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Abstract

Artificial neural networks (ANN) mimic the function of the human brain and they
have  the  capability  to  implement  massively  parallel  computations  for  mapping,
function approximation, classification, and pattern recognition processing. ANN can
capture  the  highly  nonlinear  associations  between  inputs  (predictors)  and  target
(responses)  variables  and can adaptively learn the complex functional  forms.  Like
other  parametric  and  nonparametric  methods,  such  as  kernel  regression  and
smoothing  splines,  ANNs  can  introduce  overfitting  (in  particular  with  highly-
dimensional data, such as genome wide association -GWAS-, microarray data etc.) and
resulting predictions can be outside the range of  the training data.  Regularization
(shrinkage) in ANN allows bias of parameter estimates towards what are considered
to be probable. Most common techniques of regularizations techniques in ANN are
the Bayesian regularization (BR) and the early stopping methods. Early stopping is
effectively limiting the used weights in the network and thus imposes regularization,
effectively  lowering  the  Vapnik-Chervonenkis  dimension.  In  Bayesian  regularized
ANN  (BRANN),  the  regularization  techniques  involve  imposing  certain  prior
distributions on the model parameters and penalizes large weights in anticipation of
achieving smoother mapping.

Keywords: artificial neural network, Bayesian regularization, shrinkage, p>>n, predic-
tion ability

1. Introduction

The issue of dimensionality of independent variables (i.e. when the number of observations is
comparable to or larger than the sample size; small n big p; p>>n) has garnered much attention
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over the last few years, primarily due to the fact that high-dimensional data are so common
in up-to-date applications (e.g.  microarray data,  fMRI image processing,  next generation
sequencing, and many others assays of social and educational data). This issue is of particular
interest in the field of human molecular genetics as the growing number of common single
nucleotide polymorphisms (minor allele frequency > 0.01) available for assay in a single
experiment, now close to 10 million (http://www.genome.gov/11511175), is quickly outpacing
researchers’ ability to increase sample sizes which typically number in the thousands to tens
of thousands. Further, human studies of associations between molecular markers and any trait
of interest include the possible presence of cryptic relationships between individuals that may
not be tractable for use in traditional statistical models. These associations have been investi-
gated primarily using a naïve single regression model for each molecular marker and linear
regression models using Bayesian framework and some machine learning techniques typically
ignoring interactions and non-linearity [1]. Soft computing techniques have also been used
extensively to extract the necessary information from these types of data structures. As a
universal approximator, Artificial Neural Networks (ANNs) are a powerful technique for
extracting information from large data, in particular for p>>n studies, and provide a compu-
tational approach with the ability to optimize the learning algorithm and make discoveries
about functional forms in an adaptive approach [2, 3]. Moreover, ANNs offer several advan-
tages,  including  requiring  less  formal  statistical  training,  an  ability  to  perfectly  identify
complex nonlinear relationships between dependent and independent variables, an ability to
detect  all  possible  interactions  between  input  variables,  and the  availability  of  multiple
training algorithms [4]. In general, the ANN architecture, or “model” in statistical jargon, is
classified by the fashion in which neurons in a neural network are connected. Generally
speaking, there are two different classes of ANN architecture (although each one has several
subclasses).  These are feedforward  ANNs and recurrent  ANNs. Only Bayesian regularized
multilayer perceptron (MLP) feedforward ANNs will be discussed in this chapter.

This chapter begins with introducing of multilayer feedforward architectures. The regulari-
zation using other backpropagation algorithms to avoid overfitting will be explained briefly.
Then Bayesian regularization (BR) for overfitting, Levenberg-Marquardt (LM) a training
algorithm, BR, optimization of hyper parameters, inferring model parameters for given value
of hyper parameters, pre-processing of data will be considered. Chapter will be ended with a
MATLAB example for Bayesian Regularized feedforward multilayer artificial neural network
(BRANN).

2. Multilayer perceptron feedforward neural networks

The MLP feedforward neural network considered herein is the most popular and most widely
used ANN paradigm in many practical applications. The network is fully connected and
divided into layers as depicted in Figure 1. In the left-most layer, there are input variables. The
input layer consists of pi (p=4 in Figure 1 for illustration) independent variables and covariates.
Then input layer is followed by a hidden layer, which consists of S number of neurons (S=3 in
Figure 1), and there is a bias specific to each neuron. Algebraically, the process can be repre-
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sented as follows. Let ti (the target or dependent variable) be a trait (quantitative or qualitative)
measured in individual i and let pi= {pij} be a vector of inputs (independent variables) or any
other covariate measured for each individual. Suppose there are S neurons in the hidden layer.
The input into neuron k (k=1, 2,…, S) prior to activation, as described in greater detail later in
this chapter, is the linear function w’k pi, where w’k = {wkj} is a vector of unknown connection
strengths (slope in regression model) peculiar to neuron k, including a bias (e.g. the intercept
in regression model). Each neuron in the hidden layer performs a weighted summation (ni in
Figure 1) of the inputs prior to activation which is then passed to a nonlinear activation function�� ��(1) + ∑� = 1� ����� . Suppose the activation function chosen in the hidden layer is the

hyperbolic tangent transformation �(��) = ��� − �−����� + �−�� , where f(xi) is the neuron emission for

input variables [3]. Based on the illustration given in the Figure 1, the output of each neuron
(shown as purple, orange, and green nodes) in the hidden layer (th) with hyperbolic tangent
transformation are calculated as in equation (1).

Figure 1. Artificial neural network design with 4 inputs (pi). Each input is connected to up to 3 neurons via coefficients
w(l)

kj (l denotes layer; j denotes neuron; k denotes input variable). Each hidden and output neuron has a bias parameter
b(l)

j. Here P = inputs, IW = weights from input to hidden layer (12 weights), LW = weights from hidden to output layer
(3 weights), b1 = Hidden layer biases (3 biases), b2 = Output layer biases (1 bias), n1 = IWP + b1 is the weighted summa-
tion of the first layer, a1 = f(n1) is output of hidden layer, n2 = LWa1 +b2 is weighted summation of the second layer, and� = �2 = � �2  is the predicted value of the network. The total number of parameters for this ANN is 12+3+3+1 =19.
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The hidden layer outputs from neurons (orange, purple, and green) are the input of the next
layer. After the activation function, the output from the hidden layer is then sent to the output

layer again with weighted summation as ∑� = 1� ��′ �� ��(1)+ ∑� = 1� ����� + �(2) , where wk are

weights specific to each neuron and b(1) and b(2) are bias parameters in the hidden and output
layers, respectively. Finally, this quantity is again activated with the same or another activa-

tion function g(.) as � ∑� = 1� ��′ ��( . ) + �(2) = �2 = � , which then becomes the predicted value� � of the target variable in the training set. For instance, the predicted value � � of the output

layer based on details given in Figure 1 and equation (1) can be calculated as,
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This can be illustrated as,

The activation function applied to the output layer depends on the type of target (dependent)
variable and the values from the hidden units that are combined at the output units with
additional (potentially different) activation functions applied. The activation functions most
widely used are the hyperbolic tangent, which ranges from 1 to 1, in the hidden layer and linear
in the output layer, as is the case in our example in Figure 1 (the sigmoidal type activation
function such as tangent hyperbolic and logit in the hidden layer are used for their convenient
mathematical properties and these are usually chosen as a smooth step function). If the
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activation function at the output layer g(.) is a linear or identity activation function, the model
on the adaptive covariates fk(.) is also linear. Therefore, the regression model is entirely linear.
The term “adaptive” denotes that the covariates in ANN are functions of unknown parameters
(i.e. the {wkj} connection strengths), so the network can “learn” the association between
independent (input) variables and target (output) variables, as is the case in standard regres-
sion models [1]. In this manner, this type of ANN architecture can also be regarded as a
regression model. Of course, the level of non-linearity in ANNs is ultimately dictated by the
type of activation functions used.

As depicted in Figure 1, a MLP feed forward architecture with one hidden layer can virtually
predict any linear or non-linear model to any degree of accuracy, assuming that you have a
suitable number of neurons in the hidden layer and an appropriate amount of data. But adding
more neurons in hidden layers to the ANN architecture offers the model the flexibility of
prediction of exceptionally complex nonlinear associations. This also holds true in function
approximation, mapping, classification, and pattern recognition in approximating any
nonlinear decision boundary with great precision. By adding additional neurons in the hidden
layer to a MLP feedforward ANN is similar to adding additional polynomial terms to a
regression model through the practice of generalization. Generalization is a method of
indicating the appropriate complexity for the model in generating accurate prediction
estimates based on data that is entirely separate from the training data that was used in fitting
the model [5], commonly referred to as the test data set.

3. Overfitting and regularization

Like many other nonlinear estimation methods in supervised machine learning, such as kernel
regression and smoothing splines, ANNs can suffer from either underfitting or overfitting. In
particular, overfitting is more serious because it can easily lead to predictions that are far
beyond the range of the training data [6–8]. Overfitting is unavoidable without practicing any
regularization if the number of observations in the training data set is less than the number of
parameters to be estimated. Before tackling the overfitting issue, let us first consider how the
number of parameters in multilayer feedforward ANN is calculated. Suppose an ANN with
1000 inputs, 3 neurons in hidden and 1 neuron in output layer. The total number of parameters
for this particular ANN is 3*1000 (number of weights from the input to the hidden layer) + 3
(number of biases in the hidden layer) + 3 (number of weights from the hidden to the output
layer) + 1(bias in output) = 3007. The number of parameters for the entire network, for example,
increases to 7015 when 7 neurons are assigned to the hidden layer. In these examples, either
3007 or 7015 parameters need to be estimated from 1000 observations. To wit, the number of
neurons in the hidden layer controls the number of parameters (weights and biases) in the
network. Determination of the optimal number of neurons to be retained in the hidden layer
is an important step in the strategy of ANN. An ANN with less number of neurons may fails
to capture the complex patterns between input and target variables. In contrast, an ANN with
excess number of neurons in hidden layer will suffer from over-parameterization, leading to
over-fitting and poor generalization ability [3]. Note that if the number of parameters in the
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network is much smaller than the total number of individuals in the training data set, then that
is of no concern as there is little or no chance of overfitting for given ANN. If data assigned to
the training set can be increased, then there is no need to worry about the following techniques
to prevent overfitting. However, in most applications of ANN, data is typically partitioned to
derive a finite training set. ANN algorithms train the model (architecture) based on this
training data, and the performance and generalizability of the model is gauged on how well
it predicts the observations in the training data set.

Overfitting occurs when a model fits the data in the training set well, while incurring larger
generalization error. As depicted in Figure 2, the upper panel (Figure 2a and b) shows a model
which has been fitted using too many free parameters. It seems that it does an excellent fitting
of the data points, as the difference between outcome and predicted values (error) at the data
points is almost zero. In reality, the data being studied often has some degree of error or random
noise within it. Therefore, this does not mean our model (architecture) has good generaliza-
bility for given new values of the target variable t. It is said that the model has a bias-variance
trade-off problem. In other words, the proposed model does not reproduce the structure which
we expect to be present in any data set generated by function f(.). Figure 2c shows that, while
the network seems to get better and better (i.e., the error on the training set decreases; repre-
sented by the blue line in Figure 2a), at some point during training (epoch 2 in this example)
it truly begins to get worse again (i.e. the error on test data set increases; represented by the

Figure 2. Function approximation of different regression models. Significant overfitting can be seen in (a)–(c).
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red line in Figure 2a). The idealized expectation is that during training, the generalization error
of the network progresses as shown in Figure 2d.

In general, there are two ways to deal with the overfitting problem in ANN (not considering
ad hoc techniques such as pruning, greedy constructive learning, or weight sharing that
reduces the number of parameters) [9]. These are weight decay and early stopping, both of
which are known as regularization techniques. Regularization is the procedure of allowing
parameter bias in the direction of what are considered to be more probable values, which
reduces the variance of the estimates at the cost of introducing bias. Put in another way,
regularization can be viewed as a way of compromising to minimize the objective function
with regard to parameter (weights and bias) space. Next, we will briefly discuss early stopping
before proceeding to the topic of weight decay (BR).

3.1. Early stopping

In the standard practice of backpropagation learning with early stopping, the data set is
allocated into three sources: a training data set, a validation data set, and a testing data set. In
most ANN practices, the biggest part of data is assigned to training data (by default a 60% of
data is assigned for training in MATLAB). Each of these data sets have different task during
the ANN prediction process. The training data set is used to estimate the neural network
weights, while the validation data set is used to monitor the network and calculate the
minimum error during the iterations till network is stopped. The last data set (test data set) is
unseen data by network and task of the test data set is to decrease the bias and generate
unbiased estimates for predicting future outcomes and generalizability. The test data set is
used at the end of the iterative process for evaluating the performance of the model from an
independently drawn sample [10]. With early stopping methods, a gradient descent algorithm
is applied to the training and validation data sets. First, the training data set is used to calculate
the weight and bias estimates, and then these parameter estimates are applied in the validation
data set to calculate error values. The practice iterates substituting parameter estimates from
the training data set into the validation data set to catch the likely smallest average error with
respect to the prediction of the validation data set. Training ends when the error in the
validation data set increases by certain epochs (“iterations” in statistical jargon) in order to
avoid the problem of overfitting (the number of epoch is six by default in MATLAB) and then
the weights at the minimum of the validation error are returned. The network parameter
estimates with the best performance in the validation set are then used in analysis of the testing
data to evaluate the predictive ability of the network [11].

Let the data set be D = {t, (pi)i = 1,….,n}, where pi is a vector of inputs for individual i and t is a
vector of target variables (input = independent and target = dependent variable in classical
estimation terms in statistics). Once a set of weight values w is assigned to the connections in
the networks, this defines a mapping from the input pi to the output � �. Let M denote a specific

network architecture (network architecture is the model in terms of numbers of neurons and
choice of activation functions), then the typical objective function used for training a neural
network using early stopping is the sum of squared estimation errors (ED):
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for n input-target pairs defining D. Early stopping is effectively limiting the used weights in
the network and thus imposes regularization, effectively lowering the Vapnik-Chervonenkis
dimension. However, while early stopping often improves generalization, it does not do so in
a mathematically well-defined way. It is crucial to realize that validation error is not a good
estimate of generalization error. Early stopping regularization has a vital advantage over the
usual regularized least square learning algorithm such as ridge regression (so-called penal-
ized L2) or Tikhonov regularization methods.

4. Bayesian regularization

The brief explanation given in the previous section described how early stopping works to
deal with the overfitting issue in ANN. Another regularization procedure in ANN is BR, which
is the linear combination of Bayesian methods and ANN to automatically determine the
optimal regularization parameters (Table 1). In Bayesian regularized ANN (BRANN) models,
regularization techniques involve imposing certain prior distributions on the model parame-
ters. An extra term, Ew, is added by BRANN to the objective function of early stopping given
in equation (3) which penalizes large weights in anticipation of reaching a better generalization
and smoother mapping. As what happens in conventional backpropagation practices, a
gradient-based optimization technique is then applied to minimize the function given in (4).
This process is equal to a penalized log-likelihood,

( , ) ( ),D WF E D M E Mb a= +w w (4)

where EW (w|M), is the sum of squares of architecture weights, M is the ANN architecture
(model in statistical jargon), and α and β are objective function parameters (also referred to as
regularization parameters or hyper-parameters and take the positive values) that need to be
estimated adaptively [3]. The second term on the right hand side of equation (4), αEW, is known
as weight decay and α, the weight decay coefficient, favors small values of w and decreases
the tendency of a model to overfit [12].

To add on a quadratic penalty function EW (w|M), α yielding a version of nonlinear ridge
regression with an estimate for w equivalent to the Bayesian maximum a prior (MAP) [1].
Therefore, the quadratic form (weight decay) favors small values of w and decreases the
predisposition of a model to overfit the data. Here, in equation (4), training involves a tradeoff
between model complexity and goodness of fit. If α>>β, highlighting is on reducing the extent
of weights at the expense of goodness of fit, while producing a smoother network response
[13]. If Bayes estimates of α are large, the posterior densities of the weights are highly concen-
trated around zero, so that the weights effectively disappear and the model discounts connec-
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tions in the network [12, 14]. Therefore, α and β are adaptively predicted to deal with tradeoff
model complexity and goodness of fit.

MATLAB Commend Explanations
load myData Loading data

net=newff(x,y,5,{'tansig',
'purelin'},'trainbr');

Creates a new network with a dialog box.
The properties of architecture created here are:
tangent sigmoid (tansig) and linear
activation function (purelin) in hidden
and output, respectively. The number
of neuron in hidden layer is 5 and the
number of neuron in output layer
1 (by default). The Bayesian regularized
training algorithm (trainbr) takes play
for training of data.

[net,tr]=train(net,x, y)

randn('state',192736547) Lets you seed the uniform random number generator.

y_t=sim(net, x) Simulate net

net = init(net) Reinitiate net to improve results

net = train(net,x,y) Re-train net

net.trainParam.epochs 1000 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1e10 Maximum value for mu

net.trainParam.min_grad 1e-7 Minimum performance gradient

net.trainParam.show 25 Epochs between displays
(NaN for no displays)

net.trainParam.
showCommandLine

False Generate command-line output

net.trainParam.
showWindow

True Show training GUI

Table 1. Training occurs according to Bayesian regularization algorithms (trainbr) training parameters, shown here
with their default values (commends given in bold face are required).

As stated in the early stopping regularization section of this chapter, the input and target data
set is typically divided into three parts; the training data set, the validation data set, and the
test data sets. In BRANNs, particularly when the input and target data set is small, it is not
essential to divide the data into three subsets: training, validation, and testing sets. Conversely
all available data set is devoted to model fitting and model comparison [15]. This implemen-
tation is important when training networks with small data sets as is thought that BR has better
generalization ability than early stopping (http://www.faqs.org/faqs/ai-faq/neural-nets/part3/
section-5.html).
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The strength connections, w, of the network are considered random variables and have no
meaning before training. After the data is taken, the density function for the weights can be
updated according to Bayes’ rule. The empirical Bayes approach in [12] is as follows. The
posterior distribution of w given α, β, D, and M is

( , , ) ( , )
( | , , , ) ,

( | , , )
P D M P M

P D M
P D M

b a
a b

a b
=

w w
w (5)

where D is the training data set and M is the specific functional form of the neural network
architecture considered. The other terms in equation (5) are:

• P(w|D, α β, M) is the posterior probability of w,

• P(D|w, β, M) is the likelihood function of w,

• P(w|α, M) is the prior distribution of weights under M, which is the probability of observing
the data given w and

• P(D|α, β, M) is a normalization factor or evidence for hyperparameters α and β.

The normalization factor does not depend on w (Kumar, 2004). That is,

( | , , ) ( , , ) ( , ) .P D M P D M P M da b b a= ò w w w

The weights w, were assumed to be identically distributed, each following the Gaussian
distribution (w| α, M)~N(0, α-1). Given this, the expression of joint prior density of w in
equation (5) is
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2

1

( | )| , exp exp .
2 2

m
kj W

l

w E Mp a M
a a

=

æ ö é ùµ - = -ç ÷ ê úç ÷ ë ûè ø
Õ ww

After normalization, the prior distribution is then [2]

( | ) ( | )exp exp
2 2( | , ) ,

( | ) ( )exp
2

W W

W w

E M E M

p M
E M Zd

a a

a
a a

é ù é ù- -ê ú ê úë û ë û= =
é ùò -ê úë û

w w

w
w w

(6)

where ��(�) = 2�� �2 .
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As target variable t, is a function of input variables, p, (the same association between dependent
and independent variables in regression model) it is modeled as ti = f(pi) + e, where e ~N(0, β-1)
and f(pi) is the function approximation to E(t|p). Assuming Gaussian distribution, the joint
density function of the target variables given the input variables, β and M is [2]:

( )

22
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2

( | , , , ) exp ( ( ))
2 2

exp | ,
2 2

N N

i
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where ED(D|w,M) is as given in equation (3) and (4). Letting

��(�) = ∫exp −�2�� � �,� = 2�� �2 , the posterior density of w in equation (5) can be

expressed as

1 1exp ( )
( ) ( ) 2( | , , , )

( | ) ,
1 ( )exp
( , ) 2

D W
W D

F

E E
Z ZP D M

P D M
F w

Z

b a
a ba b

a b

a b

é ù- +ê úë û=

é ù= -ê úë û

w
(8)

where ��(�, �) = ��(�)��(�)�(� �, �, �  and F= βED + αEW. In an empirical Bayesian

framework, the “optimal” weights are those that maximize the posterior density P(w|D, α,
β, M). Maximizing the posterior density of P(w|D, α, β, M) is equivalent to minimizing the
regularized objective function F given in equation (4). Therefore, this indicates that values of
α and β need to be predicted by architecture M, which will be further discussed in the next
section.

While minimization of objective function F is identical to finding the (locally) maximum a
posteriori estimates wMAP, minimization of ED in F by any backpropagation training algorithm
is identical to finding the maximum likelihood estimates wML [12]. Bayesian optimization of
the regularization parameters require computation of the Hessian matrix of the objective
function F evaluated at the optimum point wMAP [3]. However, directly computing the Hessian
matrix is not always required. As proposed by MacKay [12], the Gauss-Newton approximation
to the Hessian matrix can be used if the LM optimization algorithm is employed to locate the
minimum of F [16].

4.1. Brief discussion of Levenberg-Marquardt optimization

The LM algorithm is a robust numerical optimization technique for mapping as well as
function approximation. The LM modification to Gauss-Newton is
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(J'J +μI)=J'e (9)

and the Hessian matrix can be approximated as:

' ,=H J J (10)

where J is the Jacobian matrix that contains first derivatives of the network errors with respect
to network parameters (the weights and biases), μ is the Levenberg`s damping factor, and δ is
the parameter update vector. The δ indicates how much the magnitude of weights needs to be
changed to attain better prediction ability. The way to calculate J matrix is given in equation
(11). The gradient of the ANN is computed as g=J’e. The μ in equation (9) is adjustable in each
iteration, and guides the optimization process during ANN learning with the training data set.
If reductions of the cost function F are rapid, then the parameter μ is divided by a constant (c)
to bring the algorithm closer to the Gauss-Newton, whereas if an iteration gives insufficient
reduction in F, then μ is multiplied by the same constant giving a step closer to the gradient
descent direction (http://crsouza-blog.azurewebsites.net/2009/11/neural-network-learning-
by-the-levenberg-marquardt-algorithm-with-bayesian-regularization-part-1/#levenberg).
Therefore, the LM algorithm can be considered a trust-region modification to Gauss-Newton
designed to serve as an intermediate optimization algorithm between the Gauss-Newton
method and the Gradient-Descent algorithm [17].

The Jacobian matrix is a matrix of all first-order partial derivatives of a vector-valued func-
tion. The dimensions of the matrix are formed by the number of observations in the training
data and the total number of parameters (weights + biases) in the ANN being used. It can be
created by taking the partial derivatives of each output with respect to each weight, and has
the form:
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(11)

The parameters at l iteration are updated as in equation (12) when the Gauss-Newton approx-
imation of the Hessian matrix by LM in Bayesian regularized neural network (BRANN) is used.
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Therefore, this approach provides a numerical solution to the problem of minimizing a
nonlinear function over the parameter space. In addition, this approach is a popular alternative
to the Gauss-Newton method of finding the minimum of a function (http://crsouza-blog.azur-
ewebsites.net/2009/11/neural-network-learning-by-the-levenberg-marquardt-algorithm-
with-bayesian-regularization-part-1/#levenberg). Next, let’s compare the equations for some
common training algorithms and use this information to decipher how parameters are updated
after each iteration (epoch) in ANN: Updating the strength connection in standard backpro-

pagation training �� + 1 = ��− �∂���� ,
updating the strength connection in Quasi-Newton training �� + 1 = ��− ��−1�∂��� , and

updating the strength connection in LM training �� + 1 = ��− ��� + � � −1���.

Therefore, Quasi-Newton is necessary for actual calculation of the Hessian matrix H while LM
is used to approximate H. The α coefficient in the first two equations is referred to as the
learning rate. The performance of the algorithm is very sensitive to proper setting of the
learning rate. If the learning rate is set too high, the algorithm can oscillate and become
unstable. On the other hand, too low learning rate makes the network learn very slowly and
converging of ANN will take a while. In gradient descent learning, it is not practical to
determine the optimal setting for the learning rate before training, and in fact, the optimal
learning rate changes during the training process, as the algorithm moves across the perform-
ance surface [18].

5. Tuning parameters α and β

As discussed earlier, minimizing the regularized objective function F = βED(D|w,M) + αEW (w|
M) in equation (4) is equivalent to maximization of the posterior density P(w|D, α, β, M). A
typical procedure used in neural networks infers α and β by maximizing the marginal
likelihood of the data in equation (5). The joint probability of α and β is

( , , ) ( , )
( , | , ) .

( | )
P D M P M

P D M
P D M

a b a b
a b = (13)
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Essentially, we need to maximize the posterior probability P(α β | D, M) with respect to
hyperparameters α and β which is equivalent to maximization of P(D | α, β, M). P(D | α, β, M)
is the normalization factor given for the posterior distribution of w in equation (5).

If we apply the unity activation function in equation (5), which is the analog of linear regression,
then this equation will have a closed form. Otherwise, equation (5) does not have a closed form
if we apply any sigmoidal activation function, such as logit or tangent hyperbolic in the hidden
layer. Hence, the marginal likelihood is approximated using a Laplacian integration completed
in the area of the current value w=wMAP [3]. The Laplacian approximation to the marginal
density in equation (5) is expressed as
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1log ( | , , ) log log , log
2 2 2
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where K is a constant and � = ∂2∂�∂�′� �, �  is the Hessian matrix as given in equation (10)

and (11). A grid search can be used to locate the α, β maximizers of the marginal likelihood in
the training set. An alternative approach [12, 14] involves iteration (updating is from right to
left, with wMAP evaluated at the “old” values of the tuning parameters)
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The expression γ = m – 2αnewtr(HMAP)-1 is referred to as the number of effective parameters
in the neural network and its value ranges from 0 (or 1, if an overall intercept b is fitted)
to m, the total number of connection strength coefficients, w, and bias, b, parameters in
the network. The effective number of parameters indicates the number of effective
weights being used by the network. Subsequently, the number of effective parameters is
used to evaluate the model complexity and performance of BRANNs. If γ is close to m,
over-fitting results, leading to poor generalization.
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6. Steps in BRANN

A summary of steps in BRANN is given in Figure 3. Initialize α, β and the weights, w. After
the first training step, the objective function parameters will recover from the initial setting.

Figure 3. Flow chart for Bayesian optimization of regularization parameters α and β in the neural networks;
MAP=maximum a posteriori [partially adapted from 16 and 2].

1. Take one step of the LM algorithm to minimize the objective function F(α,β) and find the
current value of w.

i. Compute the Jacobian as given in equation (11).

ii. Compute the error gradient g = JTe.

iii. Approximate the Hessian matrix using H = JTJ.

Calculate the objective function as given in equation (4).

Solve the J’J + μI)δ = J’e.
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Update the network weights w using δ.

2. Compute the effective number of parameters γ = N - 2atr(H)-1 making use of the Gauss-
Newton approximation to the Hessian matrix available from the LM training algorithm.

3. Compute updated αnew and βnew as���� = �2��(����) ��� ���� = �− �2��(����) ; and

4. Iterate steps 2-4 until convergence.

7. Practical considerations

In general, there are three steps between input and predicted values in ANN training. These
are pre-processing, network object (training), and post-processing. These steps are important
to make ANN more efficient as well as drive optimal knowledge from ANN. Some of these
steps will be considered in the following sections.

7.1. Data cleaning

Before training, the data sets should be checked in terms of constant, corrupt, and incorrect
values from the input and target data set. After checking for suspicious and improper data,
the dimension of the input vector could be an important issue for efficient training. In some
situations, the dimensions of the data vectors could be large, but the components in the data
vectors can be highly correlated (redundant). Principal component analysis (PCA) is the most
common technique for dimensionality reduction and orthogonalization.

7.2. Normalization

Normalization or scaling is not really a functional requirement for the neural networks to learn,
but it significantly helps as it converts the input and target (independent and dependent
variables in statistical jargon) into the data range that the sigmoid activation functions lie in
(i.e. for logistic [0, 1] and tanh [−1, 1]. For example, in MLP, non-linear functions in hidden
layers become saturated when the input is larger than six (exp(-6)~0.00247). Consequently,
large inputs cause ill-conditioning by leading to very small weights. Further with large inputs,
the gradient values become very small, and the network training will be very slow.

By default, before initiating the network processing, MATLAB Neural Network Toolbox®
rescales both input and output variables such that they lie -1 to +1 range, to boost numerical
stability. This task is done spontaneously in MATLAB Neural Network Toolbox® using the
“mapminmax” function. To explain this, consider the simple data vector as x’=[8, 1, 5]. Here
the xmin = 1 and xmax = 8. If values are to range between Amin = -1 and Amax = +1, one redefine the
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data vector temporarily as xtemp’= [−1, 1, 5], so only x3 = 5 needs to be rescaled to guarantee that
all variables reside between -1 and +1. This is done by using the following formula:

3 min
3, min max min

max min

5 1  ( ) 1 2 0.143.
8 1new

x xx A A A
x x

- -
= + - = - + = -

- -

When the input and target data is normalized, the network output always falls into a normal-
ized range. The network output can then be reverse transformed into the units of the original
target data when the network is put to use in the field [18].

7.3. Multiple runs

Each time a neural network is trained, the output obtained from each run can result in a
different solution mainly due to: a) different initial weight and bias values, and b) different
splitting of data into training, validation, and test sets (or into training and testing). As a result,
function approximation using different neural network architectures trained on the same
problem can produce different outputs for the same input fed into the ANN. For example,
depending on the initial weights of the network, the algorithm may converge to local minima
or not converge at all. To avoid local minima convergence and overtraining, improve the
predictive ability of ANN, and eliminate spurious effects caused by random starting values.
Several independent BRANNs, say 10, should be trained for each architecture. Results are then
recorded as the average of several runs on each architecture.

7.4. Analyses and computing environment

Determination of the optimal number of neurons in the hidden layer is an essential task in
ANN architectures. As stated earlier, network with only a few neurons in hidden layer may
be incapable of capturing complex association between target and input variables. However,
if too excessive neurons are assigned in hidden part of the network then it will follow the noise
in the data due to overparameterization, leading to bad generalization and poor predictive
ability of unseen data [3, 19]. Therefore, a different number of neurons in the hidden layer
should be tried, and architecture performance should be assessed after each run with a certain
number of neurons in the hidden layer. Because highly parameterized models are penalized
in BRANN, the complexity of BRANN architectures using sum of squares weights as well as
the degree of shrinkage attained by BRANN can be used to determine the optimal number of
neurons. The number of parameters (weights and biases) is a function of the number of
neurons. More neurons in the hidden layer imply that more parameters need to be estimated.
Therefore, one criteria for model selection in complex BRANN concerns the number of weights.
The more weights there are, relative to the number of training cases, the more overfitting
amplifies noise in the target variables [1–3]. As demonstrated in Figure 4, BRANN also
calculates the effective number of parameters to evaluate the degree of complexity in ANN
architecture. BRANN uses the LM algorithm (based on linearization) for computing the
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posterior modes in BR. The penalized residual sum of squares is also used to determine the
number of neurons in the hidden part of the network.

7.5. Stopping training of BRANN

In MATLAB applications, training of BRANN is stopped if:

1. The maximum number of epochs (number of iterations in statistical jargon) is reached

2. Performance of the network with the number of neurons and combinations of the
activation functions has met a suitable level

3. The gradient (J’e) was below a suitable target

4. The LM μ parameter exceeded a suitable maximum (training stopped when it became
larger than 1010).

Each of these targets and goals are set as the default values in MATLAB implementation. The
maximum number of iterations (called epochs) in back-propagation was set to 1000, and
iteration will stop earlier if the gradient of the objective function is below a suitable level, or
when there are obvious problems with the algorithm [20].

8. Interpreting the results

8.1. Degree of complexity

This example illustrates the impact of shrinkage and how regularized neural networks deal
with the “curse of dimensionality”. The example given here has 500 inputs and the number of
neurons in the hidden layer is 5, such that the total of nominal parameters (weights and biases)
is 2511. However, the effective number of parameters is 316 (Figure 4). In other words, the
model can be explained well with only with 316 parameters when BR is used for training the
networks. In practice, different architectures (different activation functions and different
numbers of neurons in the hidden layer) should be explored to decide which architecture best
fits the data. Hence, incremental increasing of the number of neurons from one to several is
the best practice to cope with the “curse of dimensionality”.

8.2. Predictive performance

The predictive correlation is 0.87 (Figure 4) in the given example, which is quite high, implying
that the predictive ability of the model used is sufficient. However, as stated earlier, to eliminate
spurious effects caused by random starting values, several independent BRANNs should be
trained for each architecture and the average value of multiple runs should be reported.
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Figure 4. Output screens from MATLAB runs.

8.3. Shrinkage

The distribution of connection strengths (network parameters) in an ANN gives an evi-
dence of the degree of regularization achieved by BRANNs. Conventionally, weight val-
ues are shrinkage with model complexity, in the same approach that estimates of network
parameters become smaller in BR implementations. This is true when inputs p increase
and training sample size remains constant. Moreover, the distribution of weights in any
architecture is often associated with the predictive ability of network; small value weights
tend to lead to better generalization for unseen data [1, 19]. Figure 4 shows the distribu-
tions of weights for the nonlinear regularized networks with five neurons in the hidden
layer. It is suggested that a linear activation function in the hidden and output layers, as
well as a nonlinear activation function with different numbers of neurons in the hidden
and a linear activation function in output layer should be tried. This provides a good op-
portunity to compare models for the extent of regularization attained. For example, the
sum of squared weights for about 2500 parameters is only 4.24 in the given example (see
Figure 4), indicating how Bayesian neural networks reduce the effective number of
weights relative to what would be obtained without regularization. In other words, the
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method by which highly parameterized models are penalized in the Bayesian approach
helps to prevent over-fitting.

9. Conclusion

Small n and big p (p>>n) is key issue for prediction of complex traits from big data sets, and
ANNs provide efficient and functional approaches to deal with this problem. Because the
competency of capturing highly nonlinear relationship between input and outcome variables,
ANNs act as universal approximators to learn complex functional forms adaptively by using
different type of nonlinear functions. Overfitting and over-parameterization are critical
concerns when ANN is used for prediction in (p>>n). However, BRANN plays a fundamental
role in attenuating these concerns. The objective function used in BRANN has an additional
term that penalizes large weights to attain a smoother mapping and handle overfitting
problem. Because of the shrinkage, the effective number of parameters attained by BRANN is
less than the total number of parameters used in the model. Thus, the over-fitting is attenuated
and generalization ability of the model is improved considerably.

Acknowledgements

Author would like to sincerely thank Jacob Keaton for his reduction, and comments.

Author details

Hayrettin Okut

Address all correspondence to: okut.hayrettin@gmail.com

Yüzüncü Yıl University, Faculty of Agriculture, Biometry and Genetic Branch, Van, Turkey

Wake Forest University, School of Medicine, Center for Diabetes Research, Center for Ge-
nomics and Personalized Medicine Research, Winston-Salem, NC, USA

References

[1] Gianola, D., Okut, H., Weigel, K., Rosa, J. G. Predicting complex quantitative traits with
Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genetics.
2011. 12:87.

Artificial Neural Networks - Models and Applications46



[2] Okut, H., Gianola, D., Rosa, J. G., Weigel, K. Prediction of body mass index in mice
using dense molecular markers and a regularized neural network. Genetics Research
(Cambridge). 2011. 93:189–201

[3] Okut, H., Wu, X. L., Rosa, J. M. G., Bauck, S., Woodward, B., Schnabel, D. R., Taylor, F.
J., Gianola, D. Predicting expected progeny difference for marbling score in Angus
cattle using artificial neural networks and Bayesian regression models. Genetics
Selection Evolution. 2014. 45:34. DOI: 10.1186/1297-9686-45-34.

[4] Lampinen, J., Vehtari, A. Bayesian approach for neural networks review and case
studies. Neural Networks. 2001. 14:257–274.

[5] SAS® Enterprise Miner™ 14.1. Administration and Configuration Copyright©. Cary,
NC: SAS Institute Inc.; 2015.

[6] Feng, N., Wang, F., Qiu, Y. Novel approach for promoting the generalization ability of
neural networks. International Journal of Signal Processing. 2006. 2:131–135.

[7] Ping, G., Michael, R. L., Chen, C. L. P. Regularization parameter estimation for feed-
forward neural networks. IEEE Transactions on Systems, Man, and Cybernetics—PART
B: Cybernetics. 2003. 33:35–44.

[8] Wang, H. J., Ji, F., Leung, C. S., Sum, P. F. Regularization parameter selection for faulty
neural networks. International Journal of Intelligent Systems and Technologies. 2009.
4:45–48.

[9] Marwala, T. Bayesian training of neural networks using genetic programming. Pattern
Recognition Letters. 2007. 28:1452–1458.

[10] Matignon, R. Data Mining Using SAS Enterprise Miner. Chicago: Wiley; 2007. p. 584.
ISBN: 978-0-470-14901-0. DOI: 10.1002/9780470171431

[11] Okut, H., Gianola, D., Rosa, J. G., Weigel, K. Evaluation of prediction ability of Cholesky
factorization of genetic relationship matrix for additive and non-additive genetic effect
using Bayesian regularized neural network. IORE Journal of Genetics. 2015. 1(1). 1–15

[12] MacKay, J. C. D. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Cambridge-UK; 2008.

[13] Foresee, F. D., Hagan, M. T. Gauss-Newton approximation to Bayesian learning.
Proceedings: IEEE International Conference on Neural Networks. 1997. Vol:3, 1930–
1935.

[14] Titterington, D. M. Bayesian methods for neural networks and related models. Statis-
tical Science. 2004. 19:128–139.

[15] Bishop, C. M., Tipping, M. E. A hierarchical latent variable model for data visualization.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998. 20(3):281–293.

[16] Shaneh, A., Butler, G. Bayesian learning for feedforward neural network with applica-
tion to proteomic data: the glycosylation sites detection of the epidermal growth factor-

Bayesian Regularized Neural Networks for Small n Big p Data
http://dx.doi.org/10.5772/63256

47



like proteins associated with cancer as a case study. In Canadian AI LNAI 4013, 2006
(ed. L. Lamontagne & M. Marchand). Berlin-Heiddelberg: Springer-Verleg; 2006. 110–
121.

[17] Battiti, R. Using mutual information for selecting features in supervised neural net
learning neural networks. IEEE Transactions on Neural Networks. 1994. 5(4):537–550.

[18] Demuth, H., Beale, M., Hagan, M. Neural Network ToolboxTM 6 User’s Guide. Natick,
MA: The MathWorks Inc.; 2010.

[19] Felipe, P.S. V., Okut, H., Gianola, D., Silva, A. M., Rosa, J. M. G. Effect of genotype
imputation on genome-enabled prediction of complex traits: an empirical study with
mice data. BMC Genetics. 2014. 15:149. DOI: 10.1186/s12863-014-0149-9

[20] Haykin, S. Neural Networks: Comprehensive Foundation. New York: Prentice-Hall;
2008.

Artificial Neural Networks - Models and Applications48


