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Abstract

This chapter describes an approach to improve the feature initialization process in the
delayed inverse-depth feature initialization monocular Simultaneous Localisation and
Mapping  (SLAM),  using  data  provided  by  a  robot’s  camera  plus  an  additional
monocular sensor deployed in the headwear of the human component in a human-
robot collaborative exploratory team. The robot and the human deploy a set of sensors
that once combined provides the data required to localize the secondary camera worn
by  the  human.  The  approach  and  its  implementation  are  described  along  with
experimental results demonstrating its performance. A discussion on the usual sensors
within the robotics field, especially in SLAM, provides background to the advantages
and capabilities of the system implemented in this research.

Keywords: mapping and localization, sensors, visual odometry, HRI, features initiali‐
zation

1. Introduction

A great deal of the investigation done in the field of robotics is addressed to the Simultane‐
ous  Localisation and Mapping (SLAM) problem [1,  2].  The SLAM problem is  generally
described as that of a robot—or robotic device with exteroceptive sensor/s—which explores
an unknown environment, performing two different tasks at the same time: It builds a map
with the observations obtained through the exteroceptive sensor/s [3] and localizes itself into
the map during the exploration, thus knowing the position and trajectory.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The works defining the origin of the field can be traced to Smith and Cheeseman [4], Smith et
al. [5], and Durrant-Whyte [6], which established how to describe the relationships between
landmarks while accounting for the geometric uncertainty through statistical methods. These
eventually led to the breakthrough represented in Smith’s work. In such a research, the
problem was presented for the first time as a combined problem with a joint state composed
of the robot pose and the landmark estimations. These landmarks were considered correlated
due to the common estimation error on the robot pose. That work would lead to several works
and studies, being [7] the first work to popularize the structure and acronym of SLAM as
known today.

The problem related with SLAM techniques is considered of capital importance given that a
solution to it is required to allow an autonomous robot to be deployed in an unknown
environment and operate without human assistance. But there is a growing field of robotics
research that deals with the interaction of human and robotic devices [8]. Thus, there are several
applications of robotic mapping and navigation that include the human as an actor. The basic
application would be the exploration of an environment by a human, but mapped through a
robotic platform [9]. Other works deal with more complex applications, such as mapping the
trajectory of a group of humans and robots during the exploration of an environment and
coordinating them with the help of radio frequency identification (RFID) tags [10]. Another
application gaining weight is the use of SLAM to allow assistance robots to learn environments,
improving the usability of the device [11].

All these approaches solve some kind of SLAM problem variant where the human factor is
present: to assist, to track, to navigate, etc. But none uses data captured by human senses. There
are works that deal with the mapping of human-produced data into map generated by a robot,
but these data are not used in the map estimation process, but ‘tagged’ to it. So currently, no
approach uses the data from human into the solution to the SLAM problem. This is a waste of
useful resources, given the power of the human sight, still superior in terms of image proc‐
essing to the most advanced techniques which are increasingly adopting the strategies
discovered by scientists, but designed and adopted by human evolution millennia ago.

So, in this chapter, we will discuss about the monocular SLAM problem in the context of
human-robot interaction (HRI), with comments on available sensors and technologies, and
different SLAM techniques. To conclude the chapter, a SLAM methodology where a human
is part of a virtual sensor is described. His/her exploration of the environment will provide
data to be fused with that of a conventional monocular sensor. These fused data will be used
to solve several challenges in a given delayed monocular SLAM framework [12, 13], employing
the human as part of a sensor in a robot–human collaborative entity, as was first described in
authors’ previous work [14].

2. Sensors in the SLAM problem

In robotic systems, all relations between the system and the physical environment are
performed through transducers. Transducers are the devices responsible for converting one

Recent Advances in Robotic Systems88



kind of energy into another. There are basically 2 broad types of transducers: sensors and
actuators. Actuators use energy from the robotic system to produce physical effects, such
as forces and displacements, sound, and lightning. Sensors are the transducers responsible
for sensing and measuring by way of the energy conversion they perform: turning the
energy received into signals (usually of electrical nature), which can be coded into useful
information.

The sensors used in SLAM, just like in any other fields of robotics, can be classified according
to several criteria. From a theoretical point of view, one of the most meaningful classifications
is that if the sensor is of proprioceptive or exteroceptive nature. Proprioceptive (i.e., ‘sense of
self’) sensors are generally responsible for measuring values internal to the robot system, like
the position of a joint, the remaining battery charge, or a given internal temperature. On the
other side, exteroceptive sensors measure different characteristics and aspects of the environ‐
ment, normally with respect to the sensor itself.

The encoders are proprioceptive sensors, responsible for measuring the position or move‐
ment of a given joint. Although there are linear encoders, only the rotary encoders are
frequently used in the SLAM problem [15]. These encoders can measure directly the position
of the rotary axis, in terms of position if they are ‘absolute encoders’ or in terms of
movement for the ‘incremental encoders’. Their great accuracy when measuring rotation
allows computing the exact distance traveled by a wheel, assuming that its radius is known.
Still they present several problems related to the nature of how they measure: The de‐
rived odometers assume that all the movement against the wheel surface is transformed
into rotation at a constant and exact rate, which is false in many circumstances. This makes
them vulnerable to irregular and dirty surfaces. As a proprioceptive sensor, with no exterior
feedback, the error of a pure odometry-based SLAM approach will grow unbound, suffering
the drift due to dead reckoning.

Range finders are exteroceptive sensors which measure distances between them and any point
in the environment. They use a variety of active methods to measure distance, sending out
sound, light, or radio waves and listening to the receiving waves. Generally, these are known
as sonar, laser range finders (LRF), or radar systems. The devices destined to robotics appli‐
cations generally perform scans, where a set of measurements is performed concurrently or
over such a short time that they are considered all simultaneously. When scans are performed,
each sub-measurement in a set is usually paired with bearing data, to note the relation between
the different simultaneous measurements, generally performed in and arc.

Sonar systems use sound propagation through the medium to determine distances [16]. Active
sonar creates a pulse of sound (a ping) and listens to its reflections (echoes). The time of the
transmission of the pulse to its reception is measured and converted to distance by knowing
the speed of sound being a time-of-flight measurement. Laser rangefinders (LRF) [17] can work
on different principles, using time-of-flight measurements, interferometers, or the phase shift
method. As the laser rays are generally more focused compared to the other types of waves,
they tend to provide higher accuracy measurements. Radars [18] also employ electromagnetic
waves, using time-of-flight measures, frequency modulation, and the phased array method
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between others to produce the measurements. As they usually produce a repeated pulse at a
given frequency (RPF), they present both a maximum and minimum range of operation.

These sensors can have great accuracy given enough time (the trade-off between data density
and frequency is generally punishing), and as they capture the environment, they do not suffer
from dead reckoning effects. On the other side, the data they provide are just a set of distance
at given angles, so these data need to be interpreted and associated, requiring cloud matching
methodology (like iterative closest point, ICP, and other similar and derived ones), which is
computationally expensive. Besides, they have all their specific weaknesses: Sonar has limited
usefulness outside of the water given how sound works on the air; LRF are vulnerable to
ambient pollutants (dust, vapors) that may distort the lightning processes of the measurement;
radar has very good range but tends to be lacking in accuracy compared to the other range‐
finders.

The Global Positioning System (GPS) [19] is a proprioceptive sensor based on synchronizing
radio signal received from multiple satellites. With that information, it can compute the
coordinates and height position of the sensor on any point of the world with up to 10 m margin.
This 10 m margin grows rapidly if fewer satellites are visible (direct line of sight is required),
making it useless on closed environments, urban canyons, etc. Besides, the weakness to satellite
occlusion and wide error margin, the GPS presents other challenges, like a rather slow update
rate for most of the commercial solutions.

The inertial measurement unit (IMU) is a proprioceptive sensor that combines several sensing
components to produce estimations of the linear and angular velocities and the forces of the
device. They have generally linear and angular accelerometers, and sometimes they include
also gyroscopes and magnetometers, producing the sensory part of inertial navigation system
(INS). The INS includes a computing system to estimate the pose and velocities without
external references. The systems derived from the IMU have generally a good accuracy, but
they are vulnerable to drift when used in dead reckoning strategies due to their own biases.
The introduction on external reference can improve the accuracy, and thus, they are frequently
combined with GPS. Introducing other external references leads to the development of the
inertia-visual odometry field, which is closely related to the SLAM [20, 21]. Still, the accuracy
gain is limited by the nature of the exteroceptive sensor added (which keeps its own weak‐
nesses), and the IMU part of the system becomes unreliable in the presence of strong electro‐
magnetic fields.

Vision-based sensors are exteroceptive sensors which measure the environment through the
reflection of light on it, capturing a set of rays conformed as a matrix, thus producing images.
The most common visual sensor is the camera, which captures images of the environment
observed in a direction, similarly to the human eye. Still, there are many types of cameras,
depending on the technology which they are based, which light spectrum they capture, how
they convert measurement into information, etc. An standard camera can generally provide
color or grayscale information as an output at 25 frames per second (fps) or more, being
generally focused on the wavelength range visible by the human eye, and presenting that
information in a way pleasant to the human eye. But specific cameras can work with different
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frameworks as target, thus capturing other spectra not seen by human eye (IR, UV…),
producing vastly higher fps rates, etc.

One of the main weaknesses of cameras within the context of the SLAM problem is that they
produce only visual angular data: Each element of the matrix which composes an image shows
the visual appearance information about a projected point where a ray (which theoretically
can reach the infinite) finds an object. Thus, cameras alone cannot produce depth estimation
in a given instant. This can be solved by more specific sensors, like time-of-flight cameras.
These sensors generally have poorer resolutions, frame rate, dynamic range, and performance
overall, while being several orders of magnitude more expensive, which made them barely
used until few years ago.

There are other types of visual sensors that while still being cameras, they result more divergent
from the standard monocular cameras. A good example would be the works on multiple
camera stereo vision. Stereo cameras generally include two or more cameras and based on
epipolar geometry can find the depth of the elements on the environment. Omnidirectional
cameras expand the field of view, so that they can see almost all their surroundings at any
given time, vision, presenting several challenges of their own in terms of image mapping and
representation.

3. Classic only-bearing monocular SLAM approaches

There are many approaches to solve the SLAM problem, depending on the sensors available
and the mathematical models and procedures used. From particle filters [22] to sums of
Gaussian distributions, passing through the use of graph-based approaches [23] and RANSAC
methods [24], the SLAM problem has been treated using many different mathematical
techniques. Latest trends rely on bundle adjustment and other optimization methods [25, 26].
Still, one of the most commonly found approaches to the problem is using the extended Kalman
filter (EKF) [27, 28], treating it as an incremental estimation problem.

The general monocular EKF-SLAM procedure is based on detecting points of interest which
can be detected and distinguished from other robustly, introduce them into the map repre‐
sentation which is being built inside the filter, and track them through the sequence of frames,
estimating both their pose and the camera odometry. For each landmark, a patch of the image
around it, describing its ‘appearance’, is stored and will be used to identify it, and the landmark
itself is generally modeled through unified inverse depth parametrization [29], although other
model exists [30].

The estimation process is based on probabilistic filtering, where an initial prediction step
makes a prediction of the movement of the robot and so of the position of the camera. Data
from any sensors can be used; although in pure monocular SLAM methodologies, due to lack
of data, predicted motion is assumed to be described by Gaussian distributions [31]. Thus, a
constant velocity movement model is used, with random impulses of angular and linear
accelerations modeled as white noise. The prediction of the map is much simpler: As the
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landmarks or points of interest in the map are assumed to be part of the environment, the
hypothesis used is that they will remain static and so their position does not change.

After the prediction step, a conventional EKF-SLAM would produce an actual measure‐
ment from the sensors and compare them with the predicted measurements obtained through
the direct observation model. This step requires solving the data association problem, which
consists in matching the predicted measurements with the actual measurements from the
sensors. Given the computational cost of extracting all the possible points of interest at each
frame and matching them with those predicted points, and the issues produced by the
uncertainty of the prediction given that it is based on random movements, an active search
strategy is used to deal with the problems [32]. Under this strategy, the features in the map
are predicted into the pixel space using the direct observation model, and for each pixel, a
search is performed looking for the most similar point (according to the stored patch), using
zero-normalized cross-correlation (ZNCC). Ideally, each feature predicted will be matched
to a new pixel that is the same feature in the latest frame. This process can fail due to visual
artifacts, the geometry of the environment, the presence of dynamic objects, and several other
causes. So these pairs of points (namely, the feature predicted and the match found in the
latest frame) are checked through a data association validation methodology, in our case the
HOHCT [13].

Once the predicted landmarks and its associated pairing are found in image space, in pixel
coordinates, the innovation of the Kalman filter or residual can be computed following the
usual EKF methodology.

Although the iterative estimation of the map as an EKF is pretty straightforward, there is still
a critical process which defines many characteristics of any give monocular SLAM approach:
the feature initialization process. When using conventional point detector and descriptors, it
is frequent that several dozens or even hundreds of points will appear in an image, and most
of them will be ignored for the SLAM process—based on spatial distribution, position on
image, etc.—but still, no depth information is available in an instant way. Thus, two main
strategies exist to deal with this issue: Undelayed approaches try to ‘guess’ the value to
initialize the depth, normally relying on heuristics, while delayed approaches track a feature
over a time, until they have a good estimation of its depth and only then proceed to initialize
it.

These two types of strategies define many characteristics of the SLAM procedures. As
undelayed approaches try to use point features as landmarks just after have been seen, the
points are quickly introduced into the filter, accepting many outliers that have to be validated
later or rejected at the data association validation step [28, 31]. On the other side, delayed
approaches track and estimate the points before using them, so the used landmarks are
generally more stable and reliable with delayed initialization [33].

The delayed inverse-depth (DI-D) monocular SLAM is a delayed feature initialization
technique [12, 13]. The delay between a landmark being observed for the first time and being
initialized allows estimating the parallax achieved through the estimated odometry. This in
turn enables obtaining depth estimations for the landmarks through triangulation.
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4. Introducing the human component into monocular SLAM

The DI-D procedure, although it was shown to be a strong monocular EKF-SLAM methodol‐
ogy, still presents several features that reduces its usability and scalability, mainly the need
for an initialization process using synthetic or known a priori landmarks. These known
landmarks would help initially to produce the odometry estimation and thus are critical to
solve the scale problem of the map.

Shifting the monocular SLAM problem from an isolated sensor fusion point of view to a
component into a bigger human-robot collaborative effort allows considering new options.
Given the features of current exploratory robots, it is worth noting that an exploratory team
composed of robots and humans will outperform any robotic device. If the desired tasks
increase in complexity (emergency situations, those required management and decision under
high uncertainty), the advantage of a human-robot collaborative team increases dramatically.
Assuming that the human wears a headwear device with several sensors, the SLAM capabil‐
ities of the robot can be improved (Figure 1). Thus, the camera deployed in the helmet will be
used to obtain ‘instantaneous parallax’, thus achieving complete measurement when the
human is looking at the same direction as the robot, in a stereo-like situation, as it was initially
proposed and described in authors previous work [14].

Figure 1. DI-D monocular EKF-SLAM components within human-robot collaborative.

To achieve this, in addition to the new camera on the human (Ch) which will perform the depth
estimation with the robot camera (Cr), a combination of sensors and mechanisms able to
estimate the pose between the cameras should be deployed. From a software point of view,
the modules required to treat these data and estimate the pose, and those new which will deal
with the new depth estimation process, must be implemented. From the EKF-SLAM method‐
ology, the initialization of features is a local process that introduces the features into the EKF
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using the inverse-depth parametrization, which remains the same, but will require also using
a new inverse observation model that treats the whole system to estimate features as a single
complex sensory process.

4.1. Multiple monocular vision sensor array: pseudo-stereo vision

The weak points discussed before can be solved within a cooperative context exploiting data
from another monocular camera. Assuming that the Ch with known pose is near to the robotic
camera performing SLAM (Cr), joining observations from both cameras allow performing
stereo-like estimation when their fields of view overlap. This way, a new non-constant stereo
inverse-depth feature initialization approach will be used to address the issues.

Classical stereo approaches [34, 35] rely on epipolar geometry to create a calibrated camera rig
with multiple constraints. These constraints typically include that both cameras’ projection
planes lie in the same plane in world coordinates; this allows optimizing the correspondence
problem as the match on an image of another’s image pixel will lie in the corresponding
epipolar line, and rectification can turn them into straight lines parallel to the horizontal axis.
Several works have dealt with rectification of stereo images for unrestricted pose cameras both
calibrated [35] and uncalibrated [36].

Figure 2. Image pair sample captured at one experimental sequence.

Figure 3. Rectification of images left and right at Figure 2. Scale distortions are produced due to the multiple reprojec‐
tion operations.
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Fusiello et al. [35] detailed the first method to rectify stereo pairs with any given pairs of
calibrated cameras. The method is based on rotating the cameras until they have one of their
axis aligned to the baseline and forcing them to have their projective planes contained within
the same plane to achieve horizontal epipolar lines. Other works have proposed similar
approaches to rectifying stereo pairs assuming calibrated, uncalibrated, or even multiple view
[37, 38] stereo rigs. These approaches need to warp both images according to the rectification
found (see Figure 2 left and right and Figure 3) and, in some cases, producing great variations
in terms of orientation and scale (Figure 3), thus rendering them less attractive in terms of our
approach.

At any case, dealing with stereo features without rectified images is not a big problem in the
proposed approach. The process of stereo features search and matching will be done sparsely,
only to introduce new features: during the initialization, or when the filter needs new features.
For both cases, only a part of the image will be explored, and when adding new features in a
system already initialized, additional data from the monocular phase can be used to simplify
the process.

4.2. Scaled feature initialization with collaborative sensing

The requirement of metric scale initialization of the DI-D method can be avoided under the
assumption of a cooperative framework. Classical DI-D required the presence of a set of
known, easily identifiable features to estimate them initially through the PnP problem and
initiate the EKF with scale. Assuming that at the start of the exploration a cooperating, free
moving camera is near, the data from this camera can produce the features needed through
pseudo-stereo estimation. This process is shown in Figure 4, where, after the pose between the
robot camera and the human camera is known, the maximum distance from a camera where
a point with a given minimum parallax (plmin) could lie is found. This distance is employed to
build a model of the field of view of each camera, as a pair of pyramids, with each apex in the
optical center of a pinhole camera, and the base centered along the view axis. Then, it can be
guaranteed that any point with parallax—between cameras—equal or greater than plmin will
lie in the space intersected by the two fields of view modeled as pyramids, as seen in Figure
5. So the intersection between the different polygons composing the pyramids is computed as
a set of segments (two point tuples), as described by Algorithm 1. Once all the segments are
known, they are projected into the 2D projective space of each camera, and a search region is
adjusted around them, determining the regions of interest where the stereo correspondence
may be useful and significant.

In the interest regions found, SURF-based feature descriptors [39] are matched to produce new
stereo features to initialize in the EKF state vector when needed. SURF is chosen over SIFT and
FAST [39] due to the more convenient trade-off offered in terms of matching accuracy and
efficiency, and could be replaced by any other feature descriptor. Each pair of matched points
between cameras allows estimating the world coordinates of the landmark feature seen
through triangulation, back tracing the points on the images from the robot camera and the
human camera. Then, the landmarks found and fully measured (with real depth estimation)
are introduced in the monocular EKF according to the unified inverse depth parametrization.
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To take advantage from the computational effort made during the non-overlapping frames,
the landmarks that were being tracked to be initialized prior to the pseudo-stereo measurement
are given priority to be introduced; these landmarks are robust because they were tracked for
several frames previously.

Figure 4. Block diagram of the final implementation, with sensors on gray boxes and software processes on clear
blocks. The updated landmark initialization is one of the cornerstone processes in any feature-based EKF-SLAM tech‐
nique.

Figure 5. Graphical representation of the intersection of both cameras’ fields of view.
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ALGORITHM 1:

(rir, rih):= Find Stereo ROI (camr, camh, plmin)

begin

rir:= Ø; rih:= Ø

distance:= FindDistance (camr.pose, camh.pose)

PyramidDepth:= FindMaxDepth (distance, plmin)

Py1:= ModelFoV(camr,PyramidDepth)

Py2:= ModelFoV(camh,PyramidDepth)

intersection = Ø

for each polygon_i in Py1

  for each polygon_j in Py2

    segment := Intersect(polygon_i, polygon_j)

    intersection.add(segment)

  end for

end for

if ¬(intersection = Ø) then

  rir := Envelope (ProjectTo2D (camr.pose, intersection.points))

  rih := Envelope (ProjectTo2D (camh.pose, intersection.points))

end if

end

5. Experimentation and results

The approach described in this work was fully implemented and tested with real data. The DI-
D SLAM with pseudo-stereo feature initialization was programmed in MATLAB® to test and
evaluate it. Several sequences were captured in semi-structured environments using a robotic
platform and wearable headgear.

5.1. Experimental system implementation

The sequences were reduced to a resolution of 720 × 480 pixels and grayscale color,
shortening the computational effort for the image processing step. Each sequence corre‐
sponds to a collaborative exploration of the environment at low speed, including a human
and a robotic platform, each one equipped with the monocular sensors assumed earlier, Ch

and Cr, respectively. The data collected include monocular sequences, odometry from the
robot, estimation of the human pose with respect to the robot, and the orientation of the
camera Ch. During the sequences, the camera Cr whose sequence would be used for the
SLAM process was deployed looking forward, towards the advance direction. This kind of
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movements produces singularities in estimation, as the visual axis of the cameras is aligned
with the movement, producing ‘tunnel blindness’, where the elements near the centre of the
captured images produce negligible parallax, and thus, only variations in scale are percep‐
tible in short intervals.

The robot functions were performed by a robotic platform based on the Pioneer 3 AT (see
Figure 6). The platform runs a ROS distribution over an Ubuntu 14.04 OS. The platform is
equipped with a pair of laser range finders Leuze RS4-4 and a Logitech C920 webcam, able to
work up to 30 frames per second (fps) at a resolution of 1080p. The sensors worn by the human
are deployed on a helmet, including another Logitech webcam camera and an Xsens AHRS.
All the data have been captured and synchronized through ROS in the robotic platform
hardware. The ROS middleware provides the necessary tools to record and time-stamp the
data from the sensors connected to the platform.

Figure 6. The robotic platform (based on the Pioneer 3 AT) used to capture the data sequences to test the described
approach.

To estimate the pose of Ch, orientation data from the IMU are combined with the approximate
pose of the human, estimated with the range finders [17]. The final position of the camera is
computed geometrically as a translation from the estimated position of the Atlas and Axis
vertebrae (which allow most of the freedom of movement of the head). These vertebrae are
considered to be at a vertical axis over the person position estimated with the range finders,
with height modeled individually for each person. In this work, it is assumed that the envi‐
ronment is a flat terrain, easing the estimation process.

The pose of the camera Ch with respect to the Cr is not assumed to be perfectly known. Instead,
it is considered that a ‘noisy’ observation of the pose of Ch with respect to Cr is available by
means of the methodology described above. The inherent error to the observation process is
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modeled, assuming that the observation is corrupted by Gaussian noise. The value of the
parameters used to model the inaccuracies for computing the pose of Ch was obtained
statistically by comparing actual and estimated values. It is also important to note that an
alternate method could be used for computing the relative pose of Ch, for instance, using
different sensors.

5.2. Experiments and results

The introduction of an auxiliary monocular sensor which can provide non-constant stereo
information was proven useful. One of the weaknesses discussed earlier of the DI-D was the
need to set an initial metric scale through synthetic feature, which has been removed. This
grants more autonomy to the system, exploiting the implicit human–robot interaction without
enforcing utilization of artificial landmarks. Besides, as the metric scale initialization can
introduce more features into the initial state because it is not limited to the artificial landmark,
the scale propagates in a smoother way with reduced drift on the local scale.

5.2.1. Visual odometry accuracy and scaling

Figure 7 shows results for two sample trajectories, with and without the utilization of the
proposed non-constant stereo DI-D feature initialization approach, in blue and orange lines,
respectively. The trajectory on Figure 7 (left) was captured in an inner courtyard, with several
seats and trees. This trajectory ran for 19 m, with two 90° turns, on a semi-structured environ‐
ment with plenty of objects within view that could be mapped. On the other side, the trajectory
shown in Figure 7 (right) was capture as a straight 10 m movement in a blind alley with painted
walls with homogenously textured surfaces, reducing the chances to obtain robust features.
These two sequences contained plenty the most disadvantageous characteristics for monocular
SLAM: singular movements where parallax cannot be observed for the central region of the
camera, quick changes in orientation and turning velocities, surfaces/environments showing
low count of robust visual features, natural lightning and shadows, etc.

Figure 7. Trajectories estimated with classical DI-D monocular SLAM (orange plots) and with the new non-constant
stereo DI-D approach for feature initialization (blue plots). Green line denotes robot ground truth; gray line denotes Ch

ground truth.
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The introduction of the pseudo-stereo initialization of features enables initialization of features
with actual depth estimation instantly, without relying on heuristic or having a delay where
data are being processed but not used in the estimation. Each of these situations has strong
deterrents; for example, the heuristics used for depth initialization can vary between sequen‐
ces, or even different SLAM ‘runs’ of the same video sequence, accounting for the uncertainty
in the prediction model and the feature selection process. When a feature is initialized with a
delayed method after it has been seen, computational power is spent on estimating a landmark
that likely will not be used and never introduced into the EKF map.

At the end, the proposed approach made the system more resilient, especially to quick view
changes, such as turning, and long singular movements—front advance. These movements
can be seen in Figure 7, left and right, respectively. During close turns, delayed monocular
SLAM approaches have very little time to initialize features because the environment changes
quickly and the features are observed for short periods. This produces a decrease in the number
of initialized features that decreases the odometry estimation accuracy. At the end of the run,
the uncertainty becomes so big that errors cannot be corrected, the EKF loses convergences,
and the estimation process results become useless. Figure 7 (left) shows how the two turns can
greatly degrade the orientation estimation for a classic delayed SLAM method, while the
proposed approach can track the turns much more closely, with less than half the error. On
the other side, Figure 7 (right) illustrates the issues of singular movements: The odometry scale
is very hard to estimate for pure monocular methods, because features present reduced
parallax. Not only the length of the trajectory is affected by this phenomenon, but the accuracy
of the orientation estimation also becomes compromised due to the inability of the EKF to
reduce uncertainty quickly enough.

5.2.2. Computational costs analysis

The apparent increase in the computational effort that would suppose the utilization of the
presented approach could be hard to justify within the field of filtering-based SLAM, which
generally try to keep computational costs as low as possible.

In the considered sequence set, there were a total of 9527 frames for Cr. Although Ch had a
paired frame for each one on the Cr sequences, the overlap only was found in 3380 of the pairs.
This means increasing the visual processing and feature capturing costs on a 35.47% of the
frames. Increasing the computational cost of the most demanding step in a third of iterations
may look daunting, but there are few considerations. The technique rarely implies processing
an additional full frame: The region where the overlap is interesting is predicted and modeled
as a ROI into the Ch image, limiting the area to explore. Besides, the cost increase is bounded
by the number of frames where it is applied, so, if there are enough features visible in the map,
there is no need to execute the pseudo-stereo depth estimation.

Moreover, it is worth noting that newly proposed approach made less effort per feature to
initialize it, as it can ‘instantly’ estimate landmarks on the process of being initially measured
through parallax accumulation. This trades off with the fact that the pseudo-stereo initializa‐
tion can initialize with more frequency weak features which the delayed initialization would
not been able to handle, and must be rejected during the data association validation step.
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Table 1 shows the features initialized by each approach and the tracking effort required until
the initialization of the features is done. Note how the non-constant stereo DI-D feature
initialization approach uses about 8% more features, but the effort used to initialize them is
much lower, as seen by the number of frames which the feature is tracked prior to being
introduced into the map. This is because many features that are being tracked are instantly
initialized through stereo once they lay in the overlapped field of view. This is advantageous
because it allows to introduce features known to be strong (enough to be tracked) directly
without more tracking effort, compensating the effort used for the Ch processing and stereo-
based initialization.

Classic EKF monocular SLAM Pseudo-stereo feature initialization

Features initialized (total) 1871 2032

Features per sequence (avg.) 267.28 290.26

Average frames to initialize a feature 19.63 8.53

Table 1. Statistics of initialized features and frames from first observation until initialization for DI-D SLAM and
pseudo-stereo initialization.

Furthermore, in real-time applications employing this technique, the Cr sensor could be
upgraded to an ‘intelligent’ sensor, with processing capabilities, using off-the-shelf technolo‐
gies—low-cost microcomputers, FPGA, etc. This approach would integrate image processing
in the Ch sensor, allowing parallel processing of features, and sending only extracted features,
reducing required bandwidth and transmission time. This processing step could be done while
the robotic camera Cr makes the general EKF-SLAM process, and thus, it would be possible to
have the SURF landmarks’ information after the EKF update, in time for the possible inclusion
of new features.

6. Conclusions

A novel approach to monocular SLAM has been described, where the capabilities of additional
hardware introduced in a human-robot collaborative context are exploited to deal with some
of the hardest problems it presents. Results in quickly changing views and singular move‐
ments, the bane of most of the EKF-SLAM approaches, are greatly improved, proving the
proposed approach.

A set of experiments on semi-structured scenarios, where a human wearing a custom robotic
headwear explores the unknown environments with a robotic platform companion, were
captured to validate the approach. The system proposed profits from the sensors carried out
by the human to enhance the estimation process performed through monocular SLAM. As
such, data from the human-carried sensors are fused during the measurement of the points of
interest, or landmarks. To optimize the process and avoid unnecessary image processing, the
usefulness of the images from the camera on the human is predicted with a geometrical model
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which estimates if the human was looking at the same places that the robot, and limits the
search regions in the different images.

During the tests using real data, the MATLAB implementation of the approach proved itself
to be more reliable and robust than the other feature initialization approaches. Besides, the
main weakness of the DI-D approach, the need of a calibration process, was removed, thus
producing a locally reliable technique able to benefit from more general map extension and
loop closing techniques. While the model to estimate the pose between cameras has a given
uncertainty very difficult to reduce (accumulated through the kinematic chain of the model),
the measurement uncertainty is still lower than that of the purely monocular measurements,
even with the parallax-based (in the delayed DI-D case) approach.

To conclude, the system proves the validity of a novel paradigm in human-robot collaboration,
where the human can become part of the sensory system of the robot, lending its capacities in
very significant ways with low-effort actions like wearing a device. This paradigm can open
up the possibility of improving the capabilities of robotics systems (where a human is present)
at a faster pace than what purely technical development would allow.
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