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Abstract

An important objective of aquatic ecotoxicology is to determine the effects of toxic com‐
pounds in organisms that play a central role in aquatic communities where rotifers have a
large impact on several important ecological processes. The contribution of the rotifers to
secondary production in many aquatic communities is substantial as they are often the
larger fraction of zooplankton biomass at certain times of the year. In addition to the im‐
portance of their ecological roles in aquatic communities, the rotifers are attractive organ‐
isms for ecotoxicological studies by its short life cycles and rapid reproduction, their
small size, and little volumes needed for culture and toxicity assays. The main end points
used in ecotoxicological studies are mortality, reproduction, behavior, and biomarkers.
Such parameters are included in international regulations from all over the world, where
different species are used to evaluate the effect of environmental samples or chemical
compounds. The high diversity of rotifers is an important issue because it can modify
their relative susceptibility to toxicants. Thus, more studies are needed to know the rela‐
tions and mechanisms involved in clonal variation, sensitivity, and development, which
can be all assessed by state-of-the-art procedures.

Keywords: aquatic toxicology, ecotoxicology, metal toxicity, acute toxicity, endocrine dis‐
ruption

1. Introduction

The analytical equipment can identify and quantify a chemical substance but not its toxicity
in the organisms or the environment, which can be evaluated only in life organisms [1]. Toxicity
testing in water samples assesses the concentration and exposure time of the chemical
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substances that produce an adverse effect in aquatic organisms, generating useful data for risk
assessment. A toxicity test can be accepted by the scientific community if (a) it is capable to
predict adverse effects for a variety of compounds in different organisms, (b) it must be
replicable with statistical-based analysis, (c) its data must include adverse effects in a range of
concentrations in real exposure times, (d) it must be useful to evaluate a risk, (e) it is economic
and easy to perform, and (f) it is sensitive and realistic [2].

A model organism for a toxicity test must be abundant, native, or representative of the
ecosystem that would be impacted, with ecological and economic importance; there must be
a good knowledge of its basic biology that helps interpretation of data and be available for
routine maintenance in the laboratory [2].

Toxicity tests have been developed for rotifers to assess many and diverse end points like (a)
mortality, (b) reproduction, (c) production of amictic females, (d) cyst production, (e) proba‐
bility of extinction, (f) behavior, (g) ingestion rates, (h) swimming activity, (i) in vivo enzymatic
activity, and (j) genetic expression, among others [3–5].

Most of the toxicity tests in rotifers are lethal tests that rely in mortality as the end point to
calculate the LC50 value typically at 24 or 48 h without feeding [5]. These tests once standar‐
dized are the base to develop monitoring protocols to assess water quality [4, 5]. On the other
hand, chronic toxicity tests assess sublethal parameters like behavioral, physiological, or
reproductive alterations as the first responses to toxic substances [5, 6], which show high
sensitivity in shorter periods of time. The rotifer species Brachionus calyciflorus and Brachionus
plicatilis are among the species most frequently used for both lethal and chronic tests [7, 8].

1.1. Phylum Rotifera

Rotifers are aquatic or semiaquatic microscopic invertebrates with nearly 1850 species; they
are unsegmented, pseudocoelomate, and bilaterally symmetric [4, 9, 10]. Nowadays, two
classes are recognized: Pararotatoria (with the single order Seisonacea) and Eurotatoria, with
two subclasses, Bdelloidea and Monogononta. The size of rotifers ranges from 50 to 2000 µm
in length. Most of the species are free swimmers, but some species are fixed to some substratum
[4]. Their morphology is of saccate type that is cylindrical with three easily recognizable
regions: corona, trunk, and foot (Figure 1) [11].

1.2. Ecological relevance

Rotifers are cosmopolitans. They inhabit aquatic environments of the three types: marine,
freshwater, and estuarine [9]. Most rotifers are freshwater, littoral with a few species truly
planktonic. The few species that comprise the order Seisonacea and nearly 100 species of the
subclass Monogononta are exclusively marine [4]. Species of the subclass Bdelloidea are found
in freshwater ecosystems, lakes, temporary pools, interstitial water, soil, moss, and lichens [4,
12]. Rotifers are important in freshwater environments due to having one of the highest
reproductive rate among metazoans, thus obtaining high population densities in short times,
being dominant in many zooplanktonic communities. They act as links between the microbial
community and the higher trophic levels. Rotifers colonize habitats quickly and convert
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primary production (algae and cyanobacteria) in a usable form for secondary consumers,
making energy available for the next trophic levels. In interstitial water from swampy soils,
they contribute to nutrient recycling [4]. Some bdelloids and Monogononta are abundant in
wastewater treatment plants as part of activated sludge, in filtration systems, or residual
lagoons feeding on the bacterial biomass [2, 13]. The population dynamics of rotifers is well
characterized both in field as in the laboratory; for this reason, they are useful to investigate
ecological and demographic principles. Besides, they are frequently used to assess aquatic
toxicity from a population point of view. The intrinsic growth rate (r) is an end point commonly
used and has proved to be highly sensitive [5, 14].

1.3. Culture

Rotifers can be obtained directly from a natural aquatic system or from laboratory cultures.
Rotifers can be hatched from cysts, and today there are toxicity kits of two species: B. calyci‐
florus and B. plicatilis (Rotoxkits). The culture of rotifers has been developed for freshwater,
estuarine, and marine organisms taken directly from the natural environment after a previous
filtration, sterilization, and neutralization are performed. There is also synthetic hard like EPA
medium [15] or synthetic marine water (Instant Ocean) that can be adjusted to the desired
salinity. In freshwater species, usually the pH level is maintained in the physiological range
(6.5–8) and temperature oscillates between 20 and 30°C. Marine species are maintained at
salinities of 10 to 20 psu depending on a particular strain [16]. Rotifers are mainly filter feeders

Figure 1. Diagram of the freshwater rotifer Brachionuscalyciflorus (Monogononta) [11].
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on microalgae, bacteria, or detritus; a few species are predatory. The supply of fresh and
optimal food is the main problem for culturing rotifers. However, numerous rotifer species
have been kept in the laboratory routinely [4]. Among the main marine microalgae used to
feed rotifers are as follows: Nannochloropsis sp., Chaetoceros sp., Dunaliella sp., Pyramimonas,
Isochrysis sp., and Tetraselmis sp.; for freshwater: Nannochloris sp., Nannochloropsis sp., and
Chlorella sp. [16]. Culture media have to be renewed 2–3 times a week, and the supply of food
must be frequent. Some species are maintained on diluted suspensions of commercial fish food,
grain extracts or infusions, manure, and soil [4]. Among the most cultured species are found
those of the genus Brachionus: B. plicatilis, B. rotundiformis, and B. calyciflorus [17, 18]. Some
species of the genus Lecane can be easily cultured [19]. The economic importance of these rotifer
species that are mass cultured are mainly based in their use as live feed for fish larvae and
crustaceans in aquaculture [18].

1.4. Reproduction

The life cycles of rotifers are shorter than many other animals [14]. The Bdelloidea are repro‐
duced by exclusive parthenogenesis and males are unknown. In the subclass Monogononta,
the life cycle is haplodiploid with cyclic parthenogenesis as the dominant phase (amictic
females), whereas the sexual reproduction (mixis) involves mictic diploid females that produce
haploid eggs that if fertilized produce diploid embryos or cysts (in old literature they are called
“resting eggs”), which go through diapause before hatching into amictic females that go back
to the asexual phase of the cycle (Figure 2). Mixis is triggered by specific environmental stimuli
like high population density or photoperiod [18, 20]. Parthenogenesis eliminates the high cost
of producing males resulting in a rapid growth population [18], which allows for the high
production of clonal individuals that can be used for aquaculture or toxicity tests.

Figure 2. Reproductive cycle of Brachionus calyciflorus. Modified from Alvarado-Flores [21].
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1.5. Cysts

Once the eggs are produced, they fall into the bottom and are deposited in the sediments [18].
The cysts are diploid and have a thick cover and can be viable for many years in dormancy.
Cysts are very resistant to harsh environmental conditions like draught and freezing. Cysts
can be dispersed through wind, water, or migratory animals. Under favorable conditions in a
specific habitat, the cysts respond to a specific environmental clue (photoperiod, temperature,
and salinity) and starts hatching producing an amictic diploid female [4]. Cysts can be stored
for great periods of time without losing viability having rotifers in the desired period of time
[22]. The use of rotifers hatched from cysts to develop toxicity tests was introduced by Snell
and Persoone [23]. Nowadays, it is possible to obtain cysts from marine (B. plicatilis) and
freshwater (B. calyciflorus) species in the market.

1.6. Rotifers as sentinels or bioindicators

Aquatic invertebrates are attractive model organisms in aquatic toxicology due to their short
generation time compared with fishes besides their small size require small test volumes [14,
24]. Their small size, the fact that they are filter feeders, and the permeability of the integument
made rotifers quite susceptible to chemical and physical changes [19, 25]. Due to the impor‐
tance of rotifers in the aquatic trophic webs, they are useful as sentinel species to indicate
toxicant exposure in affected ecosystems [4].

The knowledge of the (a) basic biology of rotifers, (b) sensitivity to contaminants at the
physiological and demographic levels, (c) cosmopolitan distribution, (d) great ecological
relevance, (e) high growth rate, (f) availability of neonates, (g) high ingestion rates, (h) ease of
culture and handling, (i) transparency, (j) short life cycles, (k) ease to obtain clonal individuals,
and (l) cyst production makes rotifers useful tools for assessment of aquatic ecosystems [4, 5,
8, 17, 18, 22, 24, 26].

2. Rotifers as model organism among invertebrates

Invertebrates are the most widely distributed organisms on the Earth and consist of a large
and very diverse group, consisting in more than 30 phyla, several of which include more than
1000 different species [27]. The largest phylum within invertebrates is the Arthropoda, with
more than one million species, in which insects and crustaceans are the two largest groups [28].
Aquatic crustaceans is a larger group in comparison to the aquatic insects, which a few of them
have aquatic larvae [29]. Consequently, crustaceans are the most numerous and ecologically
important group of invertebrates in marine and freshwater ecosystems, playing an important
role in regulatory toxicity testing, whether in field or laboratory conditions [30, 31]. In addition,
these methods are cost-effective because of the facility to obtain amictic eggs or in some cases
resting eggs, which have been used to produce commercial kits for toxicity evaluation [32].

Current international protocols include several invertebrates’ taxa for toxicity assessment
(Table 1), in which cladocerans are the most used organisms and have more approved
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protocols for both acute (lethal) and (sub)chronic (sublethal) water toxicity assays than other
taxa. The genus Daphnia is the most studied taxon within cladocerans. For the acute toxicity
test, three replicates for at least five toxicant or effluent concentrations are required, every one
of them with 100 mL, 48 h for exposure, without feeding [33]. Moreover, the chronic toxicity
assay needs almost the same conditions but with feeding and daily medium renewal for 21
days [34]. In comparison, the Brachionus or other rotifer bioassays need only 1 mL per replicate
[23], and the results can be obtained within 2 days for acute toxicity evaluation, and in 5 days
for the chronic ones. Hence, rotifers tests involve similar conditions to the cladocerans, but
when time is a matter of concern, the former is the best option to know the toxicity of chemicals
or field samples.

Rotifers are even more versatile than daphnids. In April 2010, after the Macondo oil spill in
the Gulf of Mexico, the Environmental Protection Agency of the United States (USEPA) in
order to assess the impact of petroleum and oil dispersants on the aquatic biota recommended
using B. plicatilis, a species complex that included B manjavacas, B. plicatilis sensu stricto, and B.
rotundiformis among other that can exist [35]. This cost-effective test can be replicated hundreds
of times in very short periods of time when necessary [36].

The Organization for the Economic Cooperation and Development (OECD) encourages
developing test protocols that include crustaceans [37]. In this concern, the copepod Eucyclops
serrulatus has been proposed as a model organism, with acute toxicity evaluations in 96 h [38]
and chronic toxicity assessment in about 60 days [39]. These periods differ due to intrinsic
characteristics of the species; copepods last longer to reach sexual maturity after hatching and
require mating to obtain eggs for assays, while rotifer eggs are produced by parthenogenesis
[40–42]. Nevertheless, with regard to the importance of copepods in aquatic ecosystems, there
is not yet any approved protocol for toxicity evaluation as in rotifers [43, 44].

The cnidarian Hydra attenuta is another model organism included in standard methods [45].
This one is particularly interesting since lethal and sublethal end points are assessed in the
same assay by quantifying the number of death animals and abnormalities found in the
survivor hydras during 96 h for acute procedures, which are performed in 12-well microplates,
whit a test volume of 4 mL [46]. Clubbed tentacles appearance is the first sign of abnormalities
due to toxicants exposure. From this point, abnormalities follow shortening tentacles and the
tulip stage (all tentacles have disappeared), and finally the disintegration of animal bodies
occurs. Therefore, lethal effects should be registered from the tulip stage [47].

It is worth to compare with some rotifers in which it is also possible to determine sublethal
effects in the same time period. Alvarado-Flores et al. [48] found abnormal body shapes in B.
calyciflorus after vinclozolin exposure, demonstrating this pesticide also acts as an endocrine
disruptor. As result, both models can be used for sublethal toxicity screening in short periods
of time, but the difference lies on the apparent ease to determine such effects, while in Hydra
attenuata are very obvious. In B. calyciflorus, more than one thousand organisms were analyzed
to find statistically abnormalities in this rotifer species.

Bivalves in ecotoxicology procedures refer the use of species such as Lampsilis siliquoidea,
Corbicula fluminea, Leptodea fragilis, Ligumia subrostrata, and Megalonaias nervosa, among others
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[49, 50]. In the scientific literature, most of the bivalve specimens used in toxicological research
and evaluations have been collected from environmental samples or commercial producers
[51–54]. Glochida are dissected from adult bivalves and need a fish host to develop into
juveniles [55–57]. Both immature stages, glochida and juveniles, are used for water quality
assessment or chemicals released into aquatic systems [58]. In contrast, rotifer experimental
organisms are produced in laboratory-controlled conditions, and animals are ready to use a
few hours after hatching instead for several weeks to have juvenile unionids. Hence, rotifer
bioassays are less time consuming than bivalves protocols.

In freshwater sediment, toxicity screening several protocols are currently carried out by
international regulation agencies (Table 1). Nevertheless, rotifers are not included as test
species, but it has been proved that the genus Lecane is suitable for those evaluations, repre‐
senting a cost-effective and high reliable alternative to the standardized methods.

Class Order Family Species

Freshwater

Cladocera Branchiopoda Diplostraca Daphniidae Daphnia magna [62-65]

D. pulex [66-68]

D. similis [69]

D. carinata [70-71]

Ceriodaphnia dubia [62, 64, 66, [72]

Copepoda Branchiopoda Anostraca Thamnocephalidae Thamnocephalus platyurus [73-76]

Maxillopoda Calanoida Cyclopidae Eurytemora affinis [77-80]

Eucyclops serrulatus [31, 81-83]

Rotifera Monogononta Ploima Brachionidae Brachionus calyciflorus [43, 84]

B. rubens [23, 85-87]

B. patulus [88-90]

Lecanidae Lecane quadridentata [91-93]

L. hamata and L. luna [94,95]

Euchlanis dilatata [96, 97]

Asplanchnidae Asplanchna brightwelli [98-101]

Cnidaria Hydrozoa Anthoathecata Hydridae Hydra attenuata [45]

H. vulgaris [102-104]

Mollusca Bivalvia Unionoida Unionidae Elliptio complanata [58]

Lampsilis siliquoidea [58]

Veneroida Corbiculidae Corbicula fluminea [105-108]
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Class Order Family Species

Freshwater sediments

Crustaceans Malacostraca Amphipoda Hyalellidae Hyallela azteca [109, 112]

Annelida Clitellata Lumbriculida Lumbriculidae Lumbriculus variegatus [113-115]

Stylodrilus heringianus [116, 117]

Rotifera Bdelloidea Philodinidae Philodina roseola [118]

Arthopoda Insecta Diptera Chironomidae Chironomus dilutus [109, 110,
119-121]

C. riparius [109, 110, 119-121]

Seawater

Rotifera Monogononta Ploima Brachionidae Brachionus plicatilis [43]

Echinodermata Echinoidea Arbacioida Arbaciidae Arbacia punctulata [122]

Arthropoda Malacostraca Mysida Mysidae Mysidopsis bahia [123]

Copepoda Maxillopoda Calanoida Acartiidae Acartia tonsa [44, 124]

Harpacticoida Miraciidae Amphiascus tenuiremis [44]

Molluscs Bivalvia Mytiloida Mytilidae Mytilus edulis [125, 126]

Ostreoida Osteridae Crassostrea gigas [127]

Seawater sediments

Annelida Polychaeta Capitellida Arenicolidae Arenicola marina [128]

Artropoda Malocostraca Amphipoda Corophiidae Leptocheirus plumulosus[110, 129,
130]

Note: Numbers in square brackets indicate reference number

Table 1. Toxicity evaluations protocols using different invertebrates for freshwater and freshwater sediments,
seawater, and seawater sediments.

Differently to the protocols mentioned above, all those for seawater and seawater sediments
are found in standardized probes approved by agencies such as USEPA, ASTM, and the OECD
(Table 1). As previously described, B. plicatilis is a marine rotifer used in seawater toxicology
evaluation, an although it is not included in the USEPA guidelines, the agency recommended
its used based on the ASTM method [43]. For sediments, the prime option is the polychaetes
such as Arenicola marina, mainly collected from beach sand in different locations around the
world. The protocol involves an exposure time of about 28 days using artificial sediment and
field sediments samples [59–61]. Moreover, B. plicatilis has been exposed to interstitial water
from littoral ecosystems; although it is sensitive to bioavailable toxicants in pore water, it does
not respond in the same manner that those organisms that live in the sediment.
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Afterward, the use of rotifers in all the above-mentioned matrices is possible due to some
advantages, such as their relative small size, their simple organization, their short life cycles
that permit multigenerational studies in very short time periods, their reproduction through
parthenogenesis, and their genetic homogeneity that leads to almost identical offspring [22].
Despite of these characteristics, there is still a need to continue researching the effect of
toxicants and to improve protocols for rotifers in (eco)toxicology to better understand their
physiology and how external factors alter rotifers normal responses, since studies with rotifers
are not as numerous as other taxa (Figure 3).

Figure 3. Number of publications for the groups described in the text. The databases consulted were Elsevier
(www.sciencedirect.com), Springer (www.link.springer.com), and Wiley Online Library (http://onlineli‐
brary.wiley.com). Query terms were the genera name and the word “toxicity”. Pie chart data represent percentages
based on published material.

3. Rotifer sensitivity

The toxicity of a wide variety of chemicals including organic compounds, metals, and phar‐
maceuticals that can be found in water reservoirs as a result of human activity has been tested
by performing toxicity tests using rotifers as bioindicators as these organisms play an impor‐
tant ecological role in aquatic environments [3, 131]. Rotifers of the genus Brachionus can be
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found between the most commonly used tests organisms [132]; moreover, several rotifers are
included for comparison purposes.

A test organism with high sensitivity to detect adverse effects of xenobiotics is always
desirable; nevertheless, differences in sensitivity among species can always be found. Gener‐
ally, these are due to the biological characteristics of test organisms, the type of chemical, and
its mode of action; thus, one species might be very sensitive to one toxic but not that sensitive
to another compound [133]. This section focuses on the sensitivity of different rotifers, all of
them from freshwater ecosystems, with exception of the marine species B. plicatilis and
Brachionus koreanus, when testing the toxicity of pesticides, organic compounds, and metals
attending their toxicological importance and the availability of literature.

Some examples of these variations on sensitivity are shown in Table 2. In relation to pesticides,
malathion (organophosphorus) displays the lower toxicity and has a toxicity range from 33.72
to 45.5 mg/L, where the lower toxicity level is reported to B. calyciflorus and the higher to B.
plicatilis [134, 135].

Lindane, an organochloride pesticide, and methyl parathion (organophosphorus) show
moderate toxicity and have wider toxicity ranges in comparison to malathion. For the orga‐
nochloride, toxicity range is given by B. koreanus and B. plicatilis (14 and 35.89 mg/L, respec‐
tively). In the case of methyl parathion, which shows higher acute toxicity, a range from 0.607
mg/L for Euchlanis dilatata to 29.19 mg/L for B. calyciflorus was found. Another organophos‐
phorus of ecotoxicological relevance, chlorpyrifos, tends to affect significantly aquatic
invertebrates due the LC50 values reported for B. koreanus (3.9 mg/L) and B. calyciflorus (11.85
mg/L) [96, 134, 136, 137].

The organochlorides endosulfan and pentachlorophenol (PCP) stand as highly toxic agro‐
chemicals. For endosulfan, B. koreanus and B. plicatilis correspond to the reference organisms
to establish the range because of their 24-h LC50 values found in literature [135, 136]. For PCP,
the lowest and highest toxicity levels were noted for B. calyciflorus [138, 139].

On literature, little information is available about the toxicity of other organic compounds such
as benzene, toluene, xylene, and hexane. Nevertheless, Ferrando and Andreu-Moliner [7] and
Pérez-Legaspi et al. [95] have obtained some toxicological data (Table 2). For xylene, hexane,
and toluene, B. calyciflorus and B. plicatilis are the reference organisms, where the first was most
sensitive for the three chemicals [7, 95]. For benzene, rotifers from the genus Lecane resulted
being more sensitive, but also a wide toxicity range is registered from 6.97 for Lecane luna to
3762 mg/L for Lecane hamata [95].

The lowest LC50 values, and thus, more toxic metals, were reported for zinc, copper, and
mercury. Besides, a relatively not wide toxicity range can be observed for these three chemicals
(Table 3). The most sensitive test organisms in these cases were Lecane quadridentata, B.
plicatilis, and B. calyciflorus, respectively, while the more resistant were Brachionus havanaen‐
sis (Zn), P. acuticornis (Cu), and L. hamata (Hg) [93, 95, 135, 140, 143, 144].

Moreover, it is important to mention that there are physical factors that can alter the sensitivity
of a test organism when performing a toxicity test. One example is given by Preston et al. [138],
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where a decrease in LC50 values for PCP and mercury using B. calyciflorus as bioindicator was

recorded as UV-B exposure time was increased.

Pollutant
Acute toxicity range in terms of 24h-LC50 (mg/L)

Pesticides

Malathion 33.72[134] - 45.5[135]

Lindane 14[136] - 35.89[137]

Methyl parathion *0.607[96] - 29.19[134]

Chlorpyrifos 3.9[136] – 11.85[137]

Endosulfan 4[136] - 6.6[135]

PCP 0.21[138] - 2.16[139]

Another organic compounds

Xylene 252.7[7] - 495.9[7]

Hexane 68.3[7] - 154.3[7]

Acute toxicity range in terms of 24 and 48h-LC[50](mg/L)

Benzene 6.97[95] – 3,762[95]

Toluene 113.3[7] - 552.6[7]

Note: Numbers in square brackets indicate reference number

*48h LC50 value

In the case of inorganic toxicants (Table 3), lead appears as the “less” toxic and with the wider toxicity range from 0.035
for E. dilatata to 56.2 mg/L for Philodina acuticornis [97, 140]. For cadmium, E. dilatata shows a great sensitivity with a 48-
h LC50 of 0.014 mg/L, while B. plicatilis is more resistant (39 mg/L) [97, 141]. The most sensitive rotifer to chromium was
Lecane luna (48-h LC50 of 3.26 mg/L) [95], and the highest 24-h LC50 of 17.4 mg/L was registered for B. calyciflorus [142].

Table 2. Toxicity range for some pesticides and organic compounds to rotifers used in bioassays.

Metal Acute toxicity range in terms of 24 and 48h-LC[50] (mg/L)

Lead 0.035[97] - 56.2[140]

Cadmium 0.014[97] – 39[141]

Chromium 3.26[95] - 17.4[142]

Zinc 0.123[93] - 2.271[143]

Copper 0.01[135] - 1.9[140]

Mercury 0.06[144]- 1.37[95]

Note: Numbers in square brackets indicate reference number

Table 3. Toxicity range for different metals to rotifers used in bioassays.
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Other physical condition that might modify the sensitivity of a test organism is desiccation.
Robles-Vargas and Snell [145] found a remarkable resistance of Philodina sp. emerged from
desiccation to PCP, chlorpyrifos, and mercury in comparison to continuously hydrated rotifers
when reproductive tests were implemented [145].

According to the information reviewed and in terms of acute toxicity, rotifers from the family
Brachionidae tend to show a great sensitivity to different chemicals, including organic and
inorganic compounds. Invertebrates from the family Euchlanidae and Lecanidae appear to be
sensitive mainly to inorganic toxicants. Furthermore, rotifers belonging to the family Philodi‐
nidae exhibit a notorious resistance to chemicals.

4. Rotifer database for screening toxicants

Every chemical product that can reach ecosystems and, as a consequence, the human being
needs to be characterized to avoid noxious effects on all organisms exposed. At first instance,
toxicological studies were mainly anthropocentrically focused, but that point of view would
not have been enough to protect our own existence at all if affecting organisms in different
ecosystems would have continued. It is known that rotifers play an important role as secondary
producers and in some freshwater ecosystems represent the larger fraction of biomass of
zooplankton [146]. Therefore, these organisms are nowadays considered as model organisms
for toxicological screening.

Currently, one can find in the scientific literature reports of almost every class of chemical
compound used or produced by man, investigating their toxicological properties. These papers
are relatively abundant in several websites specialized in gathering such kind of information,
which is available to everyone who has access to the published material. For scientist, collecting
this material is a daily activity that guarantees their studies to follow the right direction by not
working in exactly the same topic and manner, which would represent the duplicity of
information but at higher cost because of multiple double efforts and resources investment.
Nonetheless, it must be pointed out that differences in susceptibility to toxicants can be found
among clones or strains, which is very interesting to assess by multiclonal analyses [22, 147].
However, when it is not possible to access multiple clones or strains, previous reports
(published material) from databases become more relevant as a source of comparison to
improve the comprehension of the observed results.

The USEPA, in an attempt to ease the search for environmental toxicological data, has created
the ECOTOX database, hosted in their website [150]. It provides a user-friendly interface and
allows discrimination among taxonomic and chemical groups, aquatic or terrestrial environ‐
ment, tests results or conditions, and type (year) of publication. Although it does not give
access to the cited references, it returns a list of publications to be consulted elsewhere. In the
ECOTOX results table, the data shown are species name, exposure type, chemical, media type,
end points, bioconcentration factor, effects, and statistics, among others (Figure 4). A complete
list of all abbreviations used in the ECOTOX database can be directly downloaded for the same
host website.
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Figure 4. Print screen of ECOTOX database results. Query terms were Brachionus and chromium, selected from the op‐
tions displayed in the database [150].

Nowadays, toxicity assays with rotifers include very diverse toxicants, and a relatively high
number of test have been assessed the effect of inorganic (metals and metalloids) and very
versatile organic compounds like pesticides, solvents, colorants, detergents, and emergent
toxicants, in which health and care products and pharmaceuticals form part of it (Table 4).
Some of these toxicants are effective at concentrations as low as some nanograms per liter,
altering rotifers population dynamics by different mechanisms like endocrine disruption.

Species Chemical compound or metal Species Chemical compound or metal

Bc

1,1,1-trichloroethane [150] Bc Lauryl alcohol [150]

1,3,5-Trinitrobenzene [150]
Ab, Ai, Bc, Ed Lh,

Ll, Lq, Pa
Lead [91, 94, 97]

1-Dodecanesulfonic acid, Sodium salt [150] Ap, Bc,Br, Kq Lindane [150]

1-Octanol [150]

Bc

Linuron [150]

Bp
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47)
[151]

Lithium [157]

Bc, Kc 2,3,4,6-Tetrachlorophenol [150] m- and p-Xylene [150]

Ba, Ka,Kc 2,4,5-T [150] Malathion [150]

Bc
2,4,6-trichlorophenol [150] Br Malathion [150]

2,4,6-Trinitrotoluene [150] Pa Malathion [150]
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Species Chemical compound or metal Species Chemical compound or metal

2,4-Dichloro aniline [150] Bc Malathion [152]

2,4-Dichlorophenoxyacetic [150] Bc Malathion [153]

2,4-dinitrochlorobenzene [150] Bc, Li, Lq Manganese [150], [166], [169]

2,4-xylenol [150] Bc MARLON A390 [150]

2,5-Dichloro aniline [150]
Bc, Bp, Ed, Lh, Ll,

Lq, Pa
Mercury [91, 94, 97]

2- [2- [2-(Dodecyloxy)ethoxy]ethoxy]ethanol,
Hydrogen sulfate, Sodium salt [150]

Bc Metallic silver [150]

3,4-dichloro aniline [150] Av Methacrylamide [171]

Acetaminophen [150]

Bc

Methacrylic acid [150]

Bc, Lh, Ll, Lq Acetone [94, [150]] Methanol [150]

Bc Acetylsalicylic acid [152, 153] Methoprene [150]

Av Acrylamide [154] As, Ba, Bc, Bp, Ed Methyl parathion [97, 150]

Bc

Acrylic acid [150]

Bc

Molinate [150]

Aldrin [155]
N,N,N-Trimethyl-1-octanamonium

chloride [150]

Alkyl* sodium benzene sulfonate [150]
N,N-Dimethyl-1-dodecanamine

[150]

Alkyl* trimethyl ammonium chloride [150] N,N-Dimethyl-1-octanamine [150]

Ab, Bc, Li, Lq Aluminum [93, 150, 156] Naphthalenol [150]

Bc Amitriptyline [152, 153, 157] Naproxen [150]

Bc, Br Ammonia [150] n-Hexane [150]

Bc, Pa Ammonium chloride [150] Bc, Pa Nickel [150]

Bc Amphetamine sulfate [153]

Bc

Nicotine [152, 153]

Bc Aroclor 1260 [150] Nitric acid, Cadmium salt [150]

Bc, Pp, Pr, Arsenic [150, 158>] Nonyl phenol [150]

Bk Atenolol [159] Ofloxacin [161, 165]

Bc, Kq Atrazine [150] Orphenadrine [152, 153, 157]

Bc Atropine [152, 153, 157] Oxytetracycline [150]

Bc Barium nitrate [150] Bc, Bk Oxytetracycline [159, 165]

Bc, Lh, Ll, Lq Benzene [94, 150] Bc Paracetamol [152, 153]

Bc Bezafibrate [160]

Bc

Para-chlorophenol [150]

Ab, Ai, Bc, Bh,
Bp, Br, Bu, Ed,
Lh, Ll, Lq, Pa

Cadmium [94, 143, 150, 160] Para-dichlorobenzene [150]
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Species Chemical compound or metal Species Chemical compound or metal

Bc Caffeine [150] P-chloroaniline [150]

Pa Calcium hypochlorite [150]
Ag, Bc, Br, Kq,

Pa,
Pentachlorophenol PCP [150]

Bc, Bk Carbamazepine [159, 161, 162] Bc Phenobarbital [152, 153, 157]

Ba, Hm, Mq, Pa Carbaryl [150] Bc, Br, Pa Phenol [150]

Eb, Kq Carbendazim [150] Br p-Nitrophenol [150]

Bc

Carbofuran [150] Bp
polybrominated diphenyl ethers

[173]

Carbon tetrachloride [150] Bc Potassium chloride [150]

Cetyl trimethyl ammonium chloride [150] Bc, Pa Potassium cyanide [150]

Chloramphenicol [152, 153, 157] Bc, Pa Potassium dichromate [150]

Pa Chlorine [150]

Bc

Prednisolone [174]

Bu Chlornitrofen [150] Prednisone [175]

Bc

Chloroacetic acid [150] Prococene [150]

Chloroform [150] Propranolol [152, 153, 157, 176]

Chloroquine [152, 153] Quinidine [152]

Ab,Ba,Bb, Bc Bq,
Bu, Eb, Ft, Hi,

Hm, Kq, Mq, Pq,
Tp

Chlorpyrifos [150,163] Ranitidine [177]

Bc, Bp, Lh, Ll, Lq Chromium [94, 150, 163] Selenium [150]

Bc Clarithromycin [165] Pa Silver nitrate [150]

Pa Cobalt chloride [150] Br Simetryn [150]

Ab, Bc, Bp, Br,
Lh, Ll, Lq, Li, Pa,

Pp
Copper [94, 150, 158, 164, 166, 167] Bp SLS [178]

Ab, Bc, Bp DDT, p,p' [150, 169] Bc Sodium bromide [150]

Bc

Diazepam [152] Bc Sodium chloride [150]

Diazinon [150] Pr Sodium chromate [150]

Diclofenac [161, 162] Bc
Sodium dodecylbenzene sulfonate

[150]

Dicofol [150] Pa Sodium fluoride [150]

Digoxin [152] Bc Sodium hypochlorite [150]

Pa Dimethoate [150] Bc Sodium laurate [150]

Bc Dinitro cresol [150] Bc, Br Sodium lauryl sulfate [150]
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Species Chemical compound or metal Species Chemical compound or metal

Diphenylhydantoin [152]

Bc

Sodium oxalate [150]

Endosulfan [150] Sodium selenate [150]

Endothall [150] Sodium tetradecyl sulfate [150]

Erythromycin [165] Sulfamethoxazole [159, 161, 165]

Estradiol [150] Testosterone [168]

Ethinylestradiol [94, 168] Thallium(I) sulfate [150]

Lh, Ll, Lq Ethyl acetate [94, 168] Theophylline [152, 153]

Bc

Ethyl alcohol [150] ThiobencarB[150]

Ethyl methacrylate [150] Thioridazine [153]

Ethylene glycol [150] Li Tin [166]

Fenitrothion [150] Lh, Ll, Lq Titanium [94]

Fenofibrate [160] Bc, Lh, Ll, Lq Toluene [94, 150]

Bc, Pa Ferrous sulfate [150]

Bc

Tributyl phosphate [150]

Ab Iron [156] Tributylstannane [150]

Bc

Flutamide [150] Tributyltin chloride [150]

Furosemide [170] Bc, Kq. Pa Trichlorfon [150]

Gemfibrozil [160] Bk Trimethoprime [159]

Bc, Lq Glyphosate [150] Bc Verapamil [152, 153]

Bc
Hexachlorophene [150] Lh, Ll,Lq Vinyl acetate [94]

Hydroquinone [150]
Bc

Warfarin [152]

Ab, Li, Lq Iron [96, 156, 166] Xylene [150]

Bc
Isoniazid [152, 153]

Ab, Bc, Bh Li, Lq,
Pa

Zinc [93, 143, 150, 156, 166]

Isopropyl alcohol [150]

Note: superscripts indicate reference number

Notes: Species are abbreviated with the first letters of their genus and species: Ad = Adineta vaga, Ab = Asplanchna
brightwellii, Ag = Asplanchna girodi, Ai = Asplanchna intermedia, As = Asplanchna sieboldi, Ba = Brachionus angularis, Bb =
Brachionus bidentata, Bc = Brachionus calyciflorus, Bh = Brachionus havanaensis, Bk = Brachionus koreanus, Bp = Brachionus
patulus, Bp = Brachionus plicatilis, Bq = Brachionus quadridentatus, Br = Brachionus Rubens, Bu = Brachionus urceolaris, Eb =
Epiphanes brachionus, Ed = Euchlanis dilatata, Ft = Filinia terminalis, Hi = Hexarthra intermedia, Hm = Hexarthra mira, Ka =
Keratella americana, Kc = Keratella cochlearis, Kq = Keratella quadrata, Lh = Lecane hamata, Li = Lecane inermis, Ll = Lecane
luna, Lq = Lecane quadridentata, Mq = Monostyla quadridentata, Pa = Philodina acuticornis, Pr = Philodina roséola, Pp = Plationus
patulus, Pq = Platyias quadricornis, Tp = Testudinella patina.

Table 4. Relation of toxicants and rotifers species used in ecotoxicological studies
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The available data about toxicity to rotifers show that organic compounds, as a complex group,
is the most studied (32.4%) followed by the drugs group (24.58%), which could be due to the
complexity of both groups, as they include a huge variety of toxicants. Inorganic compounds
among other groups represent 17% out of the total number of tests included in this chapter,
which can be split up into inorganic (nonmetallic compounds) and metals (Figure 5). The last
one comprised those commonly named heavy metals [148]. Other groups might not be as
numerous as the former ones, but this should not be misinterpreted as a lack of interest from
the environmental toxicologists, but a challenge and a continuous research to find out how
these chemicals are affecting the aquatic ecosystems and their inhabitants like rotifers species.

Figure 5. Comparison of toxicity tests between chemical groups conducted with different rotifers species.

Several rotifer species have been used to evaluate the effect and toxic mechanisms of the
chemical groups aforementioned, where B. calyciflorus is the most abundant in the literature,
with about 63% out of the total publications (Figure 6). However, there are other species that
present advantages over brachionids, such as the littoral genus Lecane that might be used to
assess the effect of sediment-associated toxicants, or the predator genus Asplanchna, used to
evaluate toxicants biomagnification among rotifers and other aquatic invertebrates [149].
Therefore, rotifers represent a group of organisms that have not been completely studied and
require more attention from toxicologists.
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Red bars correspond to left y-axis and blue bars to right y-axis.

Figure 6. Number of ecotoxicological studies through by different rotifer species.

5. Rotifer tests already used worldwide and in certain regions

The ability to produce cysts has allowed the development of toxicity kits, called Rotoxkits,
employed for acute/chronic marine and freshwater toxicity testing [179]. Cyst production is
an outstanding characteristic that has enabled the development of several toxicity protocols
using rotifers that have been used worldwide [180]. Rotifers are not directly represented in the
legislation of several countries (as the cladocerans Daphnia magna and Ceriodaphnia dubia do).
However, toxicity tests with rotifers have been published by official societies [43, 84, 181]
Perhaps the most notorious participation of rotifer toxicity tests is when EPA asked BP plc (the
former name of the company was British petroleum) to use the acute toxicity test with the
euryhaline rotifer B. plicatilis to assess the toxicity generated after the 2010´s Gulf of Mexico oil
spill [35]. The marine water rotifer toxicity test TK22 was used to analyze thousands of sites
in the Gulf of Mexico; toxicity was analyzed for both oil and the oil dispersant used [36].
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5.1. Europe

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the
“OSPAR Convention”) was established in 1992. The convention started working in 1998. It has
been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg,
Netherlands, Norway, Portugal, Sweden, Switzerland, and the United Kingdom and approved
by the European Community and Spain. One of their goals was the development of directives
for the analysis of toxicity both in marine and freshwater environments. In their 2007 publi‐
cation “Practical Guidance Document on Whole Effluent Assessment” (OSPAR, 2007), they
applied the protocol of determination of the chronic toxicity to B. calyciflorus in 48 h [84] and
validated its use.

In the Port of Aveiro, Portugal, standardized acute toxicity test using the marine rotifer, B.
plicatilis, on sediment elutriates revealed higher toxicity levels in cases where the European
Union Water Framework Directive suggested that sediment quality was acceptable [183].
Isidori et al. [184] employing B. plicatilis in 24-h toxicity tests found that all samples of municipal
solid waste landfills in southern Italy expressed acute toxicity.

In Poland, the toxicity of the leachates from sewage sludge were investigated using different
toxicological kits: Microtox (Vibrio fischeri), microbial assay for toxic risk assessment (ten
bacteria and one yeast), Protoxkit F™ (Tetrahymena thermophila), Rotoxkit F™ (B. calyciflorus),
and Daphtoxkit F™ (D. magna). Differences were observed in the sensitivity of the test
organisms to the presence of sewage sludge in the soil. The highest sensitivity was a charac‐
teristic of B. calyciflorus [185].

5.2. Oceania

The Resource Management Act 1991 of New Zealand [186] requires local authorities and
industry to apply for consent to discharge effluent to water or land. Therefore, the requirement
for whole effluent toxicity testing is now being included in these Resource Consents. The
Ministry for the Environment (MfE) has encouraged research which evaluates technology used
to monitor environmental parameters (e.g., effluent toxicity). Such research was done using
the Rotoxkit F™ and Rotoxkit M™ (with B. calyciflorus and B. plicatilis, respectively). The study
concluded that “while very cost effective and with very good precision (repeatability), were
not as sensitive as the others, and therefore are not recommended for whole effluent toxicity
screening” [187].

5.3. Latin America and the Caribbean

Sarma et al. [188] showed that Mexico City urban wastewater affects instantaneous growth
rate of Brachionus patulus. Acute 48-h lethal effect measurements generated with L. quadriden‐
tata on municipal, industrial, and agricultural sites around the city of Aguascalientes, Mexico,
indicated that most samples tested were toxic [189]. The municipal drinking water wells of
Aguascalientes have also been assessed using acute toxicity tests with L. quadridentata [190]. L.
quadridentata has been used to assess the status of the major wastewater treatment plants in
the State of Aguascalientes [191, 192]. An ecotoxicological study of the most important river
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in the State of Aguascalientes has also been performed [93]. L. quadridentata has also been used
to assess toxicity in several rivers of the southern Huasteca area of Mexico with high concen‐
trations of manganese (Mn) and the presence of DDT in the sediments and pore water. L.
quadridentata was highly resistant to DDT and less susceptible to Mn than the cladocerans D.
magna [165]. José de Paggi and Devercelli [193] examined the influence of watershed land use
on microzooplankton around the city of Santa Fe in Argentina. Six rivers and a shallow lake
located in rural and urban areas were sampled during 4 weeks. River microzooplankton
abundance and rotifer species assemblages were found to be good indicators of land use.
Brachionus spp. were associated with saline waters in rural areas and Keratella spp. (except
Keratella tropica) with urban water bodies.

5.4. Asia

Many Asian countries have used rotifer toxicity tests for diverse monitoring and scientific
purposes. Microcosm studies with rotifers have been used in India to evaluate tannery effluent
[194]. B. plicatilis has been used to assess the toxicity of the various sewage sludge, one of the
major ocean dumped materials in the Yellow Sea of Korea [195].

6. Perspectives for future studies regarding the importance of rotifers as
models for toxicity screening of chemicals

Different rotifer species from all around the globe have been used to test the toxicity of a huge
number of chemicals, both from freshwater (FW) and marine water (MW) ecosystems (see
Rico-Martinez et al., 2013). Such species were initially collected from their natural habitats, a
specific biogeographical zone, for their further acclimation to laboratory conditions and use
as model organisms in toxicity evaluation protocols.

Nowadays, the rotifer species used as model organisms, due to their representativeness and
wide natural distribution, include those of the genus Brachionus sp.: B. calyciflorus (FW), B.
plicatilis (MW), B. manjavacas (MW), and B. koreanus (MW) (Lee et al.; Snell et al.), although
some others like B. rotundiformis (MW) and B. ibericus (MW) could be used as model organisms
(Pérez-Legaspi, 2015). Moreover, organisms within the genus Lecane sp. have been used for
toxicological screening, demonstrating that L. quadridentata and other Lecane species are good
indicators of water quality because of their high susceptibility to toxicants.

Despite all efforts to understand rotifers biology and their susceptibility to contaminants, there
is still a need to conduct new studies with rotifers belonging to different habitats (biogeo‐
graphical zones), climates, and niches. For such studies, researchers should take into consid‐
eration topics like clonal cultures obtaining, rotifers identification and classification through
morphological and genetic (cytochrome oxidase rDNA, COI) characters, and the production
of sexual eggs to preserve them in a resting eggs bank. Such eggs could be also a source for
developing toxicity assessments kits, like those of Microbiotests Inc. [179], which mainly uses
Brachionus sp. resting eggs in very efficient systems for their production.
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Due to their immeasurable dispersion and diversity, annotating correctly the rotifers speci‐
mens’ origin and recording their chemical backgrounds has become a very important issue
because of the variable responses to toxicants observed within the same genus or even within
the same species. For example, Brachionus sp. VER, isolated from the Gulf of Mexico, was the
most tolerant to Macondo oil exposure (LC50 = 19.33%) in comparison to B. rotundiformis (LC50
= 11.02%) from Hawaii, B. plicatilis ss. (LC50 = 2.47%) from Tokyo, and B. manjavacas (LC50 =
5.43%) from Russia [36], which could be due to the presence of cryptic species within the taxon.
Recently, researches and students from different countries participated in the workshop
“Cryptic Speciation in B. plicatilis: A Workshop to Described Species within the Complex,” and
they estimated that there may be as many as 20 new species for this complex. In addition, the
rotifers B. calyciflorus and Lecane bulla form a part of cryptic species [196, 197]. Thus, genetic
and phylogeographic studies should be performed to assess how this species are distributed
around the world.

In aquatic toxicology, currently there are methods that help elucidating the toxicity mecha‐
nisms for different sorts of chemicals. Therefore, they can be listed as follows:

a. Standardized protocols for evaluation of acute, chronic, and sublethal toxicity. These
methods are carried out by exposing neonates or resting eggs, for 24 to 48 h or more
depending exposure concentrations, periods, and end points to measure. Acute and
chronic toxic ratios are still in use despite all new technologies, as they are finally a
reference point for further analysis. Mortality or immobility are the common responses
observed in acute toxicity tests, but in chronic assays, population parameters are followed
during the exposure period, such as the intrinsic rate of population increase (r) obtained
from the life table analysis. Another possibility is assessing the hatching percentage, which
represent the stability and health of cysts produced during stressful conditions, including
abiotic factors like desiccation or the presence of contaminants. Alvarado-Flores et al. [48]
evaluated the effect of 1.2 mg/L of the fungicide vinclozolin on the rotifer B. calyciflorus.
Their findings demonstrated that there was no significant difference between exposed
and nonexposed organisms. In addition, the population parameter r of rotifers hatching
from VZ-promoted cysts was 1.21 ± 0.063 (mean ± SD), and for rotifers hatching from
control cysts was 0.90 ± 0.064.

It has been shown that multigenerational studies should be conducted as these could repro‐
duce what happens in natural conditions when parthenogenetic females are exposed to
toxicants and in their offspring is in certain way altered even before hatching [198], a phe‐
nomenon called the maternal effect, which could be for good while providing more energetic
resources to deal with the stressful conditions in the medium, or negative through inheriting
mutations that could bring deleterious effects in consecutive generations.

b. In vivo enzyme activity assessment (esterases and phospholipase A2): This method has
the potential to assess the adverse effects of contaminants for rotifers. In the rotifer E.
dilatata (FW), a native species from Mexico, the inhibition of esterases and phospholipase
A2 was assessed fluorometrically after in vivo exposure (30 min) to sublethal concentra‐
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tions of metals and pesticides in laboratory conditions. This study concluded that both
enzymes are very sensitive to toxicants-induced alterations [96, 97].

c. Stress granules (SGs): Eukaryotes share diverse mechanisms of adaptation and responses
to the stress. In this matter, it has been shown in different insects, trypanosomids, yeast,
mammal cells, and rotifers, in which they can sequester some proteins and mRNA into
granules that protect cellular mRNA. Thus, SGs appear to be useful as biomarkers in
rotifers [199].

d. Bioconcentration factors (BCF): According to van der Oost et al. [200], biomarkers of
exposure include the quantification of the toxicant or its metabolites. Therefore, BCF are
very valuable tools to study exposure to a certain kind of compounds. Moreover, these
assessments could help to trace toxicants in discharges to aquatic ecosystems, by moni‐
toring both in laboratory and in natural conditions exposed animals [149, 201]

e. Elemental composition using X-ray analysis on rotifers cuticles. This is an easy method
that qualitatively determines different elements of interest, principally inorganic metals
[48].

f. Morphological analysis: These are changes induced by toxic exposure; although it could
be controversial, it can be carried out by comparing morphological characters through
image analysis. Because of rotifers phenotypic plasticity, the comparisons should be
carefully performed to avoid misinterpretation of the results. However, is has been
demonstrated, in B. calyciflorus, that morphological changes occurred after exposure to
the fungicide vinclozolin and that abnormal and healthy animals are easily differentiated.
However, the percentage of deformities is low, only 0.63% of 2868 organisms. Neverthe‐
less, this is still significantly different to the control groups. Hence, morphometric analysis
in rotifers could be a helpful tool to identify unrevealed targets of toxicants, and it might
contribute to create a database for such effects and for several rotifers species to further
comparisons among them, besides the likely identification process through image analysis
[48].

g. Aging in rotifers: because there is a great diversity in aging rates among species, geo‐
graphical populations, and mutants within species, Smith and Snell [202] designed an
experiment to follow rotifers longevity through 84 generations (about 1 year). Their results
show that optimal growing conditions (e.g., constant food supply) altered life span and
can reduce aging, which could be evolutionary adjustable, with selection working
primarily on the length of the reproductive life span. Rotifers are considered good models
to investigate the effect not only of toxicant on their life span but also other factors such
as caloric restriction and the effect of vitamins. Thus, this represents a new field to
incorporate studies with rotifers [203, 204].

h. Hormones: Alvarado-Flores et al. [205] demonstrated the presence of some mammal-like
proteins in the rotifer B. calyciflorus and concluded that it is necessary to generate more
information about catecholaminergic and cholinergic systems in rotifers and the hor‐
mones related. Then it will be possible to assess their participation in mechanisms of
detoxification and likely be used as toxicity models.
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i. Genetic tools in rotifers and their applications

• RNA-seq: With mRNA-seq libraries for obligate parthenogenetic and cyclical parthe‐
nogenetic strains of the rotifer B. calyciflorus, it has been possible to identify genes
specific to both modes of reproduction. Additionally, the studies performed by Hason
et al. [206] allowed insights in the reproductive biology of obligated asexual bdelloid
rotifers.

• Heat shock proteins (HSPs): The genes for these proteins synthesis are found from
bacteria to higher eukaryotes and are related to functions like refolding denatured
proteins due to stress that includes heat shock, reason for which they are called HSPs.
Smith et al. [207] provided conclusive evidence that hsp40, hsp60, and hsp70 are required
for rotifer survival following heat stress, but that hsp90 seems not to be essential for
survival, at least with their data.

• Metallothionein (Mt): These are low-molecular weight and cysteine-rich proteins
present in eukaryotes. They provide potent metal binding and some other functions
are being discovered. Their presence in rotifers has been demonstrated as a conse‐
quence of chromium exposure [208]

• P-glycoprotein 8P-gp (Pg-p): This protein could be considered as the first line of defense
against some chemicals, including pharmaceuticals and endocrine disruptors. This
protein has been found and characterized in the rotifer B. koreanus. Specimens of this
rotifer were exposed to several pharmaceuticals that retarded growth and promoted
the overexpression of Pg-p [209].

• Epigenetics: Germ cells can be specified early in embryogenesis by maternal determi‐
nants inherited in the cytoplasm of the oocyte or they can be selected later in the
embryonic development from undifferentiated precursors by a localized inductive
signal that is called epigenesis [210]. Epigenetic processes were found in the ovary of
B. plicatilis, describing the participation of vasa and nos genes. As the first description
of its kind, it opens the possibilities to explore and perform embryo development within
the phylum.

• Cell-penetrating peptides (CPPs): Liu et al. (2013) demonstrated that some little
peptides can penetrate cell membranes and delivered their cargoes; then their function
(if cargoes have it) can be assessed as the functional HR9-delivered plasmid DNAs and
RFP coding sequences that could be actively expressed in rotifers. This method provides
a tool not only for genetic material but also for nanoparticles and proteins, which in the
future could facilitate studying the effect of chemicals within rotifer cells.

j. Innate immunity in rotifers: In invertebrates, the nomenclature, annotation, and reports
of cytokines could be controversial. Nonetheless, there is a continuous and increasing
knowledge about cytokine-mediated immune regulation, although adaptive immune
responses are likely absent in invertebrates, including rotifers. In this field, Jeong et al.
[211] identified three genes of lipopolysaccharide-induced TNF-α factor (LITAF) in B.
koreanus. The in silico analysis showed that these genes could be involved in innate
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immunity in primitive rotifers. In addition, exposure to lipopolysaccharide caused the
overexpression of LITAF1 and LITAF2 but depleted glutathione concentration. Thereafter,
LITAF genes have potential sensitivities to immune stimulator-triggered oxidative stress.

In conclusion, rotifers as models for ecotoxicological tests present several advantages, includ‐
ing a relative short life cycle that allows multigenerational studies and epigenetic research to
unveil functions and processes in mictic and amictic rotifers, the simplicity of their body
structure that ease the permeability of dyes for in vivo examination to quantify toxicant
concentrations (e.g., Leadmium green®) or for systems descriptions like both the cholinergic
and catecholaminergic systems, and their easy culture conditions and supply of resting eggs
from different sources like some commercial brands. Nowadays, there are several protocols
that describe the use of rotifers as indicators of water quality and safety as even thousands of
probes can be performed in very short periods. Furthermore, every year, new technologies are
becoming available to explore in deep detail the effect, the mechanisms, and the targets of
toxicants. Hence, rotifer studies cannot be the exception, opening new possibilities to explore
and describe more accurately the interaction of toxicants with the aquatic biota.
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