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1. Introduction 

In the last years, there has been a large growth in the research of computational techniques 
inspired in nature. This area, named Bioinspired Computing, has provided biologically 
motivated solutions for several real world problems. Among Bioinspired Computing 
techniques, one can mention Artificial Neural Networks (ANN), Evolutionary Algorithms 
(EA), Artificial Immune Systems (AIS) and Ant Colony Optimization (ACO). 
ACO is a meta-heuristic based on the structure and behavior of ant colonies. It has been 
successfully applied to several optimization problems. Several real world optimization 
problems may change the configuration of its search space with time. These problems are 
known as dynamic optimization problems. This chapter presents the main concepts of ACO 
and show how it can be applied to solve real optimization problems on dynamic 
environments. As a case study, it will be illustrated how ACO can be applied to process 
scheduling problems. 
The chapter starts describing how real ants forage for food, environmental modifications 
related to this activity (for example, the blockage of a path) and the effects of these 
modifications in the colony. After, a brief review of previous works on Ant Colony 
Optimization is presented. 
For computer simulations, the activities of an ant colony may be modeled as a graph. After 
modeling the problem of foraging for food (as a graph), the goal (finding the shortest path at 
a given moment) is defined and the mechanism to solve the problem is presented. 
The need to model an on-line problem as a graph, the goal of finding the shortest path and 
the mechanisms adopted for solving the problem (an adapted version of the AntSystem) are 
detailed. 
Before ACO is applied to the process scheduling problem, the problem is analyzed and 
modeled using a graph representation. Next, simulation results obtained in a set of 
experiments are presented, which are validated by results obtained in a real 
implementation. Important issues related with the use of ACO for process scheduling, like 
parameter adjustments, are discussed. 
In the conclusion of this chapter, we point out a few future directions for ACO researches. 
The use of computational techniques inspired in nature has become very frequent in the last 
years. This area, named Bioinspired Computing, provides efficient biologically motivated 

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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solutions for several real world problems. Among the most popular bioinspired techniques, 
we may cite Artificial Neural Networks (ANN), Evolutionary Algorithms (EA), Artificial 
Immune Systems (AIS) and Ant Colony Optimization (ACO). 
ACO [DMC96], a meta-heuristic based on the structure and behavior of ant colonies, has 
been successfully applied to several optimization problems [FMS05, PB05, BN06, SF06, 
PLF02, WGDK06, CF06, HND05]. For such, it has attracted a large deal of attention lately. 
Next, we will briefly describe key recent works using ACO to solve real world problems. 
Foong et al. [FMS05] proposed a power plant maintenance scheduling optimization 
considering ant colony optimization algorithms. In this work,the performance of two ACO 
algorithms were compared: Best Ant System (BAS) and Max-Min Ant System (MMAS). 
Experimental results suggested that the performance of the studied algorithms can be 
significantly better than those obtained by other meta-heuristics, such as genetic algorithms 
and simulated annealing, in this particular application. The work considered as case study a 
21-unit power plant maintenance problem investigated in previous researches. In this study, 
parameters like the number of ants, initial pheromone level, reward factor and others were 
varied to investigate the ACO search sensitivity. 
Pinto and Baran [PB05] presented two multiobjective algorithms for the Multicast Traffic 
Engineering problem considering new versions of the Multi-Objective Ant Colony System 
(MOACS) and the Max-Min Ant System (MMAS). These ACO algorithms simultaneously 
optimize the maximum link usage, the cost of a multicast routing tree, the average delay 
and maximum end-to-end delay. Results showed a promising performance of the proposed 
algorithms for a multicast traffic engineering optimization. 
Bui and Nguyen [BN06] proposed an algorithm to solve the graph coloring problem. The 
algorithm employed a set of agents, called ants, to color the graph. The ants were 
distributed on the vertices of the input graph based on the conflicts. Each ant colored a 
portion of the graph. Although based on traditional ACO algorithms, each ant solved part of 
the problem, making it suitable for distributed problems. 
Smaldon and Freitas [SF06] investigated a new version of the Ant-Miner algorithm [PLF02], 
named Unordered Rule Set Ant-Miner, which produces an unordered set of classification 
rules. The proposed version was compared to the original Ant-Miner algorithm in six 
public-domain datasets, presenting similar accuracy. However, it discovered more modular 
rules, which could be interpreted independently from others, supporting its application for 
interpreting discovered knowledge in data mining systems. 
Wang et al. [WGDK06] proposed a design exploration method to exploit the duality between 
the time and resource constrained scheduling problems. The proposed approach used the 
Max-Min Ant Colony Optimization to solve both the time and the resource constrained 
scheduling problems. Compared to using force directed scheduling exhaustively at every 
time step, the proposed algorithm provided relevant solution quality savings with similar 
execution time. 
Chan and Freitas [CF06] proposed a new ant colony algorithm for multi-label classification, 
named MuLAM (Multi-Label Ant-Miner). This algorithm is a major extension of Ant-Miner, 
the first ant colony algorithm for discovering classification rules. According to experimental 
results, MuLAM presented a better predictive accuracy than other classification techniques 
investigated. 
Hijazi et al. [HND05] used an ant colony algorithm in the wireless communication domain. 
The problem investigated was how to detect users in a multi-user environment in 
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synchronous MC-CDMA (Multi-Carrier Code Division Multiple Access) systems, 
minimizing the interference noise. The optimization solutions found by the ACO reduced 
the execution time requirements by as much as 98% when compared to an exhaustive search 
method. 
All previous works found biological inspired motivations to solve real world problems. We 
believe that the approach followed by ant colonies to find the shortest path between their 
nest and a food source can provide an efficient solution to the process scheduling problem. 
For such, this chapter presents concepts on Ant Colony Optimization and how it can be 
applied to optimize process scheduling. This chapter is organized as follows: the section 2 
presents ant colony optimization concepts; the problem of foraging for food and how ants 
solve it is presented in section 3; examples of Ant Colony Optimization algorithms are 
shown in section 4; the section 5 presents how Ant Colony Optimization can be used for a 
real class problem, in this case the process scheduling; the section 6 shows the conclusions 
and future directions, finally the references. 

2. How real ants work 

Apparently simple organisms, ants can deal with complex tasks by acting collectively. This 
collective behavior is supported by the release of a chemical substance, named pheromone. 
During their movement, ants deposit pheromone in their followed paths. The presence of 
pheromone in a path attracts other ants. In this way, pheromone plays a key role in the 
information exchange between ants, allowing the accomplishment of several important 
tasks. A classical example is the selection of the shortest path between their nest and a food 
source. 
For instance, consider four ants and two possible paths, P1 and P2 (Figure 1), which link a 
nest NE to a food source FS, such that P1 > P2. Initially, all the ants (A1, A2, A3 and A4) are in 
NE and must choose between the paths P1 and P2 to arrive to FS.

Figure 1. Ants foraging for food 

1. In NE, the ants (A1, A2, A3 and A4) do not know the localization of the food source (FS).   
Thus, they randomly choose between P1 and P2, with the same probability. Assume that 
ants A1 and A2 choose P1, and ants A3 and A4 choose P2.

2. While the ants pass by P1 and P2, they leave a certain amount of pheromone on the 
paths, C1 and C2, respectively.

3. As P1 < P2, A 3 and A4 arrive to FS before A1 and A2. In this moment, C2 = 2. Since A1 and
A2 have not arrived to FS, C1 = 0. In order to come back to NE, A3 and A4 must choose 



Multiprocessor Scheduling: Theory and Applications 220

again between P1 and P2. As in FS, C2 > C1, the probability of these ants choosing P2 is
higher. Assume that A3 and A4 choose P2.

4. When A3 and A4 arrive to NE again, C2 arrives to 4.    This increase in C2 and
consolidates the rank of P2 as the shortest path.   When A1 and A2 arrive to FS, C2 = 4
and C1 = 2. Thus, the probability of A1 and A2 coming back to NE through P2 becomes
higher. 

In the previous example, at the beginning, when there is no pheromone, an ant looking for 
food randomly chooses between P1 and P2 with a probability of 0.5 (50% of possibility for 
each path). When there is pheromone on at least one of the paths, the probability of selecting 
a given path is proportional to the amount of pheromone on it. Thus, paths with a higher 
concentration of pheromone have a higher chance of being selected. 
However, this simple approach leads to the problem of stagnation. Suppose, for example, 
that ants get addicted to a particular path. Sometimes in near future, that path may become 
congested, becoming non-optimal. Another problem arises when a favorite path is 
obstructed and can no longer be used by the ants. In the case of real ants, the environment 
solves this problem by evaporation1, i.e., reducing the pheromone values to prevent high 
concentration in optimal paths (which avoid the exploration of possible - new or better - 
alternatives). 

3. Solving problems using ACO 

In order to understand how ant colonies may be used to solve problems, we have to 
understand the problem of foraging for food and how ants solve it. Suppose that each 
location (nest, food source, etc.) is represent by a node and each path by an edge in a graph, 
as shown in Figure 2. 

Figure 2: The forage problem modeled as a graph 

Thus, to solve a problem using ant colony optimization we have to represent its domain as a 
graph and its goal as finding a good path. Assume the problem of the traveling salesman 
[FS91] where, given a set of n towns, it is necessary to find a minimal length closed tour that 
visits each town once. The towns are easily represented as the graph nodes and the paths, as 
the graph edges. 

                                                                
1 When applying ant colonies to solve real problems, this approach may be used together with an 

heuristic one, combining the pheromone concentration with another information to take decisions.
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Another example is the problem of graph coloring: consider a graph G = (V, E) where V is a 
set of vertices and E is a set of edges. The goal is to assign colors to the vertices in such a 
way that connected vertices do not have the same color. This must me done using as few 
different colors as possible. 

4. Algorithms for Ant Colony Optimization 

Based on the representation presented in the previous section, Dorigo et al. [DMC96] 
proposed an algorithm called ant-cycle which mimics the ants behavior. Dorigo showed 
how this algorithm can be used to solve the traveling salesman problem. 
In Dorigo's algorithm, n ants are distributed in the n towns, one ant at each town. Each ant 
chooses among the linked towns the next visited town. The probability of each town being 
selected is a function of the next town distance and the amount of pheromone on the link 
between the current and the next towns. Ants can visit each town only once (this is achieved 
using a tabu list [BR03]). After completing a path, each ant leaves an amount of pheromone 
on the visited links. The shortest path found by an ant or set of ants is usually followed by 
the remaining ants, defining an optimal or suboptimal path. A pheromone evaporation 
process is frequently used to avoid the selection of the first tours and stagnation. A generic 
version of the ACO algorithm may be seen in Algorithm 1. 

Set parameters, initialize pheromone trails 
loop

while termination conditions not met do  
Construct AntSolutions  
ApplyLocalSearch (optional)  
UpdatePheromones

end while 
end loop 
Choose best solution 

Algorithm 1 Dorigo's algorithm (ACO heuristic)  

The same approach (Ant Colony Optimization) was used by Negara [G.N06] to solve the 
coloring graph problem (Algorithm 2). The author considered an adjacent matrix A to 
represent the graph G = (V,E) where: auv = 1, if the edge (u, v) E auv 0, otherwise
(considering u, v V). Such work considers the parallel solution of the problem where 
agents cope among themselves sharing experiences. It also considers elitism where the good 
agents can modify the mutual knowledge. 

5. Applying on the real world: process scheduling 

The increasing availability of low cost microprocessors and the evolution of computing 
networks have made economically feasible the construction of sophisticated distributed 
systems. In such systems, processes execute on computers and communicate to each other to 
perform a collaborative computing task. A load balancing algorithm is frequently adopted 
to distribute processes among available computers. 
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read matrix A 
for iteration do 

for ant a in Ants do 
a colors the graph based on previous experience using one of the specific 
coloring algorithms 
if a is elitist then 

a modifies the matrix A 
end if 

end for 
end for 
Use results 

Algorithm 2. Negara's algorithm 

A load balancing algorithm is responsible to equally distribute the processes load among the 
computers of a distributed environment [SKS92]. Krueger and Livny [KL87] demonstrate 
that such algorithms reduce the mean and standard deviation of process response times. 
Lower response times result in higher performance. 
The load balancing algorithms involve four policies: transference, selection, location and 
information [SKS92]. The transference policy determines whether a computer is in a suitable 
state to participate in a task transfer, either as a server or as a process receiver. The selection 
policy defines the process to be transferred from the busiest computer to the idlest one. The 
location policy is responsible to find a suitable transfer partner (sender or receiver) for a 
computer, once the transfer policy has decided about its state. A serving computer 
distributes processes, when it is overloaded; a receiving computer requests processes, when 
it is idle. The information policy defines when and how the information regarding the 
computer availability is updated in the system. Several works related to load balancing can 
be found in the literature [ZF87, TL89, SKS92, MTPY04, SdMS+05]. 
Zhou and Ferrari [ZF87] evaluated five server-initiated load balancing algorithms, i.e. 
initiated by the most overloaded computer: Disted, Global, Central, Random and Lowest. In 
Disted, when a computer suffers any modification in its load, it emits messages to the other 
computers to inform its current load. In Global, one computer centralizes all the computer 
load information and sends broadcast messages in order to keep the other computers 
updated. In Central, as in Global, a central computer receives all the load information 
related to the system; however, it does not update the other computers with this 
information. This central computer decides the resources allocation in the environment. In 
Random, no information about the environment load is handled. Now, a computer is 
selected by random in order to receive a process to be initiated. In Lowest, the load 
information is sent when demanded. When a computer starts a process, it requests 
information and analyzes the loads of a small set of computers and submit the processes to 
the idlest one, the computer with the shortest process queue. 
Theimer and Lantz [TL89] implemented algorithms similar to Central, Disted and Lowest. 
They analyzed these algorithms for systems composed of a larger number of computers 
(about 70). For the Disted and Lowest algorithms, a few process receiver and sender groups 
were created. The communication within these groups was handled by using a multicast 
protocol, in order to minimize the message exchange among the computers. Computers 
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with load lower than a inferior limit participate of the process receiver group, whilst those 
with load higher than a superior limit participate of the process sender group. 
Theimer and Lantz recommend decentralized algorithms, such as Lowest and Disted, as 
they do not generate single points of failure, as Central does. Central presents the highest 
performance for small and medium size networks, but its performance decreases in larger 
environments. They concluded that algorithms like Lowest work with the probability of a 
computer being idle [TL89]. They assume system homogeneity, as they use the size of the 
CPU waiting queue as the load index. The process behavior is not analyzed; therefore, the 
actual load of each computer is not measured. 
Shivaratri, Krueger and Singhal [SKS92] analyzed the server-initiated, receiver-initiated, 
symmetrically initiated, adaptive symmetrically initiated and stable symmetrically initiated 
algorithms. In their studies, the length of the process waiting queue at the CPU was 
considered as the load index. This measure was chosen because it's simple and, therefore, 
can be obtained with fewer resources. They concluded that the receiver-initiated algorithms 
present a higher performance than the server-initiated ones. In their conclusions, the 
algorithm with the highest final performance was the stable symmetrically initiated. This 
algorithm preserves the history of the load information exchanged in the system and takes 
actions to transfer the processes by using this information. 
Mello et al. [MTPY04] proposed a load balancing algorithm for distributing processes on 
heterogeneous capacity computers. This algorithm, named TLBA (Tree Load Balancing 
Algorithm), organizes computers in a virtual tree topology and starts delivering processes 
from the root to the leaves. In their experiments, this algorithm presented a very good 
performance, with low mean response time. 
Senger et al. [SdMS+05] proposed GAS, a genetic scheduling algorithm which uses 
information regarding the capacity of the processing elements, applications' communication 
and processing load, in order to allocate resources on heterogeneous and distributed 
environments. GAS uses Genetic Algorithms to find out the most appropriate computing 
resource subset to support applications. 
Motivated by all the previous ACO presented works (section 1) and the scheduling problem, 
Nery et al. [NMdCYOB] proposed an algorithm inspired in ant colonies to schedule 
processes on heterogeneous capacity computer clusters, which can be considered as an 
alternative approach for load balancing systems. Such algorithm is named Ant Scheduler 
and is based in ant colony optimization techniques. The next sections describe the algorithm 
and compare its results with others found in literature. 

5.1 The Ant Scheduler 

The problem of process allocation in heterogeneous multicomputing environments can be 
modeled by using graphs, as illustrated in Figure 3 [AAB+00]. In this case, each process is a 
request for execution that has the nodes S and T as origin and destination, respectively. S
and T are connected by N different paths, each corresponding to a computer in a cluster. 
This graph is employed to improve the general performance of the system by minimizing 
the mean congestion of the paths. 
The good results obtained by ACO in graph-based problems favor the use of ACO for the 
optimization of process allocation on heterogeneous cluster computing environments. For 
such, each initiated process can be seen as an ant looking for the best path starting in the 
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nest in order to arrive as fast as possible to the food source. In this search, each computer 
can be seen as a path and the conclusion of the program execution as the food source. 

Figure 3. A cluster modeled as a graph of resources 

The Ant Scheduler algorithm is based on the ant-cycle proposed by Dorigo et al. [DMC96]. 
When the computer responsible for the distribution of processes (master) in the cluster is 
started, each edge in the graph has its pheromone intensity initiated with a value i = c. 
When a process is launched, it is seen as an ant able to move. Thus, this process must select 
one of the paths (the computers of the cluster) to its destination (complete execution). The 
probability of an ant choosing a path i is given by Equation 1, where i is the pheromone 
level on path i, i is a value associated to the computer i by a heuristic function, and the 
parameters  and control the relevance of i and i.

(1)

This heuristic function is proportional to the load of the ith computer. The denominator is 
the sum of the pheromone levels weighted by the heuristic function and controlled by the 
parameters  and . When an ant arrives to its destination (when a process finishes), it 
deposits a  amount of pheromone in the covered path (equation 2: where Q is a constant 
and T is the time spent by the ant to arrive at its destination (the process running time)). 

(2)

In order to prevent an addiction to a particular computer, the paths face continuous 
pheromone evaporation. Thus, in regular time intervals, the amount of pheromones changes 
according to the rule of equation 3, where is a coefficient such that (1 — ) represents the 
pheromone evaporation between t and t + 1. Additionally, i is reseted ( i = 0) in regular 
time intervals. 

 (3) 

One problem with this approach is the possibility of a poor performance due to the different 
range of values for i and i. In order to overcome this problem, these values are normalized 
using a logarithmic scale, modifying the equation 1 and originating the equation 4. 
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(4)

Another problem found was the frequent allocation of a low value, between 0 and 1, to i,
making log i < 0, leading to unrealistic values for the probability function. This problem 
was solved by using log  + i instead of log i, where  = 1. This resulted in the equation 5. 

(5)

The Ant Scheduler is composed of the Algorithms 3, 4 and 5. The first algorithm is executed 
when a new process, with possibility of migration, is initiated. When a process completes its 
execution, the second algorithm starts its execution. The third algorithm is periodically 
executed, in order to perform the pheromone evaporation. 

Choose a computer with probability pi, calculated using equation 5 
Schedule process on chosen computer  

Algorithm 3. Ant Scheduler: process started 

Update the amount of pheromone i using equation 2 

Algorithm 4. Ant Scheduler: process finished 

loop
for all i such that i is a cluster node do 

Update the amount of pheromone I using equation 3  
Reset the amount of pheromone i ( i = 0)

end for 
end loop 

Algorithm 5. Ant Scheduler: pheromone evaporation 

5.2 Simulation 

Several experiments have been carried out on environments with 32 computers for the 
evaluation of the Ant Scheduler algorithm behavior. The Ant Scheduler parameters used 
were = 1, = 1,  = 0.8 and Q = 0.1. Parallel applications of up to 8, 64 and 128 tasks have 
been evaluated. This configuration allows the evaluation of the algorithm in situations 
where there are many tasks synchronized with others, that is, tasks that communicate 
among themselves to solve the same computing problem. 
The workload imposed by such applications follows the workload model by Feitelson 
2[FJ97j. This model is based on the analysis of six execution traces of the following 
production environments: 128-node iPSC/860 at NASA Ames; 128-node IBM SP1 at 

                                                                
2 http://www. cs.huji.ac.il/labs/parallel/workload/models. html
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Argonne; 400-node Paragon at SDSC; 126-node Butterfly at LLNL; 512-node IBM SP2 at 
CTC; 96-node Paragon at ETH. 
According to this model, the arrival of processes is derived from an exponential probability 
distribution function (pdf) with mean equal to 1,500 seconds. This model was adopted to 
simulate and allow a comparative evaluation of Ant Scheduler and other algorithms found 
in the literature. 
In order to carry out the experiments and evaluate the scheduling algorithm proposed in 
this study, the authors used the model for creation of heterogeneous distributed 
environments and evaluation of the parallel applications response time - UniMPP (Unified 
Modeling for Predicting Performance) [dMS06]. The adopted model is able to generate the 
mean execution time of the processes submitted to the system. The mean response time is 
generated after reaching the confidence interval of 95%. 
In this model, every processing element (PE), PEi, is composed of the sextuple {pci, mmi,
vmi,dri,dwi,loi}, where pci is the total computing capacity of each computer measured in 
instructions per time unit, mmi is the main memory total capacity, vmi is the virtual memory 
total capacity, dri is the hard disk reading throughput, dwi is the hard disk writing 
throughput, and loi is the time between sending and receiving a message. 
In this model, every process is represented by the sextuple {mpj,   smj,   pdf dmj,    pdf drj,  pdf 
dwj,  pdf netj}, where mpj represents the processing consumption, smj is the amount of static 
memory allocated by the process, pdf dmj is the probability distribution for the memory 
dynamic occupation, pdf drj is the probability distribution for file reading, pdf dwj is the 
probability distribution for file writing, and pdf netj is the probability distribution for 
messages sending and receiving. 
In order to evaluate the Ant Scheduler algorithm, a class was included in the object-oriented 
simulator3 [dMS06j. This class implements the functionalities of Ant Scheduler and has been 
aggregated to the UniMPP model simulator to generate the mean response times of an 
application execution. These results were used to evaluate the performance of Ant Scheduler 
and to allow comparisons with other algorithms. 

5.2.1 Environment parameters 

Experiments were conduced in environments composed of 32 computers. In these 
experiments, each PEi for the UniMPP model was probabilistically defined. The parameters 
pci, mmi, vmi, dri, dwi were set by using an uniform probability distribution function with the 
mean of 1,500 Mips (millions of instructions per second), 1,024 MBytes (main memory), 
1,024 MBytes (virtual memory), 40 MBytes (file reading transference rate from hard disk) 
and 30 MBytes (file writing transference rate to hard disk). These measures were based on 
the actual values obtained using a group of machines from our research laboratory 
(Distributed Systems and Concurrent Programming Laboratory). These measures followed 
the benchmark proposed by Mello and Senger [dMS06]4. These parameter values and the 
use of probability distributions allow the creation of heterogeneous environments to 
evaluate the Ant Scheduler algorithm. 
The Feitelson's workload model was used to define the occupation parameter (in Mips) of 
the processes (or tasks) that take part of the parallel application. The remaining parameters 

                                                                
3 SchedSim - available at website http://www.icmc.usp.br/~mello.
4 available at http://www.icmc.usp.br/~mello/
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required for the UniMPP to represent a process were defined as: smj, the amount of static 
memory used by the process, based on an exponential distribution with a mean of 300 
KBytes; pdf dmj, the amount of memory dynamically allocated, defined by an exponential 
distribution with a mean of 1, 000 KBytes; pdf drj, the file reading probability, defined by an 
exponential distribution with a mean of one read at each 1, 000 clock ticks, same value used 
to parameterize the writing in files (pdf dwj); pdf netj, the receiving and sending of network 
messages, parameterized by an exponential distribution with a mean of one message at each 
1,000 clock ticks. 
During the experiments, all computers were located at the same network, as an ordinary 
cluster. Within the network, the computers present a delay (RTT - Round-Trip Time 
according to the model by Hockey [Hoc96]) of 0.0001 seconds (mean value extracted by the 
net benchmark by Mello and Senger [dMS06] for a Gigabit Ethernet network). 

5.2.2 Algorithms simulated 

The performance of Ant Scheduler is compared with 5 other scheduling and load balancing 
algorithms proposed in literature: DPWP [ASSS99], Random, Central, Lowest [ZF87], TLBA
[MTPY04] and GAS [SdMS+05]. 
The DPWP (Dynamic Policy Without Preemption) algorithm performs the parallel 
applications scheduling taking into account a distributed and heterogeneous execution 
scenario [ASSS99]. This algorithm allows the scheduling of the applications developed on 
PVM, MPI and CORBA. The details involved in the task attributions are supervised by the 
scheduling software, AMIGO [SouOO]5.
The load index used in this algorithm is the queue size of each PE (processing element). 
Through this index, the load of a PE is based on the ratio between its number of tasks being 
executed and its processing capacity. The processing capacity is measured by specific 
benchmarks [SouOO, SSSSOlj. The DPWP scheduling algorithm uses load indexes to create 
an ordered list of PEs. The parallel application tasks are attributed to the PEs of this list, in a 
circular structure. 
The Lowest, Central and Random algorithms were investigated for load balancing in 
[ZF87]. These algorithms are defined by two main components: LIM (Load information 
manager) and LBM (Load balance manager). The first component is responsible for the 
information policy and for monitoring the computers' load in order to calculate the load 
indexes. The latter defines how to use the collected information to find out the most 
appropriate computer to schedule processes. The approach followed by these components 
to perform their tasks allows the definition of distinct algorithms. These algorithms differ 
from the scheduling algorithms by being designed to perform the load balance, thus there is 
no global scheduling software to which the applications are submitted. In fact, each PE 
should locally manage the application tasks that reach it, initiating them locally or defining 
how another PE will be selected to execute tasks. 

                                                                
5 We have compared our results to this work, because it was also developed in our laboratory.
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The Lowest algorithm aims to achieve the load balance by minimizing the number of 
messages exchanged among its components. When a task is submitted to the environment, 
the LIM receiving the request defines a limited set of remote LIMs. The loads of the PEs of 
this set are received and the idlest PE is selected to receive the task. 
The Central algorithm employs a master LBM and a master LIM. Both of them centralize the 
decision making related to the load balance. The master LIM receives the load indexes sent 
by the slave LIMs. The master LBM receives the requests to allocate processes to the system 
and uses the information provided by the master LIM to make these allocations. 
The Random algorithm does not use information regarding the system load to make 
decisions. When a task is submitted to the execution environment, the algorithm randomly 
selects a PE. The load index used by the Lowest and Central algorithms is calculated based 
on the number of processes in the execution queue. Zhou and Ferrari [ZF87] have observed 
that the Lowest and Central algorithms present similar performance and that the Random
algorithms present the worst results of all. They also suggested the Lowest algorithm for 
distributed scenarios, because it's not centralized. 
The TLBA (Tree Load Balancing Algorithm) algorithm aims at balancing loads in scalable 
heterogeneous distributed systems [MTPY04]. This algorithm creates a logical 
interconnection topology with all PEs, in a tree format, and performs the migration of tasks 
in order to improve the system load balance. 
The GAS (Genetic Algorithm for Scheduling) algorithm uses Genetic Algorithms to propose 
optimized scheduling solutions [SdMS+05j. The algorithm considers knowledge about the 
execution time and applications' behavior to define the most adequate set of computing 
resources to support a parallel application on a distributed environment composed of 
heterogeneous capacity computers. GAS uses the crossover and mutation operators to 
optimize the probabilistic search for the best solution for a problem. Based on Genetics and 
Evolution, Genetic Algorithms are very suitable for global search and can be efficiently 
implemented in parallel machines. 

5.2.3 Experimental results 

For the validation of the Ant Scheduler algorithm, its performance was compared with 
results obtained by the five algorithms previously described. For such, the authors carried 
out simulations where all these algorithms were evaluated running parallel applications 
composed of different numbers of tasks. Figures 4 and 5 show the process mean response 
times for parallel applications with up to 64 and 128 tasks, respectively. 
Random had the worst results, while Ant Scheduler presented the best performance. The 
poor performance obtained by GAS can be explained by the fact that its execution time 
increases according to the number of computers. This occurs due to the use of larger chro-
mosomes (this approach is based on Genetic Algorithms), which have to be evaluated by the 
fitness function. This evaluation requires a long time, which is added to the scheduling cost, 
jeopardizing the process execution time. It is hard to observe the curve for Ant Scheduler in 
Figure 4 due to the small mean response times in comparison with the other algorithms. 
These results show that, in all the scenarios investigated, the Ant Scheduler presented the 
best performance. 
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Figure 4. Simulation results: 64 tasks 

Figure 5. Simulation results: 128 tasks 

5.3 Implementation 

In order to allow real experiments, Ant Scheduler was implemented using the Linux kernel 
2.4.24. This implementation uses the process migration service of the openMosix6 patch. 
openMosix is a software designed to balance the load of clusters by distributing processes. 

                                                                
6 openMosix is a Linux kernel patch developed by Moshe Bar which allows automatic process 

migration in a cluster environment — Available at http://openmosix.sourceforge.net/
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The implementation was performed by adding a set of traps inside the Linux kernel. The 
first trap was implemented in the system call do_fork. Whenever a new process is started, 
do_fork is called. This system call executes the first trap of Ant Scheduler, which chooses the 
node where the new process will run. This phase is based on the pheromone level and the 
computing capacity of each node. Similarly, when a process finishes, the system call do_exit 
is made. This system call executes the second trap of Ant Scheduler, which updates the 
amount of pheromone in the computer (ant's path) where the process was running. 
These traps were implemented in a kernel module by using function pointers, allowing 
simple changes to use another process scheduling algorithm. When the module is loaded, it 
registers its functions (traps). This module also starts a thread that periodically updates the 
pheromone level of each computer applying the equation 3. 
Experiments were carried out to evaluate the process execution time for an environment 
using Ant Scheduler and openMosix on a set of five Dual Xeon 2.4 Ghz computers. Table 1 
presents the results in process mean execution time (in seconds) for a load of 10 low-load, 10 
mean-load and 10 high-load applications executing simultaneously. According to these 
results, the use of Ant Scheduler reduced the mean response time. 

Experiment without with

Ant Scheduler Ant Scheduler 

1 351.00 327.00

2 351.00 336.00

3 351.00 318.00

4 354.00 321.00

5 351.00 318.00

6 351.00 333.00

7 351.00 321.00

8 351.00 336.00

9 348.00 309.00

10 348.00 315.00

Mean 350.70 323.40

Std Dev 1.615 8.777

Table 1. Experimental Results 

In order to evaluate the statistical significance of the results obtained, the authors applied 
the Student's t-test. In this analysis, the authors used the standard error sx for small data 
samples [W.C88], given by equation 6, where s is the standard deviation and n is the number 
of samples. Applying the equation, the standard errors of 0.51 and 2.775 were obtained 
without Ant Scheduler and with Ant Scheduler, respectively. 

 (6) 

In the test, the null hypothesis proposed is H0: with = without, with the alternative hypothesis 
HA: with < without to evaluate whether the results are statistically equivalent. The hypothesis 
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H0 considers the results of the Ant Scheduler and the standard openMosix to be similar. If 
the test is rejected, the alternative hypothesis HA is accepted. This hypothesis considers the 
process mean response time for the environment adopted. Such mean response time is 
lower when the processes are distributed using the Ant Scheduler, what confirms its 
superiority. 
The significance level used for one-tailed test is  = 0.0005. with is the process mean response 
time with Ant Scheduler; without is the process mean response time with the standard 
openMosix. For the adopted significance level , the data sets have to present a difference of 
at least 4.781 in the t-test to reject the hypothesis. This value is found in tables of critical 
values for the t-student distribution. 
Applying the equation 7, the value 9.83 is found, confirming that the results present statistic 
differences with p < 0.005, rejecting the hypothesis H0. In this way the hypothesis HA is valid 
and the system with Ant Scheduler presents better results than standard openMosix. 

(7)

By applying statistic tools7 over the data sets, it's possible to find the most precise  = 
0.0000018 for a one-tailed test. This value shows how many times the alternative hypothesis 
is true. In this case, HA can be considered true in 9,999,982 out of 10,000,000 executions, 
showing that Ant Scheduler reduces the response time. Only in 18 of these executions the 
results of Ant Scheduler and openMosix would not present significant statistical differences. 

6. Conclusions and future directions 

The behavior of real ants motivated Dorigo et al. [DMC96] to propose the Ant Colony 
Optimization (ACO) technique, which can be used to solve problems in dynamic 
environments. This technique has been successfully applied to several optimization 
problems [FMS05, PB05, BN06, SF06, PLF02, WGDK06, CF06, HND05]. Such results have 
motivated this chapter which presents ACO concepts, case studies and also a complete 
example on process scheduling optimization. 
Besides the successful adoption of ACO, it presents some relevant questions which have 
been motivating future directions such as: how to adjust parameters which depend on the 
optimization problem [SocOSj; how to reduce the execution time [G.N06, MBSD06]; the 
optimization improvement by using incremental local search [BBSD06]; and the aggregation 
of different and new concepts to ACO [RL04]. Those works confirm ACO is an important 
optimization technique and also that is has been improved and present a promising future. 
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