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Abstract

Artificial neural network (ANN) model classifiers were developed to generate ≤ 15 h
predictions of thunderstorms within three 400-km2 domains. The feed-forward, multi-
layer perceptron and single hidden layer network topology, scaled conjugate gradient
learning algorithm, and the sigmoid (linear) transfer function in the hidden (output)
layer were used. The optimal number of neurons in the hidden layer was determined
iteratively based on training set performance. Three sets of nine ANN models were
developed: two sets based on predictors chosen from feature selection (FS) techniques
and one set with all 36 predictors. The predictors were based on output from a numerical
weather prediction (NWP) model. This study amends an earlier study and involves the
increase in available training data by two orders of magnitude. ANN model perform-
ance was compared to  corresponding performances  of  operational  forecasters  and
multi-linear regression (MLR) models. Results revealed improvement relative to ANN
models  from  the  previous  study.  Comparative  results  between  the  three  sets  of
classifiers, NDFD, and MLR models for this study were mixed—the best performers
were a function of prediction hour, domain, and FS technique. Boosting the fraction of
total  positive  target  data  (lightning  strikes)  in  the  training  set  did  not  improve
generalization.

Keywords: thunderstorm prediction, artificial neural networks, correlation-based fea-
ture selection, minimum redundancy maximum relevance, multi-linear regression

1. Introduction

A thunderstorm or convective storm is a cumulonimbus cloud that produces the electric discharge
known as lightning (which produces thunder) and typically generates heavy rainfall, gusty
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surface wind, and possibly hail [1]. Meteorologists use the term convection/convective to refer
to the vertical component of convective heat transfer owing to buoyancy [2–4]. The term deep
moist convection (DMC), which refers to the overturning of approximately the entire troposphere
due to convective motions and involving condensation of water vapor associated with rising
parcels [5], is part of the literature and includes both thunderstorms and moist convection not
involving  thunder  [4].  The  terms  thunderstorm,  convective  storm,  and  convection  are  used
interchangeably in this chapter to refer to thunderstorms. Thunderstorms adversely affect
humans and infrastructure. An estimated 24,000 deaths and 240,000 injuries worldwide are
attributable to lightning [6, 7]. In the USA, lightning is the third leading cause of storm-related
deaths based on averages during the period 1985–2014 [8]. Additional hazards that can occur
include large hail, flash flooding associated with heavy rainfall, and damage from wind from
tornadoes and/or non-rotational (straight-line) wind. During the period 1980–2014, 70 severe
thunderstorm events each totaling ≥ 1 billion US dollar damage occurred in the USA, which
totaled to 156.3 billion US dollars (adjusted for inflation to 2014 dollars) [9]. Further, convection
exacts an economic cost on aviation in terms of delays [10]. Given the adverse socioeconomic
impact associated with thunderstorms, there is motivation to predict thunderstorm occurrence
and location to inform the public with sufficient lead time.

However, the complexity of thunderstorm generation (hereafter convective initiation, or CI),
given the myriad of processes (operating on different scales) that influence the vertical
thermodynamic structure of the atmosphere (that directly influences the thunderstorm
development) and the CI itself [11], the characteristic Eulerian (with respect to a fixed point at
the surface) time and linear space scales of individual thunderstorms [12], and the inherent
predictability limitations of atmospheric phenomena on the scale of individual thunder-
storms [13, 14], renders the skillful prediction of thunderstorm occurrence, timing, and location
very difficult. This chapter begins by explaining the thunderstorm development process in
order to help the reader understand the predictor variables used in the artificial neural network
(ANN) models. Next, the variety of methods used to predict thunderstorms are presented in
order to acquaint the reader with the relative utility of the ANN model option. The main section
starts with an account of the previous methods developed by the authors and presents a new
approach to the development of ANN models to predict thunderstorms with high temporal
and spatial resolution. Finally, concluding remarks, including a discussion of future research.

2. Thunderstorm development

To properly understand the process of thunderstorm development, it is essential to define the
terms parcel and environment. The environment refers to the ambient atmospheric conditions.
In general, a parcel is an imaginary volume of air that can be assigned various properties [1].
A parcel in this discussion is infinitesimal in dimension and is assumed to be thermally
insulated from the surrounding environment which allows for adiabatic temperature changes
owing to vertical displacement, and it has a pressure that immediately adjusts to the environ-
mental pressure [15]. One method used by meteorologists to assess the potential for the
development of thunderstorms is the parcel method [3]. This method is used to assess atmos-
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pheric stability and involves the finite vertical displacement of a parcel from hydrostatic
equilibrium (balance between vertical pressure force and gravity) while the environment
remains unchanged. After the displacement, the temperature contrast between the parcel and
the environment at the same level results in buoyancy forces that determine stability.

Consider an environment of depth H with a temperature lapse rate (decrease in temperature

with height) Γ satisfying the condition Γm < Γ < Γd, where �d = 9.8°Ckm−1 and �m = 6.5°Ckm−1
are the dry and moist adiabatic/pseudoadiabatic lapse rates, respectively. Now consider a
surface-based parcel, defined as a parcel originating in the convective planetary boundary layer
(PBL) (also called mixing layer) that eventually contribute to the primary thunderstorm updraft
if thunderstorms develop [16]. The convective PBL refers to the bottom layer of the atmosphere
in contact with the earth surface with a diurnal depth varying between tens of meters (near
sunrise) to 1–4 km (near sunset) [1]. Let us begin with an unsaturated parcel located at a
particular position �, �, � = ℎ  within the PBL and at the same temperature, density, and
pressure as the environment (hydrostatic equilibrium.) Consider an upward vertical displace-
ment of this parcel and apply the parcel method. Since the parcel is unsaturated, it will initially
cool at the dry adiabatic lapse rate. Since Γ < Γd, the parcel will become cooler than its sur-
rounding environment. Applying the ideal gas law and the assumption that the parcel’s
pressure instantly adjusts to the environmental pressure, the parcel’s density becomes greater
than environmental air density. Thus, the parcel is negatively buoyant, a condition known as
positive static stability [15]. If this parcel is released, it will return to its original height h with
negative buoyancy acting as the restoring force. However, let us assume that the parcel
overcomes this negative buoyancy via certain upward-directed external force. The parcel
eventually reaches the lifted condensation level (LCL), whereby the parcel becomes saturated
followed by condensation. (The condensation of parcels is manifested by the development of
cumulus clouds.) Due to the associated latent heat release, the parcel cools at the pseudoadia-
batic rate during subsequent lift. Since Γm < Γ, the parcel now cools at a lesser rate than the
environmental rate and (with the help of the external force) will eventually reach the envi-
ronmental temperature at the level referred to as the level of free convection. Afterward, the parcel
becomes warmer than the environment and thus positively buoyant. If the parcel is released,
it will continue to rise without the aid of an external force, a condition known as static
instability. Thus, a parcel with sufficient vertical displacement within an environment with
lapse rates following the Γm < Γ < Γd constraint may become positively buoyant. This condition
is known as conditional instability.

The parcel will remain positively buoyant until it reaches the equilibrium level (EL). The
magnitude of the energy available to a given parcel for convection is the convective available
potential energy (CAPE) [3] which is the integrated effect of the parcel’s positive buoyancy
between its original height h and the EL:

( )
h

EL

p

h d vp ve
p

CAPE R T T dlnp= -ò (1)
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The variables Tvp, Tve, Rd, and p refer to the virtual temperatures of the parcel and environment,
specific gas constant for dry air, and air pressure, respectively. Recall that before the surface-
based parcel reached the LFC, an external force was needed. The amount of energy required
of the external force to lift the parcel to its LFC is known as convective inhibition (CIN) [1],
represented as follows:

( )
LFC

h

p

h d vp ve
p

CIN R T T dlnp= - -ò (2)

Now, consider a separate case whereby the environment is absolutely stable with respect to a
surface-based parcel (Γm > Γ). This condition is characterized by negative buoyancy during the
parcel’s entire vertical path of depth H within the troposphere. Hence, the parcel method would
suggest that convection is not possible. However, consider a layer of depth l ≤ H within this
environment where water vapor content decreases rapidly with height. Owing to this moisture
profile, if the entire layer lis lifted, parcels at the bottom of the layer will reach their LCL before
parcels at the top of the layer. The differential lapse rates within this layer resulting from
continued lifting will transform the layer from absolutely stable to conditionally unstable. This
condition is known as convectively (or potential) instability [3, 15]. A convectively unstable layer
is identified as one that satisfies:

0e
z
q¶

<
¶

(3)

The symbols θe and z refer to equivalent potential temperature and geometric height, respectively.
It must be emphasized that CAPE is necessary for the potential for convection [3]. Recall that
a convectively unstable layer is not necessarily unstable. In this example, the environment is
absolutely unstable, devoid of positive buoyancy, and thus CAPE = 0. A mechanism is required
to lift the convectively unstable layer to one characterized by conditional instability.

Air parcels extending above the LFC accelerate upward owing to positive buoyancy and draw
energy for acceleration from CAPE. The relationship between maximum updraft velocity
(wmax) and CAPE (parcel theory) is as follows:

( )1 22maxw CAPE= (4)

The moist updraft is integral to the development of a supersaturated condition that results in
excess water vapor that (with the aid of hygroscopic aerosols that serve as cloud condensation
nuclei or CNN) condenses to form water in liquid and solid form (condensate) manifested as
the development of a cumulus cloud, followed by the transition to cumulus congestus, then
ultimately to cumulonimbus. With respect to the production of rain during convection, the
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stochastic collision-coalescence mechanism is likely the predominant process that transforms
cloud droplets (with broad drop-size distribution) to liquid hydrometeors large enough
(diameter 500 μm) to combine with gravity and fall as rain on convective time scales [17].

As saturated parcels rise to the region with environmental temperatures colder than −4°C, the
likelihood that ice crystals will develop within the cloud increases. Further, a fraction of water
remains in liquid form (supercooled water) until around −35°C [15]. Thus, a region character-
ized by water in all three phases (vapor, liquid, and solid) develops. The development of the
solid hydrometeors known as ice crystals and graupel within this mixed phase region contribute
to the development of lightning. In particular, ice-graupel collisions contribute to the transfer
of negative (positive) charge to the larger graupel (smaller ice crystal) particles with charge
separation caused by gravity, resulting in a large-scale positive dipole within the cumulonim-
bus [18]. A smaller positively charged region exists near the cloud base. Intracloud (IC) lightning
occurs in response to the foregoing dipole, cloud-to-ground (CTG) lightning involves a transfer
of negative charge from the dipole to the earth surface, and the less common cloud-to-air (CTA)
lightning variety links the large-scale negative charge with the smaller positive charge near
cloud base [18]. The temperatures in the air channel through which lightning occurs exceed
the surface of the sun and result in a shockwave followed by a series of sound waves recognized
as thunder that is heard generally 25 km away from the lightning occurrence [1, 15].

Straight-line thunderstorm surface winds develop as negative buoyancy (owing to cooling
associated with evaporation of water/melting of ice), condensate loading (weight of precipi-
tation dragging air initially downward before negative buoyancy effects commence), and/or
downward-directed pressure gradient force (associated with convection developing within
strong environmental vertical wind shear) contribute to the generation of the convective
downdrafts which are manifested as gust fronts (also called outflow boundaries) after contact with
the earth surface [19]. Hail associated with a thunderstorm involves a complex process
whereby graupel and frozen raindrops serve as pre-existing hail embryos and transition to
hailstones by traveling along optimal trajectories favorable for rapid growth within the region
of the cumulonimbus composed of supercooled water [20].

Given the foregoing thunderstorm development process, the simultaneous occurrence of three
conditions are necessary for CI: sufficient atmospheric moisture, CAPE, and a lifting/triggering
mechanism. Moisture is necessary for the development of the cumulonimbus cloud condensate
which serves as a source material for the development of hydrometeors rain, ice crystals,
graupel, and hail. The environmental moisture profile contributes to the development
conditional and convective instability. CAPE provides the energy for updraft to heights
necessary for the development of the cumulonimbus cloud and the associated mixed phase
region that contributes to lightning via charge separation. A mechanism is necessary to lift
surface-based parcels through the energy barrier to their LFC, and to lift convectively unstable
layers necessary for the development of conditional instability. A myriad of phenomena can
provide lift, including fronts, dry lines, sea breezes, gravity waves, PBL horizontal convective
rolls, orography, and circulations associated with local soil moisture/vegetation gradients [11,
21].
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A myriad of synoptic scale [12] patterns/processes can alter the thermodynamic structure of
the environment at a particular location to one favorable for the development of CAPE or
convective instability [22]. One scenario in the USA involves the advection of lower-level moist
air toward the north across the Southern Plains from the Gulf of Mexico in advance of an upper-
level disturbance approaching from the west and advecting midtropospheric dry air originat-
ing from the desserts of northern Mexico. The thermodynamic profile over a location
influenced by those air masses (e.g., Oklahoma City, Oklahoma) would become one charac-
terized by both conditional and convective instabilities owing to the dry air mass moving over
the moist air mass [3].

The foregoing discussion is not exhaustive with respect to thunderstorms. The transition to
severe convective storms (defined as thunderstorms which generate large hail, damaging
straight-line wind, and/or tornadoes), flash flooding, and convective storm mode (squall lines,
single cells, multi-cells, supercells, etc.) are not relevant to the development of non-severe (also
called ordinary) thunderstorms in general and are not discussed. Further, slantwise convection
owing to conditional symmetric instability due to the combination of gravitational and centrifugal
forces [1] is not considered.

3. Thunderstorm prediction methods

We classify thunderstorm prediction based on the following methods: (1) numerical weather
prediction (NWP) models, (2) post-processing of NWP model ensemble output, (3) the post-
processing of single deterministic NWP model output via statistical and artificial intelligence
(AI)/machine learning (ML), and (4) classical statistical, AI/ML techniques.

3.1. Secondary output variables/parameters from Numerical Weather Prediction (NWP)
models

NWP models are based on the concept of determinism which posits that future states of a
system evolve from earlier states in accordance with physical laws [23]. Meteorologists
describe atmospheric motion by a set of nonlinear partial differential conservation equations
—derived from Newton’s second law of motion for a fluid, the continuity equation, the
equation of state, and the thermodynamic energy equation—that describe atmospheric heat,
momentum, water, and mass referred to as primitive equations, Euler equations, or equations of
motion [24–26]. These equations cannot be solved analytically and are thus solved numerically.
Further, the earth’s atmosphere is a continuous fluid with 1044 molecules (Appendix A) which
the state-of-the-art NWP models cannot resolve. Thus, NWP model developers undertake the
process known as discretization, which involves the representation of the atmosphere as a three-
dimensional (3D) spatial grid (which divides the atmosphere into volumes or grid cells), the
representation of time as finite increments, and the substitution of the primitive equations with
corresponding numerical approximations known as finite difference equations solved at the grid
points [26]. Atmospheric processes resolved by the NWP equations are termed model dynamics
while unresolved processes are parameterized via a series of equations collectively known as
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model physics [25]. Parameterization involves using a set of equations on the resolved scale to
implicitly represent the unresolved process. These unresolved (sub-grid-scale) processes
include solar/infrared radiation and microphysics (which occur on the molecular scale),
cumulus convection, earth surface/atmosphere interactions, and planetary boundary layer/
turbulence [27]. If these primary unresolved processes are not taken into account, the quality
of NWP output would deteriorate in less than 1 h when simulating the atmosphere at hori-
zontal grid scales of 1–10 km [25]. The NWP model prediction process is an initial value
problem. A process known as data assimilation is used to provide the requisite initial values. A
predominate data assimilation technique involves the use of balanced (theoretical and
observed winds in phase) short-term output from an earlier NWP model run to serve as a first
guess, followed by the incorporation of meteorological observations to create a balanced
analysis which serve as the initial condition for the NWP model [26]. Next, the finite difference
equations are solved forward in time. The primary output variables include temperature, wind,
pressure/height, mixing ratio, and precipitation. At the completion of the NWP model run,
post-processing is performed which includes the calculation of secondary variables/parameters
(CAPE, relative humidity, etc.) and the development of techniques to remove model biases [25,
26, 28].

The state-of-the-art high-resolution NWP models have the ability to explicitly predict/simulate
individual thunderstorm cells rather than parameterize the effects of sub-grid-scale convec-
tion [29]. NWP output identified as thunderstorm activity involves assessment of NWP output
parameter/secondary variable known as radar reflectivity defined as the efficiency of a radar
target to intercept and return of energy from radio waves [1]. Operational meteorologists in
the NWS use radar technology to diagnose/analyze thunderstorms. With respect to hydrome-
teor targets (rain, snow, sleet, hail, graupel, etc.), radar reflectivity is a function of hydrometeor
size, number per volume, phase, shape, and is proportional to six times the effective diameter
of the hydrometeor [1]. Radar reflectivity magnitudes ≥ 35dB at the −10°C level are generally
regarded as a proxy for CI and for the initial CG lightning flash [30, 31]. Further, the increase
in the reflectivity within the mixed-phase region of cumulonimbus clouds correlates strongly
with lightning rate [32]. An example of a high-resolution (≤4-km) NWP model that can
simulate/predict radar reflectivity is version 1.0.4 of the 3-km High-Resolution Rapid Refresh
(HRRR) Model, developed by National Oceanic and Atmospheric Administration (NOAA)/
Oceanic and Atmospheric Research (OAR)/Earth Systems Research Laboratory implemented
by the National Weather Service (NWS) National Centers for Environmental Prediction
(NCEP) Environmental Modeling Center (EMC) on 30 September 2014 to support NWS
operations [33]. The specific model dynamical core, physics, and other components are detailed
in Appendix B. Yet, we emphasize here that the HRRR does not incorporate cumulus/
convective parameterization (CP), thus allowing for the explicit prediction of thunderstorm
activity. One of the output parameters relevant to thunderstorm prediction is simulated radar
reflectivity 1-km (dBZ), which is an estimate of the radar reflectivity at the constant 1-km level.

Despite the utility of NWP models, there exist fundamental limitations. In particular, the
atmosphere is chaotic—a property of the class of deterministic systems characterized by
sensitive dependence on the system’s initial condition [13, 14, 23]. Thus, minor errors between
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the initial atmospheric state and the NWP model representation of the initial state can result
in a future NWP solution divergent from the future true atmospheric state. Unfortunately, a
true, exact, and complete representation of the initial state of the atmosphere using the state-
of-the-art NWP models is not possible. Even if the NWP model could perfectly represent the
initial atmospheric state, errors associated with imperfections inherent in model formulation
and time integration would grow. Model discretization and physics parameterizations
introduce errors. Further, the gradient terms in the finite difference equations are approxi-
mated using a Taylor series expansion of only a few orders [26, 34], thus introducing truncation
error. Errors associated with the initial condition, discretization, truncation, and parameteri-
zation limits predictability; an intrinsic finite range of predictability exists that is positively
correlated to spatial scale [14]. A high-resolution NWP simulation of a tornadic thunderstorm
can result in inherent predictability with lead times as short as 3–6 h [35].

Accurately predicting the exact time and location of individual convective storms is extremely
difficult [36]. High-resolution (≤4-km) NWP models can accurately simulate/predict the
occurrence and mode of convection (e.g., whether a less common left-moving and devastating
supercell thunderstorm will develop), yet have difficulty with regard to the time and location
(exactly when and where will the supercell occur) [37, 38]. Even very high-resolution (≤1-km)
NWP models that can resolve and predict individual convective cells [29] will not necessarily
provide greater accuracy and skill relative to coarser resolution NWP models [39].

3.2. Post processing of NWP model ensembles

Methods exist to generate more optimal or skillful thunderstorm predictions/forecasts when
using NWP models. One such method is known as ensemble forecasting [40], which is
essentially a Monte Carlo approximation to stochastic dynamical forecasting [28, 41]. Stochastic
dynamical forecasting is an attempt to account for the uncertainty regarding the true initial
atmospheric state. The idea is to run an NWP model on a probability distribution (PD) that
describes initial atmospheric state uncertainty. Due to the impracticability of this technique, a
technique was proposed whereby the modeler chooses a small random sample of the PD
describing initial state uncertainty [41]; the members are collectively referred to as ensemble
of initial conditions. The modeler then conducts an NWP model run on each member of the
ensemble, hence the term ensemble forecasting [28]. In practice, each member of the ensemble
represents a unique combination of model initial condition, dynamics, and/or physics [27, 42].
An advantage of ensemble forecasting over prediction with single deterministic NWP output
is the ability to assess the level of forecast uncertainty. One method to assess this uncertainty
is to assume a positive correlation between uncertainty and the divergence/spread in the
ensemble members [28]. Prediction probabilities can be generated by post-processing the
ensemble. Applying ensembles to thunderstorm forecasting, the NWS Environmental
Modeling Center developed the short-range ensemble forecast (SREF), a collection of selected
output from an ensemble of 21 mesoscale (16-km) NWP model runs. The NWS Storm Predic-
tion Center (SPC) post-processes SREF output to create a quasi-real-time suite of products that
includes the calibrated probabilistic prediction of thunderstorms [42]. There exist utility in the use
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of ensembles in thunderstorm forecasting. According to [16], the timing of CI within selected
mesoscale regions can be predicted accurately using an ensemble-based approach.

One limitation of NWP ensembles to support operational forecasters is the tremendous
computational cost necessary to run since each ensemble member is a separate NWP model
run. Another limitation is the realization that the true PD of the initial condition uncertainty
is unknown and changes daily [28].

3.3. Post-processing of single deterministic NWP model output using other statistical and
artificial intelligence/machine learning techniques

Statistical methods can be utilized to post-process NWP output to correct for certain systematic
NWP model biases and to quantify the level of uncertainty in single NWP deterministic
output [28, 43]. Statistical post-processing methods include model output statistics (MOS) [44]
and logistic regression [28].

MOS involves the development of data-driven models to predict the future state of a target
based on a data set of past NWP output (features/predictors) and the corresponding target/
predictand. Following [28], a regression function fMOS is developed to fit target Y at future time
t to a set of predictors/features (from NWP output known at t = 0) represented by vector x. The
development and implementation is as follows:

( )t MOS tY f x= (5)

One limitation of the MOS technique involves NWP model changes made by the developers.
If NWP model adjustments alter systematic errors, new MOS equations should be formulated
[28]. Model changes can occur somewhat frequently. Consider the North American Mesoscale
(NAM), which is the placeholder for the official NWS operational mesoscale NWP model for
the North American domain. On 20 June 2006, the NAM representative model switched
from the hydrostatic Eta to the Weather Research and Forecasting (WRF)-Non-hydrostatic Mesoscale
Model (NMM), a change in both the model dynamical formulation and modeling framework.
Then, on 1 October 2011, the NAM representative model switched to NOAA Environmental
Modeling System Non-hydrostatic Multiscale Model on the B-grid (NEMS-NMMB) resulting in
changes to the model framework (WRF to NEMS) and model discretization (change from
Arakawa E to B grid) (Appendix C).

The NWS uses multiple linear regression (MLR) (with forward selection) applied to opera-
tional NWP model predictors and corresponding weather observations (target) to derive MOS
equations to support forecast operations [43]. The NWS provides high-resolution gridded
MOS products which include a 3-h probability of thunderstorms [45] and thunderstorm
probability forecasts as part of the NWS Localized Aviation Model Output Statistics Program
(LAMP) [46].

Logistic regression is a method to relate the predicted probability pj of one member of a binary
target to the jth set of n predictors/features �1, �2, ….., ��  to the following nonlinear equation:
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exp b b x b x b x
=

+ - - - -¼- (6)

The regression parameters are determined via the method of maximum likelihood [28].

Logistic regression models were used by [47] to develop MOS equations to generate probability
of thunderstorms and the conditional probability of severe thunderstorms in twelve 7200
km2 regions at 6-h projections out to 48-h in the Netherlands. The NWP output was provided
by both the High-Resolution Limited-Area Model (HIRLAM) and the European Centre for
Medium-Range Weather Forecasts (ECMWF) NWP model. The Surveillance et d’Alerte Foudre
par Interférométrie Radioélectrique (SAFIR) lightning network provided the target data.
Verification results suggest that the prediction system possessed good skills.

Artificial intelligence (AI) involves the use of computer software to reproduce human cognitive
processes such as learning and decision making [1, 48]. More recently, the term machine learning
(ML) is used to describe the development of computer systems that improve with experience
[1, 49]. Specific AI/ML techniques involving the post-processing of NWP output include expert
systems [50], adaptive boosting [51], artificial neural networks [52, 53], and random forests [31].

A random forest [54] is a classifier resulting from an ensemble/forest of tree-structured
classifiers, whereby each tree is developed from independent random subsamples of the data
set (including a random selection of features from which the optimum individual tree
predictors are selected) drawn from the original training set. The generalization error (which
depends on individual tree strength and tree-tree correlations) convergences to a minimum as
the number of trees becomes large, yet overfitting does not occur owing to the law of large
numbers. After training, the classifier prediction is the result of a synthesis of the votes of each
tree.

In one study, selected thermodynamic and kinematic output from an Australian NWP model
served as input for an expert system using the decision tree method to assess the likelihood of
thunderstorms and severe thunderstorms [50]. Further, an artificial neural network model to
predict significant thunderstorms that require the issuance of the Convective SIGMET product
(called WST), issued by the National Weather Service’s Aviation Weather Center, for the 3–7 h
period after 1800 UTC; the model demonstrated skill, including the ability to narrow the WST
outlook region while still capturing the subsequent WST issuance region [52]. Logistic
regression and random forests were used to develop models to predict convective initiation
(CI) ≤1 h in advance. The features/predictors included NWP output and selected Geostationary
Operational Environmental Satellite (GOES)-R data. The performance of these models was an
improvement of an earlier model developed based on GOES-R data alone [31].

3.4. Classical statistical and artificial intelligence/machine learning techniques

Statistical methods not involving the use of NWP model output (classical statistical) that have
been used to predict thunderstorm occurrence include multiple discriminate analysis (MDA),
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scatter diagrams, and multiple regression. Corresponding AI/ML techniques include expert
systems, artificial neural networks, and logistic regression.

MDA is essentially a form of multiple linear regression used to predict an event. In particular,
a discriminant function relates a nonnumerical predictand to a set of predictors; the value of
the function that distinguishes between event groups [1, 55]. An MDA was used to obtain 12
h prediction functions to distinguish between the following two or three member groups
within selected domains in portions of the Central and Eastern USA: thunderstorm/no-
thunderstorm, thunderstorm/severe thunderstorm, and thunderstorm/severe
thunderstorm/no-thunderstorm. The verification domains were within 1° latitude radius
relative to the position of the data source that provided the predictor variables. The MDA
prediction system provided skill in the 0-12 h period [55].

In one study, the utility of both a graphical method and multiple regression was tested to
predict thunderstorms [56]. The graphical method involved scatter diagrams that were used
to analyze multiple pairs of atmospheric stability index parameters in order to discover any
diagram(s) whereby the majority of thunderstorm occurrence cases were clustered within a
zone while the majority of the non-thunderstorm occurrence cases were outside of the zone.
Two such diagrams were found—scatter diagrams of Showalter index versus Total Totals
index, and Jefferson’s modified index versus the George index. The multiple regression
technique involved the stepwise screening of 274 potential predictors to 9 remaining. Both
prediction models provided thunderstorm predictions in probabilistic terms. Objective
techniques were used to convert probabilistic predictions to binary predictions for the purpose
of verification. Results indicate that the multiple regression model performed better.

An expert system is a form of artificial intelligence that attempts to mimic the performance of
a human expert when making decisions. The expert system includes a knowledge base and an
inference engine. The knowledge base contains the combination of human knowledge and
experience. Once the system is developed, questions are given to the system and the inference
engine uses the knowledge base and renders a decision [57]. An expert system was developed
using the decision tree method to forecast the development of thunderstorms and severe
thunderstorms [58]; the tree was based on physical reasoning using the observation of
meteorological parameters considered essential for convective development. An expert
system named Thunderstorm Intelligence Prediction System (TIPS) was developed to predict
thunderstorm occurrence [59]. Selected thermodynamic sounding data from 1200 UTC and
forecaster assessment of likely convective triggering mechanisms were used to forecast
thunderstorm occurrence for the subsequent 1500–0300 UTC period. Critical values of five (5)
separate atmospheric stability parameters for thunderstorm occurrence and corresponding
consensus rules served as the knowledge base. The forecaster answer regarding trigger
mechanism and the values of the stability parameters served as input to the inference engine,
which interrogated the knowledge base and provided an answer regarding future thunder-
storm occurrence. Verification of TIPS revealed utility.

The artificial neural network (ANN) has been used to predict thunderstorms. Thermodynamic
data from Udine Italy rawinsondes, surface observations, and lightning data were used to
train/optimize an ANN model to predict thunderstorms 6 h in advance over a 5000-km2 domain
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in the Friuli Venezia Giulia region [60]. An ANN model was developed (also using thermo-
dynamic data) to predict severe thunderstorms over Kolkata India during the pre-monsoon
season (April–May) [61].

Logistic regression was used to develop a binary classifier to predict thunderstorms 6–12 h in
advance within a 6825–km2 region in Spain. A total of 15 predictors (combination of stability
indices and other parameters) were chosen to adequately describe the pre-convective envi-
ronment. The classifier generated satisfactory results on the novel data set [62].

A limitation of classical statistics to weather prediction is that utility is bimodal in time;
confined to very short time periods (less than a few hours) or long time periods (10 days) [28].
The utility of AI/ML techniques without NWP may not be as restrictive. Convective storm
prediction accuracies associated with expert systems may be similar to that of NWP models
[36].

4. The utility of post-processing NWP model output with artificial neural
networks to predict thunderstorm occurrence, timing, and location

The rapid drop in prediction/forecast accuracy per unit time for classical statistical techniques
renders it less than optimal for thunderstorm predictions over time scales greater than
nowcasting (≤ 3 h).

Predicting thunderstorms with the use of deterministic NWP models allows for the prediction
of atmospheric variables/parameters in the ambient environment that directly influence
thunderstorm development. As discussed previously, limitations of NWP models include
predictability limitations owing to a chaotic atmosphere and inherent model error growth [13,
14, 23]. NWP model ensembles attempt to account for the uncertainty in the NWP model’s
initial condition which contributes to predictability limitations in NWP models [40]. The post-
processing of NWP model ensembles can generate useful probabilistic thunderstorm output
[42]. However, there is a much greater computational cost to generate an ensemble of deter-
ministic runs relative to a single run. The post-processing of output from a single deterministic
NWP model can improve skill by minimizing certain systematic model biases, yet predicta-
bility limitations associated with single deterministic NWP model output remain.

The authors explored the use of the artificial neural network (ANN) to post-process output
from a single deterministic NWP model in an effort to improve thunderstorm predictive skill,
based on an adjustment to the author’s previous research [53]. As mentioned earlier, this
approach involves a much lower computational cost relative to model ensembles. In particular,
the single NWP model used in the development of the thunderstorm ANN (TANN) models
discussed in this chapter is the 12-km NAM (North American Mesoscale), which refers to either
the Eta, NEMS-NMMB, or WRF-NMM model (only one model used at a time; see Appendix
C). The model integration cost to run the 21-member SREF ensemble would be of the order of
20 times the cost required to run the 12-km NAM (Israel Jirak 2016, personal communication.)
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Given that ANN was developed to capture the parallel distributed processing thought to occur
in the human brain and has tremendous pattern recognition capabilities [63–65], we posit that
the ANN will learn the limitations/errors associated with a single NWP deterministic model
solution to generate skillful forecasts, notwithstanding NWP predictability limitations. Thus,
AI/ML rather than NWP model ensembles would be utilized to deal with atmospheric chaos.
The remainder of this chapter focuses on the development of ANN models to predict thun-
derstorms (TANN) that are part of the ongoing research.

5. Artificial neural network models to predict thunderstorms within three
South Texas 400-km2 domains based solely on a data set within the same
domain of each

In an earlier study [53], a thunderstorm ANN (TANN) was developed to predict thunderstorm
occurrence in three separate 400-km2 square (box) domains in South Texas (USA), 9, 12, and
15 h (+/−2 h) in advance, by post-processing 12-km NWP model output from a single deter-
ministic NWP model (Appendix C) and 4-km sub-grid-scale output from soil moisture
magnitude and heterogeneity estimates. A framework was established to predict thunder-
storms in 286 box domains (Figure 1), yet predictions were only performed for three. The three
box regions were strategically located to access model performance within the Western Gulf
Coastal Plain region (boxes 103 and 238), the more arid Southern Texas Plains region (box 73),
and within the region with the greatest amount of positive target data/thunderstorm occur-
rences based on CTG lightning density (box 238.) A skillful model was envisioned based on
the combination of the deterministic future state of ambient meteorological variables/param-
eters related to thunderstorm development and sub-grid-scale data related to CI. TANN
models were trained with the foregoing NWP model output and sub-grid data as predictors
and corresponding CTG lightning data as the target. Each TANN model was trained using the
feed-forward multi-layer perceptron topology with one hidden layer, the log-sigmoid and
linear transfer functions in the hidden and output layers, respectively, and the scaled conjugate
gradient (SCG) learning algorithm. The SCG algorithm makes implicit use of the second-order
terms of the Hessian, searches the weight space/error surface in conjugate directions, avoids
problems associated with line searches, and converges more efficiently than gradient descent
[66]. The nomenclature X-Y-Z was used to describe the topology, where X, Y, and Z are the
number of neurons in the input, hidden, and output layers, respectively. The data set consisted
of a training/validation set (2004–2006; 2009–2012) and a testing set (2007–2008) for final
performance and comparison with human forecasters and MLR. For each TANN model
variant, the number of neurons in the hidden layer was determined iteratively For Y hidden
layers, where � = 1 − 10, 12, 15, 17, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 , the TANN model
was trained 50 times. After each training, receiver operating characteristic (ROC) curves were
generated to determine the optimal threshold, defined as the case where the Peirce Skill Score
(PSS) was greatest [67]. The trained ANN with optimal threshold was then used to make
predictions on the testing set (2007–2008); the corresponding performance results were
calculated. The mean PSS of the 50 results from both the training and testing sets, for each Y,
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was archived. The chosen Y corresponded to the least number of hidden layer neurons with a
PSS standard error which overlaps the standard error associated with the maximum PSS. Once
Y is chosen, the performance results of the TANN are simply the mean of the 50 runs previously
archived that corresponds to the chosen Y.

Figure 1. TANN and TANN2 grid domain. This grid is represented as 286 20  km× 20 km regions (boxes). The label
inside each box is the identification number (ID). The boxes with ID values in larger font (73, 103, and 238) are the
subject of this study. Image from Collins and Tissot [53].

Eighteen (18) TANN classifiers were developed with half based on a reduced set of predictors/
features due to feature selection (FS) and the other half using the full set of 43 potential
predictors. FS involves a determination of the subset of potential predictors that describes
much of the variability of the target/predictand. This is very important for very large dimen-
sional models which may suffer from the curse of dimensionality, which posits that the amount
of data needed to develop a skillful data-driven model increases exponentially as model
dimension increases linearly [68]. When the features in the subset generated by the FS method
are used to train an ANN model, it is important that such features are both relevant and non-
redundant. Irrelevant features can adversely affect ANN model learning by introducing noise,
and redundant features can result in reduced ANN model predictive skill by increasing the
likelihood of convergence on local minima on the error surface during training [69]. The FS
technique used was correlation-based feature selection (CFS) [70–72]. CFS is a filtering-based FS
technique, meaning that statistical associations between the features and the target are assessed
outside of the model. Specifically, CFS uses an information theory-based heuristic known as
symmetric uncertainty to assess feature-target and feature-feature correlations to assess
relevance and redundancy, respectively. The search strategy is the Best First search with a
stopping criterion of five consecutive non-improving feature subsets.

The optimized TANN binary classifiers were evaluated on a novel data set (2007–2008), and
performance was compared to MLR-based binary classifiers, and to operational forecasts from
the NWS (National Digital Forecast Database, NDFD, Appendix D).
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The MLR models were developed via stepwise forward linear regression (SFLR). For each MLR
model, the SFLR process began with an empty set of features (constant value y = β0. At each
subsequent forward step, a predictor is added (from the list of 36 predictors in Tables 2 and
3, less the predictors already chosen) based on the change in the value of the Akaike informa-
tion criterion (AIC) [73], while also considering removal of previously selected predictors
based on the same criterion. The optimal MLR model chosen has the smallest AIC which is
essentially a trade-off between model size and accuracy based on the training data. The
MATLAB® function stepwiselm was used to perform SFLR to determine the regression equation
coefficients. The resultant MLR models in this study are of the form:

0 1

k
i j ij ij
y xb b e

=
= + +å (7)

where yi is the ith predictand response, βj is the jth regression coefficient, β0 is a constant, xij is
the ith observation for the jth predictor, for j = 1, …, k. Finally, εi represents error. Each MLR
model was transformed into a binary classifier using the same method used in ANN classifier
development, except that each MLR model was calibrated on the entire training sample to
determine the coefficients, unlike ANN calibration which involved the splitting of the training
sample into training and validation data sets. (However, one could argue that the ANN is also
using the entire training sample as the validation set is inherently necessary to properly
calibrate a model.)

The results were mixed—the TANN, MLR, and human forecasters performed better than the
other two depending on the domain, prediction hour, and performance metric used. Results
revealed the utility of an automated TANN model to support forecast operations with the
limitation that a larger number of individual ANNs must be calibrated in order to generate
operational predictions over a large area. Further, the utility of sub-grid-scale soil moisture
data appeared limited given the fact that only 1/9 of the TANN models with reduced features
retained any of the sub-grid parameters as a feature. The NWP model convective precipitation
(CP) feature was retained in all the nine feature selection TANN models, suggesting that CP
adequately accounted for the initiation of sub-grid-scale convection. This result is consistent
with another study [47] which found that model CP was the most relevant predictor of
thunderstorm activity.

6. Artificial neural network models to predict thunderstorms within three
South Texas 400-km2 domains based on data set from two-hundred and
eighty-six 400-km2 domains

With respect to TANN skill, the endeavor to predict thunderstorms in a small domain relative
to domains used in other studies restricted the amount of CG lightning cases. A large number
of thunderstorm cases would be beneficial to the model calibration and verification process;
the amount of target data in [53] may have been insufficient to train this data-driven model
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with sufficient skill owing to the curse of dimensionality [67]. Further, the method of training/
optimizing TANN models for each 400-km2 domain limits operational applicability since it
would require the development of literally thousands of TANN models at a country scale. In
order to retain thunderstorm predictions in 400-km2 domains while increasing predictive skill,
a new approach was developed (TANN2), whereby for each prediction hour (9, 12, 15), a single
TANN model is trained over all two-hundred and eighty six 400-km2 continuous domains.
This approach dramatically increased the amount of positive target data (thunderstorm cases)
and total cases/instances. Table 1 depicts the quantity of data utilized in this project. The total
number of cases over the study period was 1,148,576 with 939,510 cases used for model
calibration and 209,066 cases contained in the 2007–2008 testing set.

Prediction hour Total instances (training sample) Positive target data Percent positive target

9 663,519 22,139 3.3

12 646,073 16,904 2.6

15 659,801 12,682 1.9

Table 1. Quantity of data available to train TANN2 models.

Relative to the previous study [53], only the NWP model and Julian date predictor variables
(features) were retained (resulting in 36 potential features used in this study; see Tables 2 and
3.) Given that in [53], only one sub-grid parameter was chosen for only 1/9 of the box/prediction
hour combinations, and that the model including this sub-grid-scale parameter did not result
in classifier performance improvement, the utility of the sub-grid-scale data appeared very
limited. As mentioned in [53], the NWP model CP parameter was a ubiquitous output of the
FS technique and thus considered a skillful predictor of convection. Physically, it was surmised
that CP adequately accounted for the effects of sub-grid-scale convection. The use of FS was
retained in order to eliminate irrelevant and redundant features to improve model skill and to
reduce model size. The reduction in model size/dimension (owing to FS) and the increase in
both the training data set and the amount of target CG lightning cases are expected to result
in a more accurate/skillful model when considering the curse of dimensionality.

Abbreviation Description (Units) Justification as thunderstorm predictor

PWAT Total precipitable water

(mm)

Atmospheric moisture

proxy

MR850 Mixing ratio at 850 hPa

(g kg−1)

Lower level moisture necessary for convective cell to reach

horizontal scale ≥4 km in order to overcome dissipative effects [84]

RH850 Relative humidity at 850 hPa

(%)

When combined with CAPE, predictor of subsequent thunderstorm

location independent of synoptic pattern [85]

CAPE Surface-based convective

available potential energy

(J kg−1)

Instability proxy; the quantity 2���� 0.5 is the theoretical limit

of thunderstorm updraft velocity [11]
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Abbreviation Description (Units) Justification as thunderstorm predictor

CIN Convective inhibition (J kg−1)
Surface-based convective updraft magnitude must exceed (���)0.5
for parcels to reach level of free convection [11]

LI Lifted index (K) Atmospheric instability proxy; utility in thunderstorm prediction

[86]

ULEVEL,VLEVEL U,V wind components at

surface, 850 hPa (LEVEL = 

surface, 850 hPa) (ms−1)

Strong wind can modulate or preclude surface heterogeneity

induced mesoscale circulations [87, 88]

VVLEVEL Vertical velocity at 925, 700,

and 500 hPa (LEVEL = 925,

700, 500 hPa) (Pa s−1)

Account for mesoscale and synoptic scale thunderstorm triggering

mechanisms (sea breezes, fronts, upper level disturbances) that are

resolved by the NAM

DROPOFFPROXYPotential temperature dropoff

proxy (K)

Atmospheric instability proxy; highly sensitive to CI [89]

LCL Lifted condensation level (m) Proxy for cloud base height; positive correlation between cloud base

height and CAPE to convective updraft conversion efficiency [90]

T_LCL Temperature at the LCL (K) T_LCL ≥ −10°C essential for presence of supercooled water in

convective cloud essential for lightning via graupel-ice crystal

collision mechanism [91]

CP Convective precipitation

(kg m−2)

By-product of the Betts-Miller-Janjic convective parameterization

scheme [92] when triggered; proxy for when the NAM anticipates

existence of sub-grid-scale convection

VSHEARS8 Vertical wind shear: 10 m to

800 hPa layer (×10−3 s−1)

The combination of horizontal vorticity (associated with ambient 0–2

km vertical shear), and density current (e.g., gust front) generated

horizontal vorticity (associated with 0–2 km vertical shear of

opposite sign than that of ambient shear can trigger new convection

[93]

VSHEAR86 Vertical wind shear: 800–600 hPa

layer

(×10−3 s−1)

Convective updraft must exceed vertical shear immediately above

the boundary layer for successful thunderstorm development [58,

89]

Table 2. Description of NAM predictor variables/parameters used in TANN and TANN2 (from [53]).

Abbreviation Description (units) Justification as thunderstorm predictor

ULEVEL,VLEVEL U,V wind at the surface,

900, 800, 700, 600, 500

hPa levels (LEVEL=

surface, 900, 800, 700,

600, 500) (ms−1)

Thermodynamic profile modification owing to veering

of wind (warming) or backing of wind (cooling); backing

(veering) of wind in the lowest 300 hPa can

suppress (enhance) convective development [94]

HILOW Humidity index (°C) Both a constraint on afternoon convection and an

atmospheric control on the interaction between soil
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Abbreviation Description (units) Justification as thunderstorm predictor

moisture and convection [94]

CTP Proxy Proxy for convective

triggering potential

(dimensionless)

Both a constraint on afternoon convection and an

atmospheric control on the interaction between soil

moisture and convection [95]

VSHEARS7 Vertical wind shear:

surface to 700 hPa

layer (×10−3 s−1)

Strong vertical shear in the lowest 300 hPa

can suppress convective development [94]

VSHEAR75 Vertical wind shear: 700

to 500 hPa layer (×10−

3s−1)

Convective updraft must exceed vertical shear immediately

above the boundary layer for successful

thunderstorm development [58, 89]

Table 3. Description of NAM initialization variables/parameters used in TANN and TANN2 (from [53]).

With respect to model training, validating, optimizing, and testing, the same strategy was
utilized as in [53], with two differences. First, when determining the optimal number of hidden
layer neurons, the range of neurons was extended to Y = {1−10, 12, 15, 17, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80, 90, 100, 125, 150, 200}. Second, before each split of the training sample into training
and validation components, a training set of the same size of the total training data available
was drawn randomly from the training set with replacement. This technique allows for an
exploration of training data set variability.

Figure 2. Determination of the optimal number of hidden layer neurons (Y) for the 12 h TANN2 36-Y-1 model (all 36
potential predictors used). Each point and corresponding error bar represents the mean Peirce Skill Score (PSS) and
standard error resulting from 50 iterations with results computed based on the training portions of the training sample
including the generation of ROC curves based on the same data; the selected thresholds/models correspond to the
maximum PSS along the respective ROC curve. The number of hidden layer neurons chosen is the least number of
hidden layer neurons with a PSS standard error which overlaps the standard error corresponding to the maximum
PSS. Thus, in this example, 150 hidden layer neurons corresponds to the maximum mean PSS = 0.694 ± 0.005 (within
the red circle.) The performance of the TANN2 model with 125 hidden neurons, PSS = 0.689 ± 0.005, overlapped with
the 150 hidden neuron confidence interval and hence was selected as the optimum number of hidden neurons, thus
TANN 36-125-1.
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Figure 2 depicts an example of how the optimal Y is chosen. The light red highlight identifies
the number of hidden neurons leading to the largest mean PSS while the green highlight
indicates the number of hidden neurons selected as the two cases standard errors overlap.
Table 4 depicts the optimal topologies for the TANN2 X-Y-1 and 36-Y-1 models.

With respect to FS, an exhaustive search involving the 36 potential features, although ideal,
would have been computationally unrealistic. The FS methods used for this work were filter
based, information theoretic, and designed to choose feature subsets relevant to the corre-
sponding target while non-redundant to each feature in the subset. The methods used were
multi-variate in the sense that feature-feature relationships were also considered, rather than
the univariate strategy of assessing only feature-target relationships sequentially. The methods
used are CFS (described earlier) and minimum Redundancy Maximum Relevance (mRMR) [74].
The mRMR classic function from the mRMRe package as part of the R programming language
[75] was used to calculate mRMR. The following is an explanation of the mRMR technique in
the context of mRMR classic as described in [76]: Consider r(x, y) the correlation coefficient
between features x and y. The mRMR technique uses the information-theoretic parameter
known as mutual information (MI), defined as

( ) ( )2 11 , ,
2
-

- =r x y MI x y ln (8)

Let t be the target/predictand and � = �1, ….., ��  represent the set of n features. We desire to

rank X such that we maximize relevance (maximize MI with t) and minimize redundancy
(minimize mean MI with all previously selected features.) First, we selected xi, the feature with
the greatest MI with t:

( ),
i

i i
x X

x arg  max MI x t
Î

= (9)

Thus, we initialize the set of selected features S with xi. For each subsequent step j, features are
added to S by choosing the feature with the greatest relevance with t and lowest redundancy
with previously selected features to maximize score Q:

( ) ( )1, ,
k

j j j k
x S

Q MI x t MI x x
S

Î

= - å (10)

The mRMR classic function requires the user to select the size of S, which we chose to equal
the maximum number of features. We then choose the subset by choosing only those features
corresponding to Qj > 0.

Table 4 depicts the reduced set of features chosen via CFS and mRMR. Table 5 summarizes
the resulting TANN2 topologies.
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Prediction hour CFS mRMR

9 h PWAT,

CP

U800(0), HILOW, CP, VV925, VV500 RH850, CIN, LCL, T_LCL, CAPE,

VSHEAR86, V600(0), PWAT, CTP_PROXY, VSHEAR75(0)

12 h CP CP, VV500 ,VV925, PWAT, RH850, CTP_PROXY, CAPE, VSHEAR86,

HILOW, DROPOFFPROXY, U800(0), VV700

15 h CP CP, LI, CAPE,VV925, PWAT,

RH850, CTP_PROXY, VV700 V500(0), USFC(0), VV500, HILOW

Table 4. Variables/parameters chosen by the CFS and mRMR feature selection techniques; variables followed by zero
depict NAM initialization variables.

Prediction hour Optimal 36-Y-1 topology Optimal X-Y-1 topology (CFS) Optimal X-Y-1 topology (mRMR)

9 36-150-1 2-60-1 15-100-1

12 36-125-1 1-1-1 12-90-1

15 36-70-1 1-1-1 12-90-1

Table 5. Optimal TANN2 topologies based on iterative method to determine the optimal number of hidden layer
neurons.

Forecast Observed

Yes No Total

Yes a (hit) b(false alarm) � + �
No c(miss) d(correct rejection) � + �
Total a + c b + d � + � + � + � = �
Table 6. Contingency Matrix from which scalar performance metrics (Table 7) were derived (from [53]).

Performance metric (value range) Symbol Equation

Probability of detection [0,1] POD �/ � + �
False alarm rate [0,1] F �/ � + �
False alarm ratio [0,1] FAR �/ � + �
Critical success index [0,1] CSI �/ � + � + �
Peirce skill score [−1,1] PSS �� − �� / � + � � + �
Heidke skill score [−1,1] HSS 2 �� − �� / � + � � + � + � + � � + �
Yule’s Q (odds ratio skill score) [−1,1] ORSS �� − �� / �� + ��
Clayton skill score [−1,1] CSS �� − �� / � + � � + �
Gilbert skill score [−1/3,1] GSS � − �� / � + � + � − �� ; �� = � + � � + � /�
Table 7. Relevant scalar performance metrics for binary classifiers used to evaluate TANN2 and MLR Models and
NDFD (from [53]).
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Tables 6 and 7 depict the contingency matrix and the corresponding performance metrics for
binary classifiers used in this study.

Tables 8–11 depict the performance results of the TANN2 models, trained over all 286 boxes,
and applied to boxes 73, 103, 238, and 1–286 (all boxes.) For each skill-based performance metric
(PSS, CSI, HSS, ORSS, CSS, GSS), the Wilcoxon Sign Rank Test was used to determine whether
TANN2 median performance (based on the 50 runs on the 2007–2008 testing set corresponding
to the optimal number of hidden neurons) was statistically significantly different (5% level)
than the corresponding MLR model and human forecaster performances. The relevant human
forecasters were operational forecasters from the National Weather Service (NWS) (Appendix
D). A summary of the results follow.

There is a significant improvement in the value of selected performance metrics for TANN2
over TANN in absolute terms. For example, with respect to the TANN models developed
without FS, the PSS metric for the TANN2 models increased over the corresponding TANN
models, by approximately 10–70%, 55–74%, and 10–120%, respectively, for boxes 238, 103, and
73.

When comparing TANN2 model performance relative to the operational forecasters (NDFD),
and defining superior performance as statistically significant superior performance with
respect to at least one skill-based performance metric (PSS, CSI, HSS, ORSS, CSS, and GSS),
the results are as follows: For box 238, at least one of the TANN2 model performances exceeded
that of the forecasters (NDFD), for all three prediction hours; all three TANN2 models (TANN
36-150-1, TANN 2-60-1 CFS, and TANN 15-100-1 mRMR) performed superior to NDFD for
prediction hour 9, both TANN 36-150-1 and TANN 2-60-1 CFS performed better for prediction
hour 12, and only TANN 2-6-1 CFS performed better for prediction hour 15. With respect to
box 103, results were mixed. None of the TANN2 models performance was superior to NDFD
for prediction hour 9, the TANN 36-125-1 and TANN 12-90-1 mRMR performed better for
prediction hour 12, and only the TANN 1-1-1 CFS performed superior to the forecasters for
prediction hour 15. Results were again mixed with regard to box 73. TANN 36-150-1 and TANN
15-100-1 mRMR performed superior to NDFD for prediction hour 9, none of the TANN2
models performed better than NDFD for prediction hour 12, and only TANN 36-70-1 per-
formed superior to NDFD for prediction hour 15.

Conducting the same analysis with respect to TANN2 model compared to MLR, namely
assessing statistically significant superior performance with respect to at least one skill-based
performance metric, the results are as follows: For box 238, all three TANN2 models performed
better than MLR at 9 h, none of the TANN2 models performed better at 12 h, and only the
TANN 1-1-1 CFS model performed superior to MLR at 15 h. Regarding box 103, the TANN
36-125-1 and TANN 15-100-1 mRMR performed better than MLR for both 9 h and 12 h, while
TANN 36-70-1 and TANN 1-1-1 CFS performed better than MLR for 15 h. For box 73, only
TANN 36-150-1 performs better than MLR at 9 h, only TANN 1-1-1 CFS performs better at both
12 h and 15 h.
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POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.94 0.80 0.30 0.63 0.20 0.24 0.94 0.19 0.13

TANN 2-60-1 CFS 0.98 0.81 0.33 0.65 0.19 0.22 0.98 0.19 0.13

TANN 15-100-1 mRMR 0.91 0.80 0.30 0.63 0.20 0.23 0.93 0.19 0.13

MLR 0.96 0.80 0.32 0.64 0.19 0.23 0.96 0.19 0.13

9 h Operational public forecasts

NDFD 0.94 0.81 0.35 0.59 0.19 0.21 0.93 0.18 0.12

12 h Model predictions

TANN 36-125-1 0.81 0.93 0.28 0.53 0.07 0.09 0.83 0.06 0.04

TANN 1-1-1 CFS 0.56 0.93 0.20 0.36 0.06 0.08 0.67 0.05 0.04

TANN 12-90-1 mRMR 0.75 0.94 0.32 0.42 0.05 0.06 0.71 0.05 0.03

MLR 0.88 0.93 0.30 0.57 0.07 0.09 0.88 0.07 0.05

12 h Operational public forecasts

NDFD 0.67 0.92 0.28 0.39 0.07 0.08 0.67 0.06 0.04

15 h Model predictions

TANN 36-70-1 0.64 0.95 0.23 0.41 0.05 0.06 0.71 0.04 0.03

TANN 1-1-1 CFS 0.45 0.91 0.08 0.37 0.08 0.13 0.81 0.08 0.07

TANN 12-90-1 mRMR 0.64 0.96 0.28 0.36 0.04 0.04 0.63 0.03 0.02

MLR 0.73 0.95 0.27 0.46 0.05 0.06 0.76 0.04 0.03

15 h Operational public forecasts

NDFD 0.92 0.92 0.23 0.69 0.08 0.11 0.95 0.07 0.06

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denotes TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the NDFD (MLR) values.

Table 8. Performance results of TANN X-Y-Z models for box 238 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.93 0.87 0.31 0.62 0.13 0.15 0.93 0.12 0.08

TANN 2-60-1 CFS 0.90 0.88 0.33 0.57 0.12 0.14 0.89 0.11 0.07

TANN 15-100-1 mRMR 0.87 0.87 0.29 0.56 0.13 0.15 0.87 0.12 0.08

MLR 0.97 0.88 0.36 0.61 0.12 0.14 0.96 0.12 0.08

9 h Operational public forecasts

NDFD 1.00 0.85 0.31 0.69 0.15 0.19 1.00 0.15 0.10
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POD FAR F PSS CSI HSS ORSS CSS GSS

12 h Model predictions

TANN 36-125-1 0.80 0.95 0.23 0.58 0.05 0.07 0.87 0.05 0.04

TANN 1-1-1 CFS 0.50 0.96 0.18 0.32 0.04 0.05 0.64 0.03 0.03

TANN 12-90-1 mRMR 0.90 0.95 0.27 0.63 0.05 0.07 0.92 0.05 0.04

MLR 0.80 0.95 0.25 0.55 0.05 0.06 0.85 0.05 0.03

12 h Operational public forecasts

NDFD 0.80 0.94 0.24 0.56 0.06 0.08 0.86 0.06 0.04

15 h Model predictions

TANN 36-70-1 0.83 0.96 0.21 0.62 0.04 0.05 0.90 0.03 0.03

TANN 1-1-1 CFS 0.50 0.92 0.06 0.44 0.07 0.12 0.89 0.07 0.06

TANN 12-90-1 mRMR 0.83 0.97 0.29 0.55 0.03 0.04 0.86 0.03 0.02

MLR 0.83 0.97 0.24 0.60 0.03 0.05 0.88 0.03 0.02

15 h Operational public forecasts

NDFD 1.00 0.97 0.19 0.81 0.04 0.07 1.00 0.04 0.04

Values corresponding to each TANN X–Y–Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denote TANN X–Y–Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the corresponding NDFD (MLR).

Table 9. Performance results of TANN X-Y-Z models for box 103 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.94 0.81 0.22 0.71 0.19 0.25 0.96 0.19 0.14

TANN 2-60-1 CFS 0.94 0.85 0.30 0.64 0.14 0.18 0.95 0.14 0.10

TANN 15-100-1 mRMR 0.97 0.83 0.26 0.70 0.17 0.22 0.98 0.17 0.12

MLR 0.97 0.82 0.25 0.72 0.18 0.23 0.98 0.17 0.13

9 h Operational public forecasts

NDFD 0.91 0.83 0.26 0.65 0.16 0.21 0.93 0.16 0.12

12 h Model predictions

TANN 36-125-1 0.86 0.90 0.29 0.57 0.10 0.12 0.88 0.09 0.07

TANN 1-1-1 CFS 0.77 0.88 0.21 0.56 0.11 0.15 0.85 0.11 0.08

TANN 12-90-1 mRMR 0.91 0.91 0.35 0.56 0.08 0.10 0.90 0.08 0.05

MLR 0.68 0.10 0.13 1.00 0.10 0.07
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POD FAR F PSS CSI HSS ORSS CSS GSS

12 h Operational public forecasts

NDFD 0.91 0.86 0.23 0.68 0.14 0.19 0.94 0.14 0.11

15 h Model predictions

TANN 36-70-1 0.92 0.93 0.25 0.68 0.07 0.10 0.95 0.07 0.05

TANN 1-1-1 CFS 0.33 0.96 0.15 0.18 0.04 0.04 0.47 0.03 0.02

TANN 12-90-1 mRMR 0.83 0.96 0.34 0.47 0.04 0.05 0.79 0.04 0.02

MLR 0.92 0.94 0.30 0.62 0.06 0.07 0.93 0.05 0.04

15 h Operational public forecasts

NDFD 0.85 0.93 0.24 0.61 0.07 0.10 0.89 0.07 0.05

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denote TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the corresponding NDFD (MLR) value.

Table 10. Performance results of TANN X–Y–Z models for box 73 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.92 0.86 0.24 0.68 0.14 0.18 0.95 0.13 0.10

TANN 2-60-1 CFS 0.93 0.89 0.31 0.62 0.11 0.14 0.93 0.11 0.07

TANN 15-100-1 mRMR 0.93 0.87 0.27 0.66 0.13 0.17 0.94 0.12 0.09

MLR 0.92 0.87 0.27 0.65 0.13 0.16 0.94 0.12 0.09

12 h Model predictions

TANN 36-125-1 0.85 0.93 0.26 0.59 0.07 0.10 0.89 0.07 0.05

TANN 1-1-1 CFS 0.68 0.92 0.19 0.49 0.07 0.10 0.80 0.07 0.05

TANN 12-90-1 mRMR 0.88 0.94 0.31 0.58 0.06 0.08 0.89 0.06 0.04

MLR 0.88 0.93 0.27 0.61 0.07 0.09 0.90 0.07 0.05

15 h Model predictions

TANN 36-70-1 0.83 0.94 0.24 0.59 0.06 0.08 0.88 0.06 0.04

TANN 1-1-1 CFS 0.53 0.92 0.11 0.42 0.08 0.11 0.80 0.07 0.06

TANN 12-90-1 mRMR 0.81 0.95 0.30 0.51 0.05 0.06 0.82 0.04 0.03

MLR 0.88 0.95 0.28 0.59 0.05 0.07 0.89 0.05 0.04

Table 11. Performance results of TANN X–Y–Z models for all 286 boxes for the 2007–2008 independent data set and
corresponding comparisons to the NWS forecasters (NDFD), multi-linear regression (MLR) models.
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9-h Prediction 12-h Prediction 15-h Prediction

ORSS

Box 73 NDFD TANN 36-70-1

Box 103 NDFD NDFD

Box 238 TANN 2-60-1 TANN 36-125-1 NDFD

PSS

Box 73 TANN 36-150-1 NDFD TANN 36-70-1

Box 103 NDFD NDFD

Box 238 TANN 2-60-1 TANN 36-125-1 NDFD

HSS

Box 73 36-150-1 NDFD NDFD

Box 103 NDFD NDFD TANN 1-1-1

Box 238 TANN 1-1-1

Gray boxes indicate that a single performer did not distinguish itself.

Table 12. Best performers (based on the equitable ORSS, PSS, and HSS performance metrics) between the TANN2
models and NWS forecasters (NDFD) using the combination of Wilcoxon Sign Rank Tests (2 sided, 1 sample, 5%
significant level) to compare each TANN model to NDFD, and the Nemenyi post-hoc analyses of pairwise combination
of TANN2 models (5% significance level).

An alternative analysis was performed to determine the single best-performing classifiers for
each box and prediction hour based only on performance metrics PSS, HSS, and ORSS. HSS
and PSS are truly equitable and ORSS is asymptotically equitable (approaches equitability as

size of the data set approaches infinity) and truly equitable for the condition � + �� = 0.5 (see

contingency matrix.) [77]. Equitability includes the desirable condition whereby the perform-
ance metric is zero for random or constant forecasts. For each of the three performance metrics
and for each box and prediction hour combination, comparisons were made between the
TANN2 models and NDFD. Such a comparison was performed separately between the TANN2
models and MLR. The best performers were determined in the following manner: First, the
output from the Wilcoxon sign rank test was used to determine statistically significant differ-
ences between the TANN2 models and NDFD or MLR (Tables 8–10). Next, the Friedman rank
sum test was used to determine whether significant differences existed only between the three
TANN2 models. If differences existed, the Nemenyi post-hoc test [78] was performed to deter-
mine statistical significance between pairwise combinations of TANN2 models. The best
performer was based on a synthesis of the Wilcoxon and Friedman/Nemenyi results (see
Appendix E). The Friedman and Nemenyi post-hoc tests were performed using the fried-
man.test and posthoc.friedman.nemenyi.test functions from the Pairwise Multiple Comparison of
Mean Rank (PMCMR) package in the R programming language [74]. Results are depicted in
Tables 12 and 13. The results are mixed. With respect to comparisons between the TANN2
models and NDFD, the best performer is a function of the performance metric, box number,
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and prediction hour. The same is true for the TANN2 model-MLR comparisons. However, it
is noteworthy to mention that none of the TANN2 models based on the mRMR FS method
were determined to be the single best performer for 15 h (Tables 12 and 13).

9-h Prediction 12-h Prediction 15-h Prediction

ORSS

Box 73 MLR MLR TANN 36-70-1

Box 103 MLR

Box 238 TANN 2-60-1 MLR TANN 1-1-1

PSS

Box 73 MLR TANN 36-70-1

Box 103

Box 238 TANN 2-60-1 MLR MLR

HSS

Box 73 TANN 36-150-1 TAN 1-1-1 TAN 36-70-1

Box 103 TANN 1-1-1

Box 238 TANN 1-1-1

Gray boxes indicate that a single performer did not distinguish itself.

Table 13. Best performers (based on the equitable ORSS, PSS, and HSS performance metrics) between the TANN2
models and MLR using the combination of Wilcoxon Sign Rank Tests (2 sided, 1 sample, 5% significant level) to
compare each TANN model to MLR, and the Nemenyi post-hoc analyses of pairwise combination of TANN2 models
(5% significance level).

The increase in data as compared to the previous study [53] likely contributed to performance
enhancements. Figure 3 depicts the change in performance of the 36-Y-1 12 h model as a
function of training data used. Note that performance improvement was positively correlated
with the quantity of training data. This adds credence to the argument that the amount of data
in [53] may have been insufficient. Further, note that for ≤1% of available data (~6000 instances),
performance decreased after the number of neurons in the hidden layer (Y) exceeded 100,
possibly due to the curse of dimensionality. Figure 4 depicts the relationship between an
overfitting metric, defined as AUCval− AUCtrain /AUCtrain, and the number of hidden layer

neurons. Note that overfitting generally increases with the number of hidden layer neurons
when the training set is reduced to ≤ 10 of the total available training data, and particularly
apparent when only 1 of available, or about 6000 cases. In [53], only a few thousand cases were
available. This partially explains why the original TANN models are relatively smaller (Y ≤ 35)
than the TANN2 models. The ability to obtain similar performance while training on a smaller
portion of the data set would have allowed substantial gains in computational efficiency. ANNs
were trained using MATLAB® R2015b on several multi-core personal computers (PCs) and on
a computer cluster with compute nodes with two Xeon E5 with 10 core processors each and
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256 gigabytes (GB) of memory. For the full data set (Table 1), training times varied from less
than 1 h to more than two days per batch of 50 ANNs when increasing the number of hidden
layer neurons from 1 to 200. When reducing the size of the training set to 1%, training times
decreased to less than 3 min for each Y case (not shown.) evaluated. Reducing the size of the
training set to 10% of the full set decreased training times by about one order of magnitude
for each Y case.

Figure 3. 12 h 36-Y-1 TANN performance versus hidden layer neuron quantity (Y) as a function of the percentage of
total training data available.

Figure 4. 12 h 36-Y-1 TANN overfitting index versus hidden layer neuron quantity (see text).

With regard to data set size and composition, it was hypothesized that performance gains may
be obtained when artificially increasing the proportion of positive targets (CTG lightning
strikes) in the training set. All possible inputs were included and the total number of training
cases was maintained constant with positive and negative cases randomly selected (with
replacement) to create target vectors with 5, 10, 25, and 50% of CTG lightning strikes. Sub-
stantial increases in performance were obtained for the training sets for all prediction lead
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times; Figure 5 depicts the 12 h prediction example. Maximum PSS increased progressively
while increasing proportion of lightning strikes in the data set. However, as the percent of
positive targets was raised, the performance over the 2007–2008 independent testing de-
creased. Efforts are continuing to further modify the training of the TANN to improve
performance.

Figure 5. 12 h 36-Y-1 TANN performance versus hidden neuron quantity (Y) as a function of the proportion of positive
target (CG lightning) data in the training set.

7. Conclusion

We presented here the results of an ANN approach to the post processing of single determin-
istic NWP model output for the prediction of thunderstorms at high spatial resolution, 9, 12,
and 15 h in advance (TANN2.) ANNs were selected to take advantage of a large data set of
over 1 million cases with multiple predictors and attempt to capture the complex relationships
between the predictors and the generation of thunderstorms. This study represents an
adjustment to a previous ANN model framework, resulting in the generation of a significantly
larger data set. The larger data set allowed for more complex ANN models (by increasing the
number of neurons in the hidden layer). Three groups of TANN2 model variants were
generated based on two filtering-based feature selection methods (designed to retain only
relevant and non-redundant features) and one group based on models calibrated with all
predictors.

The skills of these TANN2 models within each of the three 400-km2 boxes were substantially
improved over previous work with the improvements attributed to the increase of the size of
the data set. TANN2 model performance was compared to that of NWS operational forecasters
and to MLR models. Results regarding the best-performing classifiers per prediction hour and
box were mixed. Several attempts were made to further improve model performance or
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decrease training time. Training the models using a small fraction of the data set reduced model
calibration time yet resulted in lower performance skill. Altering the target by artificially
boosting the proportion of positive outcomes (lightning strikes) resulted in substantial
performance improvements over the training sets but did not lead to substantial improvements
of performance on the independent 2007–2008 cases.

Given that the atmosphere is chaotic, or deterministic with highly sensitive dependence on the
initial condition, one future research plan includes the prediction of thunderstorms by the post-
processing of single deterministic NWP model output using ANN models that account for
chaotic systems [79]. Such a strategy would be an alternative to the state of the art practice of
using NWP model ensembles to account for the sensitive dependence on the initial condition.
In addition, another plan involves the development of ensemble ANN models [80]. Specifically,
an optimal TANN prediction can be developed by integrating output from 50 unique TANN
models.

Appendix A

The total mean mass of the atmosphere: 5.1480 × 1021g [81]

Total mol of dry air: 5.1480 × 1021g × 128.97gmol−1 = 1.777 × 1020mol
Total molecules of dry air: 1.777 × 1020mol × 6.02214 × 1023mol−1 = 1.0701 × 1044molecules
(Mass of dry air: 28.97gmol−1; Avogadro’s number: 6.02214 × 1023mol−1)

Appendix B

Version 1.04 of the HRRR uses the Advanced Research WRF (ARW) dynamic core within the
WRF modeling framework (version 3.4.1 WRF-ARW). The HRRR uses GSI 3D-VAR data
assimilation. With respect to parameterizations, the RRTM longwave radiation, Goddard
shortwave radiation, Thompson microphysics (version 3.4.1), no cumulus/convective param-
eterization, MYNN planetary boundary layer, and the rapid update cycle (RUC) land surface
model [33].

Appendix C

At any given time, only one NWP model was utilized in the TANN. Yet, three different
modeling systems were used, each during a unique time period—the hydrostatic Eta model
[82] (1 March 2004 to 19 June 2006), the Weather Research and Forecasting Non-hydrostatic
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Mesoscale Model (WRF-NMM) [83] (20 June 2006 to 30 September 2011), and the NOAA
Environmental Modeling System Non-hydrostatic Multiscale Model (NEMS-NMMB) (Octo-
ber 2011 to December 2013.)

Appendix D

NWS operational forecasts were obtained from the NWS National Digital Forecast Database [96]
(NDFD) [96], a database of archived NWS forecasts; the forecasts are written to a 5-km
coterminous USA (CONUS) grid (or to 16 pre-defined grid sub-sectors) and provided to the
general public in Gridded Binary Version 2 (GRIB2) format [97]. The forecasts for most of the
286 boxes (Figure 1) originated from the NWS Weather Forecast Office (WFO) in Corpus
Christi, Texas (CRP) in the USA.

Appendix E

The following are three examples to explain how the “best performers” where determined in
Tables 12 and 13.

Example 1: Table 12 (Determining the best performers between the three TANN model
variants and NDFD) Box 238 Prediction Hour 9 ORSS: Step 1: Based on the Wilcoxon Sign
Rank Test, the performer with the largest ORSS value was TANN 2-60-1, and that value (0.98)
was statistically significantly larger than the corresponding NDFD value (0.93) (Table 8). Step
2: Based on the Nemenyi post-hoc analysis of the pairwise combination of the three TANN
model variants, the TANN 2-60-1 ORSS value was statistically significantly different than the
corresponding ORSS values from the TANN 36-150-1 and TANN 15-100-1 models. Thus, the
best performer is TANN 2-60-1.

Example 2: Table 12 (Determining the best performers between the three TANN model
variants and NDFD) Box 103 Prediction Hour 12 PSS: Step 1: Based on the Wilcoxon Sign
Rank test, the performer with the largest PSS value was TANN 12-90-1, and that value (0.63)
was statistically significantly larger than the corresponding NDFD value (0.56) (Table 9). Step
2: Based on the Nemenyi post-hoc analysis of the pairwise combination of the three TANN
model variants, there was no statistically significant difference between the PSS values for
TANN 12-90-1 (0.63) and TANN 36-125-1 (0.58). Thus, there is no single best performer.

Example 3: Table 13 (Determining the best performers between the three TANN model
variants and MLR) Box 73 Prediction Hour 12 PSS: Step 1: Based on the Wilcoxon Sign Rank
Test, the performer with the largest PSS value was MLR, and that value (0.68) was statistically
significantly greater than the corresponding PSS values from each of the three TANN variants
(Table 10.) Thus, the best performer is MLR. No additional steps are required.
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