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Abstract

Owing to its excellent light harvesting, high-charge carrier mobility, and long electron-
and hole-transport lengths, organic–inorganic lead halide perovskite solar cells have
attracted enormous attention recently under the urgent demands of green energy with
environmental  friendliness.  Although  various  photovoltaic  architectures  based  on
alkylammonum lead halides have been fabricated and have achieved impressive power
conversion efficiencies (PCEs),  there are still  several issues that need to be further
addressed and solved properly,  for  example,  the  requirement  of  facile  fabrication
procedure, the chemical stability of perovskite films, and the environmental friendli‐
ness. Herein, we review the recent experimental progress on the external doping of
hybrid perovskite devices by organics and metals, which demonstrate the tuning of
optical absorption gap and the enhancement of both devices’ stability and perform‐
ance. Doping at varying layers in the perovskite films was discovered to contribute
differently to the improvement of the hybrid organic–inorganic electronics. In the end,
prospective was also made on the development of hybrid organic–inorganic devices.

Keywords: hybrid organic electronics, perovskite solar cells, external doping, device
performance, stability

1. Introduction

Depletion of fossil fuels and the shortage of energy has become one of the most serious
problems  nowadays,  which  strongly  restricts  the  sustainable  development  in  our  soci‐
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ety. To achieve a sustainable society, we need methods of converting energy from other
resources,  such  as  wind  and  sunlight.  Among  the  proposed  approaches,  photoelectro‐
chemical devices offer the promise of solar fuel production through artificial photosynthe‐
sis and led to considerable development in numerous areas related to photovoltaic cells
and electronics. Thin-film solar cells, such as dye-sensitized solar cells, organic photovol‐
taics, and colloidal nanocrystal solar cells, can be assembled with low-cost materials and
manufactured with cost-effective methods and are considered very promising renewable
energy technologies. Especially, hybrid organic–inorganic perovskites based on the metal
halides have emerged as one class of promising light-harvesting materials because of their
exceptional  properties  such  as  direct  band gaps,  large  absorption  coefficients,  and high
carrier  mobility.  Meanwhile,  the  organic–inorganic  perovskite  solar  cell  also  have many
other  advantages  compared  to  the  conventional  solar  cells,  such  as  easy  solution  proc‐
ess, low processing cost, extremely high power conversion efficiency which reached over
20% recently. All these merits have granted perovskite a promising candidate for the next-
generation solar cells.

Although great success in the use perovskite solar cells has been witnessed over the past
few years, there are still  several bottlenecks which limit significantly the wide deployment
of its outdoor application: for example, the poor stability of the perovskite film and the
charge transport layers, dangers and health risks arising from toxic and harmful element
due to the usage of lead and other heavy metal atoms. Based on these urgent demands
and concerns, the improvement of perovskite electronics has been explored and
demonstrated. Interestingly, doping of perovskite electronics seems to be an efficient way
to enhance both the stability and performance of perovskite electronics, which is at
moment classified into several approaches: doping into the electron transport layer,
doping into the perovskite films, and doping into the hole transport layer. In this chapter,
we review the progress of in situ fabrication and characterization of organic–inorganic
hybrid electronics by external doping and propose some of them.

2. Structure and performance of perovskite electronics

Since 2009, Kojima and his coworkers used CH3NH3PbBr3  and CH3NH3PbI3  as sensitizers
in solar cell;  great progress has been made for such kind of solar cells not only due to
the fact that the power conversion efficiency (PCE) is increased from 3.8 to 20.8% [1,2],
but also that it has high absorption characteristics, appropriate direct band gaps, high
carrier mobility, long charge carrier diffusion length, low cost, and easy fabrication
processes [3]. All these excellent performances are mostly originated from the organic–
inorganic perovskite film. The formula of perovskite is usually written as ABX3,  where A
is an organic cation, e.g.,  CH3NH3

+,  B is a metal cation, e.g.,  Pb2+,  and X is a halide anion,
as shown in Figure 1a.
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Figure 1. (a) Illustration of the organic–inorganic perovskite structure; (b) mesoporous and planar structure of hybrid
perovskite devices; (c) the comparison between regular and inverted structure of hybrid perovskite device.

The sandwich-like structures of the organic–inorganic hybrid perovskite devices are shown in
Figure 1b. Mesoporous structure and planar structure (Figure 1b) are the so-called positive
structure, while the inverted structure is presented in Figure 1c with the electron transport
layer (ETL) and the hole transport layer (HTL) upside down as compared to the regular
perovskite structure device. As discovered, the inverted structure can reduce J-V hysteresis
and is more stable due to the hydrophobic PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)
and its easy fabrication. With the thin perovskite layer placed between the HTL and the ETL
under illumination, voltage/current is formed by generating and directionally moving the
excitons (holes and electrons) after overcoming the energy barrier of the band gap. Electron–
hole pairs are generated almost instantaneously after photo excitation and dissociated in the
time scale of several ps, followed by the formation of high mobile charges in the neat perovskite
[4]. After the generation and separation of excitions, the holes and electrons diffuse to the
opposite site of the sensitizer to reach electrodes forming electrical current; however, not all
of the holes and electrons can get to the electrode and contribute to the power generation, since
some of them will be captured by the defects or recombined with other electrons/holes on the
way to electrodes. The routes of carrier transmission are illustrated in Figure 2.

Figure 2. Schematic diagram of energy levels and electron transfer processes in an HTM/perovskite/TiO2 cell. (1) Elec‐
tron injection; (2) hole injection; (3) radiative exciton recombination; (4) non-radiative exciton recombination; (5) back
electron transfer at the TiO2 surface; (6) back charge transfer at the HTM surface; (7) charge recombination at the
TiO2/HTM interface.

With various cations/ions in the perovskite structure, there are different lattice parameters.
However, it is not always suitable to have random combinations of cation A, B, and anion X.
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The crystallographic stability and probable structure can be evaluated by considering the
Goldschmidt's tolerance factor t and the octahedral factor μ [5], t = (rA + rX)/[sqrt(2)*(rB + rx)],
where rA, rB, and rX are the effective ionic radii for the ions in the A, B, and X sites, respectively.
This allows us to estimate the degree of distortion of perovskite crystal structure compared to
the ideal case where t = 1. The octahedral factor (μ) is an additional consideration for perovskite
formability, where μ = rB/rX. It has been generally accepted that the perovskite was stabilized
for a tolerance factor ranging between 0.813 and 1.107 and an octahedral factor ranging from
0.442 and 0.895 [6]. It has been found that hybrid organic–inorganic devices usually degrade
easily and quickly on exposure to the moisture or ultraviolet radiation [7]. Meanwhile,
structural phase transformations of conventional hybrid perovskite films at different temper‐
ature ranges are also listed in Table 1. Still, there have been reports on the formation of single
crystals when the conditions of saturation, nucleation, and growth are well controlled [8–11].

PSC Phase Temperature (K) Structure Space group Lattice parameter (Å)

MAPbI3 α 400 Tetragonal P4mm a=6.3115 b=6.3115 c=6.3161

β 293 Tetragonal I4cm a=8.849 b=8.849 c=12.642

γ 162–172 Orthorhombic Pna21 a=5.673 b=5.628 c=11.182

MAPbCl3 α >178.8 Cubic Pm3m a=5.675

β 172.9–178.9 Tetragonal P4/mmm a=5.655 c=5.630

γ <172.9 Orthorhombic P2221 a=5.673 b=5.628 c=11.182

MAPbBr3 α >236.9 Cubic Pm3m a=5.901

β 155.1–236.9 Tetragonal I4/mcm a=8.322 c=11.833

γ 149.5–155.1 Tetragonal P4/mmm a=5.8942 c=5.8612

δ <144.5 Orthorhombic Pna21 a=7.979 b=8.580 c=11.849

MASnI3 α 293.00 Tetragonal P4mm a=6.2302 b=6.2302 c=6.2316

β 200 Tetragonal I4cm a=8.7577 b=8.7577 c=12.429

FAPbI3 α 293 Trigonal P3m1 a=8.9817 b=8.9817 c=11.006

β 150 Trigonal P3 a=17.791 b=17.791 c=10.091

Table 1. Structural phase transformations for common hybrid perovskites. The table was taken from [5] with
permission.

The thickness of this sensitized layer is usually limited to be around several hundred nano‐
meters concerning the fact that holes and electrons will be recombined quickly if the film
thickness is thicker than the diffusion length of charge carriers. Therefore, we simply consider
the diffusion length of excitions which depend not only on the amount but also on the
concentration of precursors [12–14]. As known, the nature of ambipolar of the perovskite
material leads to the transport of both electrons and holes [15]. For example, the trioxide
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absorber CH3NH3PbI3 has the electron–hole diffusion length of several hundred nanometers
and a relatively long life time [16].

Even though hybrid perovskite films are expected to have such appealing properties, only the
elaborate design of every counterpart of the whole device can make the performance of hybrid
perovskite devices as great as possible. For example, the band level alignment of different
layers and materials in devices should be considered carefully. As summarized from litera‐
tures, the energy bands of ETL must satisfy the following conditions [17]: (1) Its conduction
band (CB) must lie under the CB of the active perovskite layer to extract electrons which reach
the interfaces afterward. (2) Its valence band (VB) must lie much under the VB of the perovskite
to reject the holes. (3) The electron affinity of the ETL must be greater than that of the perovskite.
(4) The VB of ETL should have large difference compared to the VB of perovskite in order to
reject holes, so the ETL usually has wide band gap. (5) The electron mobility in ETL must be
sufficiently high. Similar requirements can also be deduced for HTL. The values of VB and CB
of some commonly used materials are listed in Figure 3.

Figure 3. The VB and CB of various perovskite films. The figure was taken from [17] with permission.

The exciton property, electrical property, and the energy band of various ETL/HTL materials
have been discussed so far. Moreover, optical properties will also be illustrated in this section.
The mostly used technique to explore the optical property is ultraviolet-visible (UV) and
photoluminescence (PL) spectroscopy. Different UV/PL spectra are shown in Figure 4a and b
[18, 19]. The absorption edges of perovskite films in Figure 4 clearly indicate that hybrid
perovskite devices have high absorption factor at visible and near-infrared range, which just
fit well to the solar spectrum. Figure 5 shows the complementarities between the Si-based solar
cell and the hybrid perovskite device as they have opposite external quantum efficiency (EQE).
Furthermore, the internal quantum efficiency (IQE) has been reported to reach 100% through
optimizing the perovskite device [20], which inspires the researchers that tandem solar cells
based on perovskite, and Si is very interesting if the fabrication technology can be improved
to use the sunlight more effectively.
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Figure 4. (a) Various sites A and B have different band gaps. The value of the band gap is given next to each com‐
pound. Figure was taken from [18] with permission; (b) UV–vis absorption spectra for perovskite films derived from
different lead sources. The right axis shows the PL spectra of the perovskites prepared on glass, with photoexcitation
at 507 nm. The figures are taken from [19] with permission.

Figure 5. The complementation of EQE in Si and perovskite tandem solar cell. The image was taken from
pvlab.epfl.ch/page-124775-en.html with permission.

3. Doping into different layers and the influence on devices

3.1. Doping into the electron transport layer

As discovered, the boundaries and defects existing in ETL generally result in the recombination
of electrons and holes associated with pinhole/cracks between ETL and substrate and will
therefore lead into the decline of PCE and stability. Consequently, proposed materials for ETL
should own high electron affinity, excellent surface morphology, and effective hole-blocking
properties. From this point of view, visible improvement should be realized by properly
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doping the ETL for the electron transport property, the hole blocking ability, since external
doping usually rearranges the band alignment due to the pining of Fermi level, which may
influence the electron transport property, hole blocking ability, for example, in the manner of
removing deep electronic traps and sub-band states, enhance the carrier’s life time and the
film’s conductivity by several orders of magnitude. Meanwhile, the doping into ETL can also
enhance the film morphology by removing defects or filling the gap in between islands in the
film. Nevertheless, the band gap of ETL itself is also modified by doping due to the change of
band structures. In the following, mostly used electron transport materials are described in
detail.

3.1.1. TiO2

Rutile TiO2 nanostructures on fluorine-doped tin oxide (FTO) substrates are interesting
building blocks for solar cells (as shown in Figure 7a). Positive structure and FTO substrate
are always adopted together for the electron transport material, since FTO can be annealed up
to 450℃ when rutile TiO2 is formed. The properties of large band gap, suitable band edge for
charge injection and extraction, long lifetime of excited charge carriers, exceptional resistance
to photo corrosion, non-toxicity, and low cost have made TiO2 a popular material for solar
energy applications. In spite of this, pure TiO2 is not ideal for ETL which need to be doped to
achieve n-type characters for higher electron extraction.

The scale of the pure TiO2 nanopaticles which results in the highest PCE in organic–inorganic
devices is about 50 nm [21]. The crafts for the fabrication of compact TiO2 layer (spin coating,
spray pyrolysis, sol-gel methods, magnetron sputtering) have developed rapidly, and one
effective way is to decorate TiO2 in order to improve the device’s performance. For example,
Mg-doped TiO2 can increase the open-circuit voltages (VOC) originated from elevating CB by
a microwave hydrothermal reaction [22]. Yttrium-doped TiO2 (Y-TiO2) was used as the ETL
to enhance electron extraction and transport [23]. Zr/Pyridine-doped TiO2 could reduce the
hysteresis and improve the performance of organic perovskite device by increasing the
carrier’s lifetime [24]. Nb-doped TiO2 reduced selectively the contact resistance and increased
the charge recombination resistance, as revealed by the impedance spectroscopy measure‐
ments [25]. A low level of Al doping into TiO2, by adding the aluminum isopropoxide precursor
into Ti isopropoxide solution, can reduce non-stoichiometric oxygen-induced defects in TiO2

layer. As discovered, the substitution/doping removes deep electronic traps and sub-band
states, enhances the conductivity by several orders of magnitude, and improves the stability
of corresponding devices. In all, metal doping of TiO2 seems to be the main method, while
other approaches of doping also exist, for example, TiO2 mixed with graphene, which promises
the low cost as the compact ETL synthesized by solution-based deposition procedure [26].
Another doping-like method is inserting ultrathin graphene quantum dots (GQDs) between
TiO2 and perovskite layer, which could reduce the electron extraction time from 300 to 100 ps
[27]. Nevertheless, we should bear in mind that most of these doping methods have been
utilized in dye-sensitized solar cells. Traps appear after doping in TiO2, and new energy levels
are formed. As can be seen in Figure 6, the doping concentration determines the operation
mechanism of electron and affects the VOC and short-circuit current (JSC) [28].
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Figure 6. Illustration of the doping effect on the CB and EF in TiO2. EF is the Fermi level, and the doping induced states
are also displayed in green. (a) In pristine TiO2, electrons are transported by “hopping” from shallow trap to shallow
trap until getting to the electrode. Therefore, the electron transport rate and JSC will be affected by the density of shal‐
low trap. Deep traps can permanently trap electrons and act as recombination sites, affecting VOC. Another important
factor determining VOC is EF, as VOC is defined as the difference between EF of TiO2 and the HTM. (b) The elimination of
the deep trap density, resulting in an upward shift of EF and thus an increase of VOC. Because the CB is shifted toward
the CB of the absorber, the driving force for electron injection is lowered, in combination with a decreased trap density
and the related electron transport, lowering JSC. (c) In the case of formation of deep traps by doping, the CB and EF are
shifted downward. Together with the enhanced recombination through the deep trap states VOC decreases. Due to the
larger offset between the CB and the absorber CB, electron injection is improved and the higher trap density causes an
increase in electron transport, resulting in an enhanced JSC. Ideally, the dopant eliminates deep traps while introducing
new states close to CB, enhancing both VOC and JSC through decreased recombination and increased electron transport.

Figure 7. (a) The unit cell of TiO2; oxygen atoms form a distorted octahedron with a titanium atom at the center; (b) the
ZnO unit cell; (c) the molecular drawing of the PCBM with the unit cell labeled.

On the contrary, the size of the particles used as mesoporous TiO2 is very small (around 15
nm) and can be easily controlled by tuning the concentration, pH of the reactants, and the
annealing temperature. As also discovered, reduced graphene oxide/mesoporous TiO2

nanocomposite as scaffold material could improve the electron collection efficiency, enhance
the VOC and JSC, and reduce the interface resistance [29]. Doping into the mesoporous TiO2 has
been tried by self-assembling one monolayer of fullerene (C60) to get a functionalized meso‐
porous titania for good electron extraction [30].

3.1.2. ZnO

Compared to TiO2, ZnO (Figure 7b) owing to high electron collection as ETL is more environ‐
ment friendly as it does not need to be sintered as high as to 450℃ to become rutile crystal and
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grows very fast by solution process [31]. Furthermore, less chance of recombination of carriers
would occur in ZnO because its conductivity is several orders of magnitude higher than that
of TiO2 [32–34]. As known, ZnO is an important II–VI semiconductor with a direct band gap
of 3.4 eV and an exciton binding energy of 60 meV at room temperature. Moreover, ZnO has
excellent optical properties such as a high infrared reflectivity and transparency in the visible
spectrum. In addition, it is abundant in nature and inexpensive [35]. However, ZnO accelerates
the degradation of perovskite layer into PbI2 when it is thermally annealed [36]. Similar to
TiO2, ZnO also suffers from photo corrosion which reduces the performance and stability [37].

As reported, Al-doped ZnO lifted the PCE from 10.8 to 12.0% by optimizing the thickness of
ETL and smoothing the interface [38]. Though fewer reports have been found for the doping
of ZnO till date, it is proved gradually to be an excellent candidate with external doping to
replace TiO2 and to solve the problems existing in TiO2. In a word, metal atoms are always
chosen to be the doping materials in the doping of either TiO2 or ZnO.

3.1.3. PCBM

PCBM (Figure 7c) is one of the fullerene derivatives. Its excellent properties of high electron
affinity and transmission make it extremely popular in organic solar cells. PCBM is widely
used in inverted perovskite structure accompanied with indium tin oxide (ITO) substrate.

PCBM doped with 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole (DMBI) results in
n-doped ETL which significantly increases the JSC [39], while oleamide-doped PCBM improves
the property of electron transport [40]. It has also been reported that PCBM doped with
graphdiyne [41], and the inverted hybrid perovskite structure spun with PCBM/C60 could
reduce the traps effectively which passivates the charge trap states and eliminates the notori‐
ous photocurrent hysteresis [42, 43]. Moreover, PCBM doped with PFNOX and polystyrene
(PS) was found to enhance JSC, while negligible hysteresis was discovered due to PFNOX which
reduced the electron recombination [44]. The advantages of PCBM compared with metal-oxide
ETL are that it can be used in soft hybrid perovskite devices with soluble process at the cost
of low power consumption.

3.2. Doping into the perovskite layer

3.2.1. Doping at site A

The cation at site A has no direct contribution to the properties of electron injection or transport.
The B–X octahedra and A are relatively independent owing to the fact that there is almost no
overlap between the electron clouds of A and B-X due to the large unit cell [45]. However, the
radius of ion A affects the symmetry of the perovskite structure which in turn affects the
electron’s properties [46–48]. As summarized from literatures, site A is always occupied by Cs,
Rb, methylammonium (MA), formamidinium (FA), or ethylammonium (EA). The first study
about mixed cations (MA)x(FA)1−xPbI3 claimed that the PCE reaches up to 14.9% due to the
changing band gap which facilities the photon absorption much more effectively [49]. After‐
ward, (MA)x(FA)1−xPbI3-based hybrid devices have been fabricated with rather high PCE [46,
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48, 50]. Figure 8a and b shows the difference in emission spectrum and the change of light
harvesting due to different ratios of FAI and MAI in hybrid perovskite solar cells. Similar
discoveries were also reported by our group when doping MA with small amount of CH3SH
organics, while the PCE increased from 6.9 to 9.4% [51], as presented in Figure 8c. When site
A is doped by Cs with optimized doping concentration and film thickness, the PCE reaches
over 10%, and the film morphology was found to be more compact and uniform [52]. For
example, PCE over 17% was reported for the Cs0.2FA0.8PbI2.84Br0.16 hybrid device as well as the
excellent stability in ambient air compared to FAPbI3, which was attributed to uniform coating
on TiO2 and no separation in chemical phases [53]. Methylammonium(MA) iodide and 5-
ammoniumvaleric acid (5-AVA) iodide hybrid perovskite device was also found to have high
stability of perovskite structure and performance [54], which can be attributed to the lower
defect concentration and better pore filling as well as complete contact with the mesoporous
scaffold, as illustrated in Figure 8d.

Figure 8. (a) Normalized emission of (CH3NH3)x(HNCHNH3)1−xPbI3 (x = 0, 0.2, 0.4, 0.6, 0.8, 1). The emission is shifted
and broadened as a function of x. (b) Light-harvesting spectra of (CH3NH3)x(HNCHNH3)1−xPbI3 films with different x.
As the concentration of formamidinium was increased, the absorbance of the film decreased, while no change in the
band gap was discernable. (c) UV absorption spectra of (CH3SH2)x(CH3NH3PbI3)1−x where the changes of band gap are
visible. (d) The UV–vis spectra of FTO glass/TiO2 films filled with (5-AVA)xMA1−xPbI3 and MAPbI3. Some images were
taken from [49] and [54] with permission.
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3.2.2. Doping at site B

The ideal element which suits the organic–inorganic hybrid perovskite structure at site B is
Pb, and one can easily refer to the same group elements, for example, Ge or Sn. Javier Navas
and his coworkers tried to dope/replace Pb2+ with Sn2+, Sr2+, Cd2+, and Ca2+ and revealed the
development of the properties of crystalline phase, band structure (Figure 9a), and emission
and optical characteristics. Non-covalent interaction (NCI) analysis complemented with the
results from electron localization functions (ELFs) indicated that the strength of the dopant-I
interaction follows the order with Cd-I > Sn-I ≈ Pb-I > Sr-I for the tetragonal structure [55]. The
system of MASn1−xPbxI3 was explored in detail at different ratios of Sn and Pb (Figure 9b) [18,
56], and optimized hybrid devices were fabricated afterward [57, 58]. In the end, it is worth
pointing out that Pb is rather toxic, and environmental friendly materials are urgently needed
to replace lead at site B. As far as explored, no other stable element has been found which can
fully replace Pb without downgrading the hybrid perovskite devices’ performance. Conse‐
quently, doping at site B seems to be the dominant approach to resolve the above-mentioned
challenges.

Figure 9. (a) Diffuse reflectance UV–vis spectra for the MAPbI3 sample and MAPb1−xBxI3, with B = Sn2+, Sr2+, Cd2+, Ca2+,
and x = 0.10. In the inset, the plot of the optical band gap values for each sample. (b) Electronic absorption spectra of
perovskite CH3NH3SnxPb (1−x) I3 coated on porous TiO2. Images were taken from [55] and [56] with permission.

3.2.3. Doping at site X

Site X, usually occupied by halogen atoms, typically was iodine at beginning and was
attempted with doping of Cl afterward which encouragingly claimed the improvement of both
diffusion length and carrier lifetime [14, 58]. Doped MAPbI3−xClx has highly oriented crystalline
structures exemplified through the strong (1 1 0), (2 2 0), and (3 1 0) peaks attributed to the
tetragonal phase [59, 60]. As discovered previously, the variation of the film crystalline
orientation order does not impose effect on the photovoltaic performance of the hybrid
perovskite devices. [61]. The influence of doping of Cl is not only on the crystalline structure
but also on its formation route of perovskite structure. As reported, doping a little amount of
Cl in MAPbI3 perovskite film serves as the nucleation sites to form suitable surface coverage
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of perovskite film [62]. Moreover, MAPbI3−xClx-based hybrid solar cell changes both the phase
and optical properties by optimizing the annealing temperature [63], as also discovered by our
group recently with an in situ investigation of the improvement of structure and performance
of MAPbI3−xClxperovskite device by annealing [64], as present in Figure 10a and b. In most
instances, optimized annealing temperature will enhance the PCE in the Cl-doped system,
although the PCE may also be reduced after proper annealing in a few cases [65], since the
performance of perovskite solar cell depends strongly on the preparation of film formation
and crystallization [66, 67]. Interestingly, planar structure comprising CH3NH3PbI3−xClx film
exhibits the p-doping character and therefore, a p-n heterojunction was formed when contact‐
ed with the n-doped TiO2 compact layers [68]. The formation energy of mixed halide perovskite
was determined by annealing temperature as also verified by theoretical calculations [69].

Figure 10. (a) The tunability of band gap and structure in the mixed halide perovskite system.(b) The perovskite struc‐
ture transformation for the Cl-doped MAPbI3 film during programmed annealing investigated with conventional and
two dimensional XRD. (c) UV–vis of the FAPbIyBr3-y perovskites with varying y. (d) The related photoluminescence
spectra for the same films. (e) and (f) Optical absorbance and photoluminescence spectra (370 nm excitation) of
MAPbBr3-xClx films. Figure (c, d, e, f) were taken from [47] and [73] with permission.

Apart from the doping of Cl, Br has also been tried to partly replace I at the site X. In fact,
bromide has been effectively used to tune the band gap of perovskite films. UV and PL
spectrum are shown for various doping of Br from 0 to 100% in CH3NH3PbI3 perovskite films
in Figure 10c and d [47]. For the synthesis the perovskite CH3NH3PbI3−xBrx, doping the MAI
and PbI2 solution with MABr can change the band gap, which overlaps the whole usable solar
spectrum for perovskite solar cells and shifts the XRD peak due to the different ratio of MABr
and MAI [70]. The calculation for mixed halide has also been done using first principle
calculations. For example, Herz et al. studied the charge carrier dynamics and mobility in
formamidinium lead-mixed-halide perovskites and found that the auger recombination
constant exists in the mixed halide perovskite system which strongly depends on the value of
y in FAPb(BryI1–y)3 [71]. Besides, lowering the energetic disorder in mixed-halide perovskites
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would significantly improve charge carrier transport, allowing effective incorporation in
planar-heterojunction tandem solar cells with high short-circuit currents, open-circuit voltag‐
es, and PCEs [71]. Perovskite solar cell based on CH3NH3SnI3–xBrx has been fabricated as a lead-
free hybrid device with PCE getting to 5.73% [72]. The last combination of doping with halides
can be Cl and Br. CH3NH3Pb(BrxCl1−x)3 was used as different types of light emitting diodes
(LEDs) due to different energy gaps induced from different doping (0 < x <1) [73, 74]. Such
CH3NH3Pb(Br1−xClx)3-based hybrid devices with different inclusion of Cl exhibit different
electronic structures and the band gap gets broadened after the inclusion of Cl [75]. The optical
properties are shown, respectively, in Figure 10e and f.

Another choice of doping at the site X could be the utilization of anion. MAPbI3−x(BF4)x has a
band gap of 1.5 eV slightly lower than that of MAPbI3, and the absorption wavelength is around
827 nm, where the sunlight spectrum has stronger irradiance compared to the absorption
wavelength of 800 nm for MAPbI3. MAPbI3−x(BF4)x was proved to own good properties such
as good electrical conductivity and high photo response [76]. MAPb(SCN)2I was demonstrated
to show high stability in moisture environment compared to MAPbI3, and the fabrication
process is rather similar [77].

3.2.4. Mixed doping

The MAPbI3–PEOXA precursor was used as the sensitizer of hybrid perovskite solar cell to
improve the interface morphology of the perovskite-polymer films and to reduce the unde‐
sired contact between PEDOT:PSS and PCBM layers for the minimized shunting path at the
device [78]. It can be concluded now that the main point for doping hybrid perovskite device
is that the proper parameters of t, μ, nice morphology, and robust structure to moisture as well
as high performance should be ensured when faced with various choices of doping.

3.3. HTL doping

3.3.1. NiOx

NiO (as shown in Figure 11a) is a relatively rare material which has a nature of p-type
semiconductor in both perovskite device and dye-sensitized solar cells, so it is a promising
candidate for hybrid devices. The NiOx thin film is very compact without pinholes which can
block the electrons very effectively [79]. Therefore, it is expected that NiOx doping can improve
the properties of hybrid organic inorganic devices. For example, Cu-doped NiOx increases the
electron transmission significantly and enhances the PCE from 8.9 to 15.4% in the inverted
structured solar cell [80]. Afterward, low-temperature process for the doping of Cu has been
reported [81]. NixMg1–xO was also used as HTL and led to large-area and stable devices with
higher PCE [82]. Therefore, we can say that the NiOx will replace the organic HTL due to its
commercial future.

Moreover, graphene oxide (GO) was proved to be a promising candidate as HTL, owing to the
enhanced crystallization, high surface coverage ratio, and preferred in-plane orientation of the
(110) plane of perovskite film on top. Efficient hole extraction and the enhanced stability of
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hybrid devices were demonstrated in the GO-based inverted devices, as reported by our group
[83] and other studies [84]. CuI is another inorganic material used as HTL which is a p-type
semiconductor and has a matched band structure with the perovskite films [85].

Figure 11. (a) Structure of NiO; (b) structure of spiro-OMeTAD; (c) structure of PEDOT:PPS.

3.3.2. Spiro-MeOTAD and PEDOT:PPS

Spiro-MeOTAD (shown in Figure 11b) was also used as HTL as an alternate which supports
great PCE for the fabricated devices [86, 87]. However, all of the Spiro-MeOTAD based layers
need to be doped because of the nature of such material with bad charge transmission. For
instance, Spiro-OMeTAD doped with iodide-reduced graphene oxide has increased the
stability of corresponding device and reduced the cost of fabrication. Spiro-MeOTAD116 was
doped with Co(III) complex as a p-type dopant for the HTL to ensure a sufficient conductivity
and low series resistance [88, 89]. The n-type doped Spiro-OMeTAD functionalized as the
pinhole-free HTL has a proper band structure which matches well the band of perovskite film
[90].

Moreover, dopant-free PBDTTT-C polymer [91], dopant-free spiro-CPDT [92], dopant-free
TPB [93], and dopant-free linear acene derivative were also utilized as the hole transport
material [94]. These materials are used as HTL for their appealing properties to replace Spiro-
OMeTAD.

PEDOT: PPS (shown in Figure 11c) is always designed as the HTL in inverted hybrid perov‐
skite devices, but its acidic characteristics severely threaten long-term stability and perform‐
ance [95]. Thus, the substitute was explored and found and, for example, CPE-K which
contributes to a better performance of the related device [96], is gradually used as HTL. In fact,
graphene can not only be used in ETL but also in HTL. PEDOT: PPS doped with graphene
quantum rings (GQRs) ensures the efficient hole extraction in hybrid solar cells and relatively
high PCE. Hydrophilic graphene oxide doping in PEDOT: PSS composited films demonstrated
a PCE of 1.8 times higher than that of the hybrid electronics based on the pristine PEDOT: PSS
buffer layer [97]. Besides, PTAA (Poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine,
P3HT(poly(3-hexylthiophene)), PCPDTBT (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta
[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]), VB-DAAF (vinylbenzyl 9,9-
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diarylfluorene-based triaryldiamine), etc. are also used as HTL for their cheap cost, easy
synthesis, and better performance. Actually, the fabricated devices showed higher PCE and
better performance than the commonly used PEDOT:PPS and Spiro-MeOTAD materials [98–
101].

4. Conclusion

In conclusion, the physical structure and electronic and optical properties of hybrid organic–
inorganic perovskite electronics have been illustrated in detail, which sheds new light on the
implication of solar cell industry. Driven by the urgent concerns from hybrid perovskite
device, doping into the perovskite solar cell is explored by researchers in order to get stable
devices with high performance. The progress of in situ doping of perovskite electronics from
worldwide has been reviewed in this chapter, including the achievement from our group. The
doping of ETL promotes the electron transmission, enhances the surface smoothness, blocks
holes effectively, reduces the traps, and promotes the PCE for the device ultimately. Second,
the doping of perovskite film itself is discussed regarding the doping at sites A, B, and X.
Doping at site A leads to a higher PCE, which is associated with better absorption of sun‐
light according to the UV spectrum. Doping at site B mainly contributes to the environment
friendliness with the final goal to get lead-free hybrid devices. Doping at site X can easily tune
the band gap of perovskite films to absorb more sunlight with different wavelengths, making
the interface more suitable for the electron transmission. Organic HTL (Spiro-MeOTAD) is
expensive and needs to be doped to become a p-type semiconductor, so new kind of Spiro-
MeOTAD-like materials are synthesized at low cost without doping to improve the hole
blocking and electron transmission. Another organic HTL–PEDOT:PPS is also discussed due
to its wide usage and easy fabrication by solution process. In all, the PCE of the hybrid
perovskite solar cell increases rapidly one study by one study, while the doping promotes the
performance of such hybrid organic–inorganic electronics, which is expected to be the third
generation of solar cell in the near future.
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