes question‐
able since the thermal data for certain materials are often incomplete and lacking in important
information. When values for insulation types are quoted, manufacturers do not always report
the density and temperature of the materials tested. In general, the “effective” thermal
conductivities of the materials depend on the constituents and/or voids present in the different
characteristics of their structures as well as the density and temperature of the material.

In the field of thermal insulation technology, many developments during the last two decades
have enhanced the accuracy of measurement techniques as well as the current understanding
of the principles of heat transfer through different materials. These techniques are thus
differentiated mainly by the range of thermal conductivity, the range of material types,
measurement time, measurement accuracy, specimen type, and temperature range.

In the study, a survey concerning available experimental techniques for the measurements is
conducted. The main focus is on descriptive measurement methods, and their ranges of the
thermal conductivity and temperature are determined. The objective is to analyze a measure‐
ment apparatus designed to determine effective thermal conductivity of insulation materials.
The other aim of this chapter is to figure out the models for the effective thermal conductivity
of insulation materials. The prediction of the property has been determined using experimental
and analytical models in different studies. The accuracy of any method and model is limited
by physical properties and other factors. However, measurement and modeling of thermal
conductivity are difficult and require high precision in the determination of the various
parameters involved in the calculations. To analyze thermal behavior of materials, the methods
and the models must be clearly known and defined.

Insulation materials such as natural or man‐made materials differ concerning the material
structure and the range of use. To develop insulation materials in an economically and
environmentally friendly manner, it is essential to have knowledge and control over their
thermal conductivities. The properties can vary with temperature, pressure, and composition,
affecting the transfer of heat. To answer the following questions, thermal conductivity must
be known [2].
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• How is a particular insulation material performing?

• How does performance change with the weather and different conditions, and how can the
performance be improved?

• What is the optimum insulation for technologies/systems operating under different
temperature, gas, or pressure conditions?

• How can a system be designed to achieve the required efficiency, and what are the best
materials to use?

• What is the heating/cooling load of a building and a structure?

• How can cryogenic tanks be insulated in the best possible way?

• How can the heat transfer from an electronic component be improved?

There are a number of methods to measure thermal conductivity. In general, there are two
basic techniques for measuring thermal conductivity: steady‐state methods and transient or
non‐steady‐state methods [1, 3]. Each of these methods is suitable for a limited range of
materials, and they are based on the fundamental laws of heat conduction and electrical
analogy. Steady‐state methods have been traditionally used since they are mathematically
simpler. There is an important distinction between steady‐state and transient techniques [4,
5]. Transient heat transfer methods are capable of directly determining thermal diffusivity,
whereas steady‐state methods are considered to be more accurate than transient methods for
testing dry materials [6].

The steady‐state technique records a measurement when a tested material's thermal state
reaches complete equilibrium [5]. A steady‐state condition is attained when the temperature
at each point of the specimen is constant and the temperature does not change with time. A
disadvantage, however, is that it generally takes a long time to reach the required equilibrium
[4, 5]. The method involves expensive method apparatus since a well‐designed experimental
installation system is usually needed. Nevertheless, it is the primary and most accurate
measurement method.

The non‐steady‐state or transient technique records a measurement during the heating
process. The method determines thermal conductivity properties by means of transient
sensors. These measurements can be made relatively quickly, which garners an advantage over
steady‐state techniques [4, 5, 7]. For this reason, numerous solutions have been derived for the
transient heat conduction equation by using one‐, two‐, three‐dimensional geometries [7].
Transient methods generally employ needle probes or wires [4].

Compared to electrical and thermal transport, the ratios of thermal conductivities of the best
conduction and insulation conditions are significative and determinative magnitudes.
Therefore, instruments for thermal property identification are often designed only for specific
kinds of materials or temperature ranges. Table 1 presents a comparison of the most common
methods of thermal conductivity measurement [7]. Measurement systems can also be divided
into three categories based on the operating temperature of the apparatus: (1) room tempera‐
ture operation (20–25°C), (2) below room temperature operation (down to about –180°C), and
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(3) high-temperature operation (up to 600°C or above) [8]. A given measurement system is
often optimized for one of these temperature ranges.

Method Temperature
range

Uncertainly Materials Positive Negative

Steady‐
state
methods

Guarded hot
plate

80–800 K [7],
−180–1000°C [9],
80–1500 K [10]

2% [7]
and 0.0001–2 W/(m
K)
[9]
2–5% and
0.0001–1 W/(m K)
[10]

Insulation
Materials [7]
and solid,
opaque,
insulators [10]

High accuracy Long
measurement,
large specimen
size, low
conductivity
materials

Cylinder 4–1000 K [7] 2% [7] Metals [7] Temperature
range,
simultaneous
determination
of electrical
conductivity

Long
measurement

Heat‐flow
meter

−100–200°C for
normal [7]
90–1300 K for
axial heat flow
and 298–2600 K
for radial heat
flow [10]

3–10% [7]
0.007–1.0 W/(m K)
[9]
0.5–2% and 10–500
W/(m K)
(axial) and 3–15%
and
0.01–200 W/(m K)
(radial) [10]

Insulations,
plastics,
glasses,
ceramics [7]
Some metals,
rocks,
polymers [9]
Metals and
Solids [10]

Simple
construction
and operation

Measurement
uncertainly,
relative
measurement

Comparative 20–1300°C [7]
0–1000°C [9]

10–20% [7] and 0.2–
200 W/(m K)
[9]

Metals,
ceramics,
plastics
[7]

Simple
construction and
operation

Measurement
uncertainly,
relative
measurement

Direct heating 400–3000 K [7,
10]

2–10% [7]
2–5% [10]
and 10–200 W/(m
K)
[10]

Metals [7]
Wires, rods,
tubes of
electrical
conductors [10]

Simple and fast
measurements,
simultaneous
determination of
electrical
conductivity

Only electrically
conducting
materials

Pipe method 20–2500°C [7]
and
50–800°C [9]

3–20% [7]
and 0.02–2 W/(m K)
[9]

Solids [7]
calcium
silicates,

Temperature
range

Specimen
preparation,
long
measurement
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Method Temperature
range

Uncertainly Materials Positive Negative

mineral and
refractory
fiber blankets)
[9]

time

Transient
Methods

Hot wire,
hot strip

20–2000°C [7],
−40–1600°C
for hot wire and
−50 to 500°C for
hot strip [9]
298–1800 K
[10] for hot wire

1–10 % [7]
0.001–20 W/(m K)
for
hotwire and 0.1–5
W/(m K)
for hot strip [9]
5–15% [10] and
0.02–2 W/(m K) for
hotwire [10]

Liquids,
glasses,
solids
of klow [7]
refractory
materials [9, 10]
and plastics,
granules,
powders for
hotwire [9] and
glasses, foods,
ceramics for hot
strip [9]

Temperature
range,
fast, accuracy

Limited to
low conductivity
materials

Hot‐disk
(TPS
technique)

30–1200 K
[7]

‐ liquids, pastes,
solids and
powders

very short time
accuracy,
different
thermal
properties
simultaneously

the range of
0.005
and 500 W/(m K)
(conducting or
insulating
material)

Laser flash −100–3000°C
[7] and
100–3300 K [10]

3–5%
[7]
1.5–5 % [10] and
0.1–1500 W/(m K)
[9, 10]

solids, liquids,
and powders [7]
and
liquid metals,
polymer,
ceramics [9, 10]

Temperature
range,
most small
specimen,
fast, accuracy at
high temperature

Expensive,
not for
insulation
materials

Photothermal
(PT),
Photoacoustic

30–1500 K [7]
−50–500°C [9] and
200–800 K [10] for
PT

Not sufficiently
known [7], 1–10 %
[10]
0.1–200 W/
(m K) for PT [9, 10]

Solids, liquids,
gases, thin films
[7], small parts
of most solid
[9,10]

Usable for
thin films,
liquids,
and gases

nonstandard,
knowledge
about accuracy

Table 1. Comparison of measurement methods for detecting the thermal conductivity [7, 9, 10]

For measuring thermal conductivity, there are four main types of measurement setups: the
guarded hot plate (GHP), the heat‐flow meter (HFM), the hot wire, and laser flash diffusivity.
The usage of these tools/methods differs in technique, material type, intended specimen size,
measurement time, capability, and measurement methodology [5].
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To analyze heat transfer behavior of insulations, a guarded hot plate or a heat‐flow meter is
usually used. The hot‐wire and flash method use special devices for consolidated insulation
specimens. The laser flash method is often employed for highly conductive ceramics, metals,
and some composites [2]. The thermal conductivity of large specimens of refractory material
is measured by using hot‐wire systems [2]. Figure 1 provides a comparison of measurement
methods and material types for the ranges of thermal conductivity [2].

Figure 1. Comparison of measurement methods and material type for the ranges of thermal conductivity [2].

2. Steady‐state methods

Steady‐state methods apply Fourier's law of heat conduction to measure thermal conductivity.
The solution to the problems with the different steady heat‐flow methods is to convert the heat
transfer problem to a one‐dimensional problem, thus simplifying the mathematics. The
calculations change for the models of an infinite slab, an infinite cylinder, or a sphere. The
typical specimen geometry, the configuration of a measurement system, and the magnitude
of the thermal conductivity are used to distinguish between different types of thermal
conductivity measurements. The thermal magnitude of the measuring object is determined by
the following measuring techniques using the direction of the heat flow, the conservation of
the heat flow, and an auxiliary layer having a known thermal property.

2.1. Guarded hot plate

The guarded hot plate, also known as the Poensgen apparatus [11], is the most commonly used
and most effective method for measuring the thermal conductivity of insulation materials. The
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GHP relies on a steady temperature difference over a known thickness of a specimen and its
primary purpose is to control the heat flow through the material. One disadvantage is that
establishing a steady‐state temperature gradient through a specimen is time‐consuming when
using the GHP and other steady‐state techniques. Other potential disadvantages are that the
temperature gradient must be relatively large, the specimen width must be large, and also that
the contact resistance between the thermocouple and the specimen surface poses a major
source of error [12]. Although Reference [12] cites large specimen size as a potential disad‐
vantage, size is usually not a serious issue [8].

The experimental setup of the guarded hot plate employs a steady‐state heat transfer between
a hot plate and a cold plate. However, the accuracy of this method is questionable, interlabor‐
atory comparisons of GHP calculations have revealed discrepancies among 20 different GHPs
used at different times [5]. The individual results of these 20 GHPs diverged significantly from
reference values, ranging from +13 to −16% [5, 11].

Despite these disadvantages, the standardized GHP method is the ideal apparatus for
researchers and scientists in the field of insulation testing and it is considered an absolute
measurement method. The practical applicability requires careful consideration of the array
content: (a) attaining steady‐state conditions; (b) the unidirectional heat flow in the area under
analysis, the temperatures of the hot and cold surfaces, and the specimens’ thickness; and (c)
other factors influencing the unidirectional heat flow [8].

Another advantage is that the GHP method is standardized in countries such as the United
States (ASTM C 177‐63), Great Britain (B.S. 874:1965), and Germany (DIN 52612) [13]. The
details of this method are provided by the American Society for Testing Material (ASTM)
Standards associated with the method and/or materials [1]. The details of this standard are
partly based on the difficulty of attaining steady‐state conditions [11], accurately adjusting the
temperatures in conventional plates (guarded, hot, and cold), and design conditions.

2.1.1. The construction of the guarded hot plate

The guarded hot‐plate measurements are analyzed on the fundamental of the heat transfer in
the infinite slab geometry. Since specimen dimensions are finite, unidirectional heat flow is
achieved through the use of guard heaters. The temperature of a thermal guard is maintained
at the same temperature as its adjacent surface (which is considered as an auxiliary heater/heat
sink), in order to prevent heat loss from the specimen and heat source/heat sink, and as a result,
unidirectional heat flow is attained [1]. After a steady state is reached, the heating and cooling
plates have stable temperatures. Then the thermal conductivity can be determined based on
the heat input, the temperature difference through the specimen, the thickness of the specimen,
and the size of the metered area of heat transfer. Steady‐state conditions may change with
respect to specimen type, specimen size, and mean temperature [14]. The GHP is most suitable
for dry homogeneous specimens [15], but it is unsuitable for materials in which there is a
potentiality for moisture migration [16].

The guarded hot‐plate setup is comprised of cold plates, a hot plate, a system of guard heaters,
and thermal insulation. Hot plate is electrically heated and the cold plates are Peltier coolers
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or liquid‐cooled heat sinks. The configuration is arranged symmetrically, with guarded hot
plates located on the sides while the heater unit is sandwiched between two specimens or a
single specimen and an auxiliary layer (Figure 2). The different types of guarded hot‐plate
apparatus are shown in Figure 2. In the single‐sided system state, the heat flow passes through
one specimen, while the top of the main heater acts as an insulating guard, thus ensuring an
adiabatic environment [8].

In the two specimen apparatus, the main advantage is that heat loss from the hot plate can be
controlled more effectively due to the symmetrical arrangement of the specimen on each side
of the heater. Unlike the single‐specimen method, the symmetrical setup can be used for
investigating solid materials. For measuring the conductivity of nonsolid materials, it is
necessary to heat the specimen from the top in order to avoid convection [7].

The electrical heating is placed into the plates in a certain shape or form, such as a square or a
circular shape. The guarded plate (ring), the central plate (metered area), and the auxiliary
heater can all be arranged in this manner. The apparatus must test two specimens simultane‐
ously in the form of a slab with a standard size (such as 300 mm × 300 mm or different sizes).
A fixed heat rate must be applied by an electric heater. This arrangement produces a heat flow
across the two specimens, flowing outward toward two plates chilled by a Peltier or a liquid
cooling system.

These heat measurements are recorded by differential thermocouples, which are instruments
that control a flat electrically heated metering area that is surrounded on all lateral sides by a
guard heater section. The heated section provides the planar heat source applied to the hot
face of the specimens [8]. Heat is supplied to the metered area (the central heater) at an assigned
heat power rate. The temperature of the guard heater is maintained at the same temperature
as the metered section by using a control system. The adjacent thermal guard surfaces and/or
plates are held at the same temperature range, and ideally no heat leakage occurs from the
source, the specimen, or the boundaries. This is aimed at ensuring a one‐dimensional thermal

Figure 2. The apparatus of guarded hot‐plate method for thermal conductivity measurement. (a) two specimen with/
without auxiliary heaters and secondary guards, (b) single‐specimen [7].
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heat flow in the actual and practical test section, corresponding solely to the central metered
heater. In addition, the apparatus is surrounded by thermal insulation, as well as guard heaters.
And, the hot/cold metal parts are positioned between the heaters/cooling plates and each
specimen. The parts matched the same frame design are adjacent to the related side (hot or
cold) temperature sensors [13]. A data acquisition system is connected to the temperature
sensors and the electrical power supply devices, which are in turn controlled by a closed‐loop
control system.

2.1.2. Principle of operation

The specimens of the homogeneous material with the same thickness are interposed between
the hot guard heaters and the cold plates. For two specimen apparatuses, the auxiliary heaters
may be placed above and below the specimens. A well‐defined, user‐selectable temperature
difference is established between the hot and the cold plates. The power rate input in the hot
plate with metered area A is measured when thermal equilibrium is reached at steady‐state
conditions. When the control system is used, the plate temperatures reach stability.

It is assumed that the measured heat power rate is transferred across the specimen due to
guarded heaters. After thermal equilibrium has developed and the heating and cooling plates
are kept in stable temperatures, the thermal conductivity can be calculated from the input
values. The input values are the heat power Q, the temperature differential across the specimen
(Thot − Tcold), the specimen thickness (Δx), and the heat transfer area (center metered area, A).
The thermal conductivity is computed by measuring the quantity of heat input under the
steady‐state temperature profile in the entire specimen [1, 3, 14]. From the measured input
values, the effective thermal conductivity can be calculated using the following unidirectional
steady‐state heat transfer equation:

D
=

D
 eff

Q xk
2  A. T

(1)

where the heat flow Q is obtained by measuring a power P (or half power for two specimen)
generated in an electrical heater. The heat conduction equation for homogenous isotropic
materials without using internal heat generation is given for the steady state in Eq. (1). These
methods depend on Fourier‐Biot law of heat conduction [1, 3, 14]. Its modified equation forms
can be used for one‐dimensional steady heat flow across different sizes, such as plate, cylinder,
and sphere.

For the shapes in cylinder forms, radial heat‐flow steady‐state methods are observed. The
specimen completely encloses the heating source in this method, eliminating end losses. The
lateral effects are assumed to be insignificant either because the ratio of length to diameter of
the test apparatus is large or because guard heaters are used. It is assumed that the surface of
the central heater at a diameter r1 and the outer specimen surface at diameter r2 reach the same
temperature after the steady state is established. The thermal conductivity can be determined
based on “the heating power, the length of the cylinder, the temperature differential between
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two internally located sensors, and their radial position” [16]. Because of practical application
difficulties, the cylinder (and sphere) method is not popular. Nevertheless, this method is
applied and used to measure thermal conductivity using the cylinder shape method.

The guarded hot‐plate method under a vacuum is based on an absolute measurement method
for research and therefore requires no calibration standards. Furthermore, this can be seen as
an absolute measurement, regardless of vacuum conditions. The plate system is placed in a
vacuum medium. The measurements can be carried out under a vacuum as well as under
atmospheric or defined pressure levels. The system requires a symmetry and two specimens
for each test. With a guarded heater and/or thermal insulation, a relative uncertainty of 2% for
thermal conductivity measurements of can be achieved. Each plate and the guard ring/heater
are connected to a separate control system with temperature sensor(s) and an assigned power
supply.

The guarded hot‐plate and cylinder method exemplify a measurement principle that has been
optimized for different ranges of thermal conductivity. The guarded hot‐plate method can be
used to test the thermal properties of nonmetals such as thermal insulation materials, polymers
glasses, and ceramics, as well as liquids and gases in the temperature range between about 80
and 800 K [7]. The thermal conductivities of metals (approximately up to 500 W/(m K) in a
temperature range between about 4 and 1000 K) can be tested via the cylinder method of
employing axial heat flow. The GHP method is appropriate for these kinds of metal because
the determination of the temperature difference is the main challenge when measuring
materials with high thermal conductivity (e.g., metals). In these kinds of tests, the contact
resistances between the specimen and the heater or the cold plate must be considered [7].

2.2. Heat‐flow meters

The use of heat‐flow meters is based on substantially the same principles as other measurement
techniques, but it is not identical to them [13, 17, 18]. The main disadvantage of the guarded
hot‐plate methods is that they are very time consuming, as stated above. In contrast, heat‐flow
meters are accurate and fast apparatuses, and the operation of these apparatuses is easy for
measuring the thermal conductivity of low‐conductivity materials [2]. The method is based on
the improvement in accuracy and speed of the measurement. The maximum temperature
limits are approximately 200°C for the heat‐flow meter method [7] and about 100°C in practical
applications [2].

The heat‐flow meter is described in various standards for tests. The heat‐flow meter design
resembles to setup of the single‐specimen guarded hot‐plate apparatus. The basic idea of the
heat‐flow meter is deducing the heat flux based on the measurement of a drop in temperature
throughout a thermal resistor. The way for heat flux measurement is carried out either by using
a certified well‐known reference specimen or a heat flux sensor.

The specimen is placed between two plates held in different temperatures, with one being
heated and the other plate being cooled, as shown in Figure 3. Instead of using a main heater
as in the guarded hot‐plate method, heat flux transducers are used to measure the heat flow
through the specimen. The heat flux is determined in a current with the measurement of a
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voltage drop through an electrical resistor. Sensors provide an electrical output signal. The
measured signal and the change in thermovoltage is proportional to the drop in temperature
drop occurring throughout the plate.

Figure 3. Schematic design of heat‐flow meter basically.

Heat flux sensors are most often composed of a series of connections of thermocouples
spanning a thermal resistor, e.g., a thin ceramic or plastic plate [7]. A second heat flux is
occasionally applied at the cold plate is in order to measure radial heat loss and also to reduce
the time needed for the measurement. This reduction in time poses an advantage for this
method when measuring of insulation materials. The temperature of the plates is measured
and adjusted to the desired set point when reaching a constant value. Steady‐state conditions
occur when the amount of heat flux is equal at each point of the layered system. After thermal
equilibrium is established, the test is determined under the conditions. In order to calculate
thermal conductivity, the steady‐state temperatures, the specimen's thickness, the specimen's
metered area, and the heat flux input to the hot plate are used. The heat flux output is usually
calibrated with various reference standards, e.g., in a guarded hot‐plate apparatus.

Compared to the guarded hot‐plate method, which is an absolute method, the heat‐flow meter
method is comparative and thus can be considered to be a relative method. Insulation materials
and polymers (k < 0.3 W/(m K)) are usually tested via the heat‐flow meter method, and
sometimes it is used for glasses and ceramics and for other materials with thermal conductiv‐
ities lower than about 5 W/(m K) [7]. For insulation materials at about room temperature, the
measurement uncertainties are approximately 3%, and at high temperatures the uncertainties
are between 10 and 20% [7].

Steady‐state stability can be reached in short times, resulting in productivity gains. The stable
case, however, is valuable for providing repeatability, the long‐term consistency of a specimen.

2.3. Direct heating method

Two disadvantages of steady‐state methods are the lengthy time requirements and the
difficulty of determining heat loss, especially at high temperatures. These disadvantages can
be overcome by the direct heating method, which can be used for electrically conductive
materials such as metals.
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The specimen, such as a wire, pipe, or rod, is placed in a vacuum chamber, clamped between
two heat sinks cooled by liquid, and the specimen is heated up to temperatures in the range
of 300–4000 K [7]. Figure 4(a) portrays the schematic of the design of the direct heating method.
Voltage drops and temperatures are measured: in the middle of the rod and on each end of
the rod. From these three measurements obtained in the direct heating method, the thermal
conductivity and the specific electric resistivity k is given as [7]

( )
( )
-

=
é ù- +ë û

h

h

V VV Ak  
I l T T T

2
3 1

2 1 34 2
(2)

where l and A are the length and cross‐sectional area of the specimen. Ih and Vh are heating
current and voltage drop.

2.4. Pipe method

The pipe method takes advantage of a radial heat flow in a cylindrical specimen. A core heater,
which is a tube, rod, or wire, is inserted into the central axis of the pipe‐shaped specimen. There
are heaters at both ends of the specimen. The combination of the specimen and heaters is
surrounded by thermal insulation and then a water jacket or a liquid‐cooled heat sink.
Figure 4(b) shows the schematic and components of the pipe method. End guard heaters can
be used to minimize axial heat loss, and also increasing the specimen's ratio of length to

Figure 4. (a) The schematic design of the direct heating method [7], (b) the schematic design of the pipe method.
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diameter can achieve the same purpose. The thermal conductivity is obtained by measuring
the radial heat flow ϕ [7]:

( )
( )

f
=

-

ln d d
k           

π T T
2 1

1 2

/
2

(3)

This technique has been modified for use with a variety of solids, ranging from insulation
materials (20 mW/(m K)) to metals (200 W/(m K)) and evaluating for temperatures between
room temperature and 2770 K [7]. This technique can be modified to collect data over time for
the simultaneous measurement of thermal conductivity and thermal diffusivity, and these
kinds of transient methods are gaining increased interest.

Advantages of the steady‐state methods to other methods are as follows:

• simple mathematical expression,

• absolute and primary method for low conductivity specimens,

• acceptable time consumption,

• partially suitable for powdered, granular, or solid forms,

• uncertainties of 1–2% for insulations near room temperatures,

• acceptable small test specimens (except for concentric sphere).

Disadvantages of the steady‐state methods to other methods are as follows:

• complexity of the apparatus giving high accuracy,

• uncertainties of 10% or higher to the conditions,

• time consuming,

• immeasurable error due to contact resistance,

• difficulty of measuring geometrically shaped specimens (concentric cylinder or concentric
sphere),

• heat losses from especially in parallel plate and concentric cylinder methods,

• difficulty of measurement of heat‐flow value for two specimens,

• use error of specimens containing moisture.

3. Transient methods

The advantages of transient methods are mainly distinguished by the short amount time
needed, so that various thermal values can be determined in the measurement process.
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Therefore, this method is based on a signal measurement and an acceptably small temperature
differential. The transient technique is measured by evaluating the feedback response after a
signal is transmitted to the specimen for heat generation in the specimen. Therefore, test time
is obtained in a few minutes or a subsecond time intervals for transient methods. This method
is also more appropriate for high moisture content materials because of the signal and response
in the specimen. In many cases, it is possible to replace the temperature measurements at two
opposite surfaces with a measurement as a function of time at only one position on the
specimen [7].

Among transient methods, the hot‐wire and the laser flash methods are commonly used for
measuring the thermal conductivity of different materials provided in Table 1. A modification
of the hot‐wire method is the hot‐strip or disk technique, which can be applied to solid
nonelectrically conducting materials in order to measure the thermal diffusivity and conduc‐
tivity [12].

3.1. Hot‐wire method

This method is a transient technique based on recording the rise in temperature at a defined
distance from the heat source. The hot‐wire technique is a good method to determine the
thermal conductivity of liquids. In the hot‐wire method, the specimen preparation is simplified
by the use of a heat source, except in the case of solids. When solids are being tested, the wire
is situated between two equally sized homogeneous specimens, as shown in Figure 5. The hot
wire is embedded in small channels, because it is important to ensure sufficiently low contact
resistance between solid specimens and the heating wire [7]. For this reason, the hot‐wire
method is avoided in favor of an increasingly popular variation, the hot‐strip method, which
is used for measurements on solids.

Figure 5. The schematic principle and the design of the hot wire.
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In the standard transient hot‐wire technique (Figure 5), the wire system (often made of
platinum) is recorded as two functions of a temperature sensor and heater [7]. One modifica‐
tion of this technique is the probe method, which uses a probe instead of a wire. This probe
configuration is useful whenever the specimen conductivity is calculated based on the
response of a probe inserted into the specimen. A similar theory underlies both the non‐steady‐
state line heat source (hot wire) method and the probe method for the measurement of thermal
conductivity. Both methods are practical for measuring the thermal conductivity of “biological
materials, insulations, rocks, ceramics, foods, soils, and glass over a wide range of tempera‐
tures” [9]. Thus, the probe method is applied to low‐conductivity materials in powder or
semirigid form. A closely controlled furnace is used to produce the base temperatures for the
tests of the thermal properties of the specimen, soils, in situ [10].

Thermal conductivity is calculated by comparing the plot of the wire temperature versus the
logarithm of time, as long as density and capacity are given or measured. The hot‐wire method
is also capable of measuring the thermal conductivity of gases as well as refractories, such as
insulating bricks, fibrous, or powder materials [10]. The technique can be adapted for meas‐
uring the properties of liquids and plastics of relatively low thermal conductivity [8]. It is
practical for foams, fluids, and melted plastics, but it is impractical for solids [5].

The probe containing the heater and the thermocouple measures instantaneous changes in
temperature. Once a predetermined amount of current travels through the heater for a limited
period of time, the temperature change of the heater's surface is determined in a characteristic
form. After the heat begins to flow from the probe to the specimen side, it reaches the outer
surface of the specimen side. When the rise slows down or stops altogether due to heat losses
into the environment, the rate of rise with time becomes constant. The thermal conductivity
can be calculated based on the linear portion of the temperature versus time curve [8].

The thermal conductivity of the line heat source or probe methods is determined as in Ref. [19].
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neglecting convection and radiation heat losses. Where q is the heat flow per unit length of the
source and ln(C) = 0.5772 is Euler's constant. r is the wire radius and α is the sample thermal
diffusivity. Thus, the thermal conductivity can be calculated based on the temperature rise at
two different times (or the slope of the temperature rise compared to the logarithm of time)
and from the strength of the heat source [16].

The use of a stabilized electrical power supply ensures that the heat source produces a constant
output. In order to eliminate the interference of axial conduction via the large‐diameter current
supply, leads are connected to the ends of the hot wire, and also two hot wires of differing
lengths are utilized in a differential mode [7]. The other variations of the hot‐wire method are
the cross wire and the parallel‐wire techniques. In the parallel technique, the heater and
temperature sensor are separated from each other. In the cross‐wire technique, the heating
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wire is in contact with the thermocouple [20]. The parallel‐wire method is advantageous when
applied to anisotropic materials and for materials in the magnitude of a thermal conductivity
above 2 W/(m K) [20]. The parallel‐wire technique can be used for thermal conductivities below
20 W/m K. The cross‐wire technique can be used to measure thermal conductivities below 2
W/m K [2].

Another use of the method is a steady‐state pipe method having a cylindrical specimen
geometry and containing radial heat‐flow measurements [7, 21, 22]. This technique is consid‐
ered to be a transient radial flow technique, so isotropic specimens are required. Although the
pipe method has the disadvantage of deviations from the radial symmetric temperature field
with respect to the wire method, adequate mathematical model and evaluation procedure can
compensate for this disadvantage [7, 23, 24].

3.2. Hot‐disk method

The transient plane source (TPS) technique is a recent development of the hot‐strip method. It
is also known as the Gustafsson probe or the hot‐disk method. The technique is designed to
measure both thermal conductivity and thermal diffusivity. The advantage of transient
technique to steady‐state technique is that the effect of the contact resistance is eliminated in
the analysis. This method ensures accurate measurements over a thermal conductivity range
from 0.005 to 500 W/(m K) over temperatures from 30 to 1200 K [25]. The TPS technique is used
for measuring the thermal conductivity of insulation materials and electrically conducting
materials [12]. The main advantages of the hot‐disk measurement are that it produces results
quickly (usually in under 10 min), and that different sensor sizes can be used to accommodate
different specimen types. Furthermore, the hot disk requires using specimen sizes that are
usually much smaller than those used in other techniques [12].

The hot‐strip method is very similar to the hot‐wire technique with the exception of an
extended strip. The strip is a metal foil between two specimens or a thin metal film on the
surface of a plane specimen. Materials studied so far with this system include metals, alloys,
ceramics including high conducting ceramics like Aluminium nitride (AlN), high critical
temperature materials, minerals, polymers, composites, glass, fabrics, paper, glass wool, foam,
powder, biomaterial, and liquids, as well as materials with anisotropic thermal properties [25].

The hot‐disk method utilizes a sensor in the shape of a double spiral of nickel covered material.
The TPS sensor consists of a number of concentric circles that are made into a double spiral so
that the current will travel from one end to the other. A thin polymer coating material is used
as electrical insulation and sensor protection on the spiral. The coating materials are most
commonly Kapton for measuring temperature ranges between 30 and 450 K, Mica for higher
temperatures of up to 1200 K [25], and Teflon. The sensor acts as both a heat source and a
thermometer. The source and the thermometer are used to determine the changes in the
temperature of the specimen and the increase in the time‐dependent temperature, respectively.
The sensor is sandwiched between two pieces of the specimen, as shown in Figure 6. During
testing, a current travels through the nickel spiral and causes an increase in temperature. The
generated heat dissipates throughout the specimen on either side. By comparing the temper‐
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ature versus the time response in the sensor, thermal conductivity or diffusivity can be
calculated accurately [26, 27].

Figure 6. The schematic and principle of the hot disk.

The hot‐wire and guarded hot‐plate techniques considerably require both larger specimens
and a precisely known thickness. While the guarded hot‐plate method is a time‐consuming
method for requiring a temperature gradient across the specimen, the hot‐disk method
provides instant and direct measurement and the reading is obtained in a short amount of
time. In contrast, the guarded hot plate is inherently subject to error due to contact resistance
between the thermocouple and the specimen surface. Even at different conductivity levels, a
negative influence is unavoidable with the guarded hot‐plate method. The hot‐disk method,
on the other hand, only gathers data regarding from heat diffusion in material for its calcula‐
tions [26]. As a result, the test procedure of the steady‐state method (i.e., the guarded hot plate)
is superior to the hot‐wire method for testing nonisotropic materials despite the long duration
of those steady‐state measurements, the higher costs of the steady‐state apparatus due to the
high reliability in the entire temperature range investigated [28]. It is also in the agreement
between the thermal measurements and practical application of insulations [28]. Thus, the hot‐
wire method should not be employed for determining the thermal conductivity of nonisotropic
materials (fiber mats), for which this method is totally ineffective in ranges with a low
extinction coefficient, i.e., low bulk densities [28]. On the other hand, one study of the isotropic
materials demonstrated that the transient hot‐wire method proved to be most dependable due
its high reliability and low amount of effort, time, and cost required [28]. For glass fiber, the
measured conductivities by hot‐disk analyzer are 20 and 12% higher than the claimed values
for the lower and higher densities, respectively [12]. For the lower density, the conductivity
determined for the rock wool with the hot‐disk method harmonizes with the claimed value;
the measured value is 8% higher than the claimed conductivity for the higher density [12]. The
TPS technique can be used to study liquids, solids, pastes, and powders (electrically conduct‐
ing or insulating). The TPS technique can provide the values without the interference of
thermal contact resistance, without prolonged measurement times, and without extensive
specimen preparation [26].
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3.3. Laser flash method

The laser flash method is the most commonly used method for ascertaining the thermal
properties of solids. The method can investigate to properties of glasses, metals, and ceramics
without significant limitations due to uncertainties of the achievable measurement [7]. The
property can be measured in a temperature range between −100 and about 3000°C.

In this method, the thermal diffusivity α is determined, and if given the specific heat capacity
and the density of a material, the thermal conductivity can be calculated by using the following
equation (Eq. (6)) under adiabatic conditions:

= ® =
p

2

1/ 2

d kα 0.138 α ρct (5)

An instantaneous heat pulse is generated by the laser energy. The thermal diffusivity is
calculated based on the thickness d of the specimen (typically 2 mm) and the time t1/2 [20]. This
value represents the time required for the back side surface temperature to reach a value equal
to half its maximum value.

In the method, a laser pulse is send to the front side of a specimen, and the temperature change
on the back side is measured. The method is conducted through heating a specimen with a
short laser pulse of 1 ms width on the front side of the specimen. The temperature increase at
its rear side is measured and determined. Figure 7 shows the schematic and the principle of
the method.

Figure 7. The schematic and principle of the laser flash method [2].

There have been several developments in the method since its introduction by Parker et al.
(1961) [29]. The some modifications have been developed to determine directly the thermal
conductivity by performing measurement of the specific heat capacity.

The laser flash method has the advantage of involving neither temperature nor heat-flow
measurements for the determination of a thermal property. The measurement of the thermal
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diffusivity is calculated based on the relative temperature change as a function of time only.
The main result of this fact is that even at high temperatures the relative measurement
uncertainties in the 3–5% range can be achieved [30–32].

3.4. The 3‐ω method

The method called the 3‐ω method is commonly used for measuring the thermal conductivity
of thin films and solid materials. The range of thermal conductivity is changed of 0.20–20
W/(m K), and the range can be extended to 77– 900 K in literature. The method is a similar
method to that of the hot wire. While the hot‐wire method is a time domain transient technique,
the 3‐ω method has the advantage of being time independent because it measures electrical
signals in a specific frequency domain [33]. An AC current with frequency ω of angular
modulation is passed through the wire [34]. The wire is used simultaneously as a heater and
a thermometer. The heat generated by this process diffuses into the specimen. Since the
electrical resistance of the metal heater is proportional (linear) to the temperature, the tem‐
perature oscillation can be measured indirectly by measuring the associated 3ω voltage [34].
Because the current is driven at a frequency ω and the resistance changes at a frequency 2ω, a
voltage at 3ω results [34]. In this method, a thin electrically conductive wire is patterned on
the specimen, as shown in Figure 8 [35].

Figure 8. The schematic of the 3‐ω method for thin film [35].

Both basic mechanisms generally affect in‐plane (x) and cross‐plane (z) transport differently,
so that the thermal conductivity of related materials is usually anisotropic. The method
measures the average thermal conductivity in the in‐plane and cross‐plane directions. The
combination between the heater wire width and the thin film thickness determines the
measurement sensitivity according to the in‐plane and cross‐plane thermal properties of the
film [16].

3.5. Fitch method

The Fitch method developed by Fitch is used to measure the materials of low thermal con‐
ductivity by using a plane source of heat. This method consists of two components: a heat
source and a heat receiver. The heat source is a vessel filled with a constant temperature liquid
that functions as a sink. The heat receiver is a sink in the form of a copper plug insulated all
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sides but the one facing the vessel [36]. The roles of the heat source and the heat receiver can
be changed if the vessel is at a temperature lower than that of the copper block. The specimen
is interposed between the vessel and the open face of the plug. The sample is firstly in thermal
equilibrium with the copper block as shown in Figure 9. The vessel is brought into contact
with the specimen under a temperature differential. The temperature history of the copper
block and the temperature of the bottom of the vessel are measured by thermocouples. It is
assumed to have a uniform temperature distribution. A change of time and the temperature
are measured, and the thermal conductivity of specimen is calculated using the following
equation [37]:

Figure 9. The schematic of the Fitch method [37].
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where cpc, ∆x, and A are the heat capacity of the copper block, and the thickness and heat transfer
area of the specimen. The heat transfer from the copper block to insulation, the heat storage in
the specimen, and the surface contact resistance are assumed to be negligible under a linear
temperature profile.

This method is generally used for measuring the conductivity of foods and specially small‐
sized specimens. But the Fitch method is not practical for use at high temperatures. In this
method, either a line heat source or one or more heat sources are used [16].
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3.6. Photothermal methods

The principle of this method is based on ascertaining the light‐induced change in the thermal
state of a material in solid, liquid, or gaseous state. After the light is absorbed by a specimen,
the changes in temperature, pressure, or density are determined and measured. There are
methods in which the specimen is placed in contact with and without the detection system [7].

Measuring the thermal diffusivity measurement via the photothermal method is based on the
concept of modulating between the heating of a specimen surface and the temperature phase
on the opposite sides of the specimen and includes a frequency function. This technique can
be modified by having both surfaces heated simultaneously with a single modulation fre‐
quency and taking a measurement of the phase difference between surface signals [20]. The
schematic principle of a photoacoustic method is also provided in Reference [38].

4. Standards for thermal insulation measurement

Every measurement of insulation materials has a definition, a standard, and a test realization.
The tests are determined by means of experiments for the definition as closely as possible. The
experiments are usually performed by standards. When the test realization is obtained, the
measurement devices provide its property value. The national and international laboratories
use various standards associated with insulation materials. The standards’ representation is a
main standard to which other representations are compared. The international standards to
general methods are listed as follows:

• ASTM C177/C177‐13, standard test method for steady‐state heat flux measurements and
thermal transmission properties by means of the guarded‐hot‐plate apparatus.

• ASTM C518/C518‐10/C518‐15, standard test method for steady‐state thermal transmission
properties by means of the heat‐flow meter apparatus.

• ASTM C335/335‐10e1, standard test method for steady‐state heat transfer properties of pipe
ınsulation.

• ASTM C653‐97(2012), standard guide for determination of the thermal resistance of low‐
density blanket‐type mineral fiber insulation.

• ASTM C680‐14, standard practice for estimate of the heat gain or loss and the surface
temperatures of insulated flat, cylindrical, and spherical systems by use of computer
programs.

• ASTM C687‐12, standard practice for determination of thermal resistance of loose‐fill
building ınsulation.

• ASTM C1303/C1303M‐15, standard test method for predicting long‐term thermal resistance
of closed‐cell foam ınsulation.

• ASTM C1114‐06(2013), standard test method for steady‐state thermal transmission proper‐
ties by means of the thin‐heater apparatus.
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• ASTM C1363/C1363‐05/ C1363‐11, standard test method for thermal performance of
building materials and envelope assemblies by means of a hot box apparatus.

• ASTM C1667‐15, standard test method for using heat‐flow meter apparatus to measure the
center‐of‐panel thermal transmission properties of vacuum insulation panels.

• ASTM C1696‐14ae1, standard guide for industrial thermal insulation systems.

• ASTM C1774‐13, standard guide for thermal performance testing of cryogenic insulation
systems.

• ASTM D5470‐06, standard test method for thermal transmission properties of thermally
conductive electrical insulation materials.

• ASTM E1225‐09/E1225‐13, standard test method for thermal conductivity of solids by means
of the guarded‐comparative‐longitudinal heat‐flow technique.

• ASTM E1530‐06/E1530‐11, standard test method for evaluating the resistance to thermal
transmission of materials by the guarded heat‐flow meter technique.

• ASTM F433‐02 (2009, 2014), standard practice for evaluating thermal conductivity of gasket
materials

• ASTM D5334‐08, standard test method for determination of thermal conductivity of soil and
soft rock by thermal needle probe procedure.

• DIN EN 12667/12939, European standard for measurements of insulating materials using
the heat‐flow meter method or the guarded hot‐plate technique.

• DIN EN 13163, European Standard for characterization of foam insulations for building
applications using the heat‐flow meter method or the guarded hot‐plate technique.

• ISO 8301/8302, thermal insulation—determination of steady‐state thermal resistance and
related properties—heat‐flow meter/guarded hot‐plate apparatus.

• ISO 8894‐1 (EN 993‐14), refractory materials—determination of thermal conductivity—Part
1: hot‐wire methods (cross‐array and resistance thermometer).

• ISO 8894‐2 (EN 993‐15), refractory materials—determination of thermal conductivity—Part
2: hot‐wire method (parallel)

• ASTM C1113/C1113M‐09 (2013), standard test method for thermal conductivity of refrac‐
tories by hot wire (platinum resistance thermometer technique).

The problem of determining the thermal conductivity of insulation material as a porous
medium has been investigated by researchers. The literature contains a large number of
standard models for predicting the thermal conductivities of homogeneous, heterogeneous,
or composite materials materials [39], as well as methods of a measurement apparatus
designed [40]. These models are largely dependent on mathematical models derived from the
physical laws that govern the process (e.g., mass and energy balances, thermodynamics, etc.).
The literature also present an experimental evaluation of the models and a comparison analysis
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of the existing experimental methods. Several researchers have proposed a number of models
derived from a set of equations, usually based on a basic model, but many of these include
empirical parameters [1]. The difference of thermal conductivity values between models and
methods can be considered due to the lack of structural data. The structures include nonho‐
mogeneity/homogeneity, the components, the differences in the direction of components, the
condensation/evaporation of a liquid phase, the contact mechanism, the size and shape of
particles/pores, the tortuosity of pores, mixed phases, shape factor, contact, orientation,thick‐
ness, reinforcement etc. [39, 41, 42].

Many thermal conductivity models found in the literature are based on one or more basic
structural models, such as the series and parallel models, the geometric mean model, Maxwell
models (different forms) and effective medium theory (EMT) models, and the Russell Model
[39]. The choice of thermal conductivity models is generally discussed separately in the
literature for each of these classes [39]. A detailed description for a bulk material with a porous
medium can be expressed in terms of “ancestor,” “extra parameter,” “component knowledge,”
and “heat transfer mechanisms” in various models [39]. Similar models are given in different
forms and replace the other components instead of a component parameter. It has not been
possible to know which expression is the most accurate for describing the thermal conductivity
even in every model of two‐phase components/mixes. Therefore, there is no single model or
prediction procedure to be considered that is universally applicable. In most modeling
exercises, the prediction of thermal conductivity also involves a trade‐off between simplicity
and accuracy. The accuracy of predicted thermal conductivities cannot be reasonably expected
to be better than 5% [39–41]. Several models that have been proposed are created specifically
for a particular material and contain material‐content properties [39].The models need to be
revised by clear parameters, particularly with respect to parameters in models (such as thermal
conductivities, porosity, or volume fractions ratio of phases). It is concluded that, instead of
new relations, the use of present mathematical relations with finite errors for specific materials
and at specific intervals is important.

5. Conclusion

The present chapter presents a comprehensive overview of the research progress on the
measurement methods of the thermal conductivity of materials. This study discusses the
effectiveness of various methods for measuring the conductivity of insulation materials. The
models show similarities and differences depending on whether it is a steady state. Some
methods are similar or derivative methods regardless of whether the thermal conductivity
model being used is similar. The first major conclusion that can be drawn is that these methods
may not be applicable for all materials.

Thermal conductivity methods are broadly classified as either steady‐state methods or
transient methods. In principle, these methods are based on establishing a steady temperature
and a signal gradient over a sample. The techniques measure a response as a signal or a
temperature given in the sample. Therefore, these techniques are differentiated mainly
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concerning a range of thermal conductivities, a range of material types, a measurement time,
a measurement accuracy, a specimen type, and a temperature range. Estimating low thermal
conductivity may be determined with adjustable parameters in these methods.

There are various methods for determining thermal conductivity of insulation materials. The
preferable methods are commonly the guarded hot‐plate method, the heat‐flow method, and
then can be given by the hot wire/disk, laser flash methods. Under the condition of anisotropic
and isotropic type, some methods are in good agreement with the claimed values. The thermal
conductivity value from the method is higher or lower than the value from other methods,
depending on the relationships between the heat loss distribution, the surface temperatures,
the uniform heat flow over the material, and the signal and its response. However, the methods
must be carefully selected according to the materials, such as nonisotropic materials, and the
measurement times before applying the methods. It is concluded that choosing methods to
use with finite errors for specific structures and at specific intervals is important. This point
can provide an effective way and the accuracy and suitability of a variety of methods for users,
manufacturers, and researchers in this field.

Many theoretical models, as well as methods, have been proposed by various researchers. The
models are based on one or more basic structural models, such as the series and parallel models,
the geometric mean model, Maxwell models (different forms), effective medium theory (EMT)
models, and the Russell model. The models may not seem to be a clear explanation of the
interior structure and behavior of porous materials. The second major conclusion that can be
drawn from the studies is that in the future researchers need to standardize methods for
insulators or conductors and for thermal conductivity values.
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