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Abstract

This chapter presents a method of calibration for scanning electron microscopes
(SEMs). The described calibration method is a twofold step. The first step evaluates
the dynamical drift parameters. The second step estimates the parameters of the
geometric projection and the static distortion. Both steps process the calibration
parameters across the range of magnification scales, thanks to a representation with
partial differential equations. The chapter is provided with an example of calibration
of the JEOL JSM 820 and an example of application in metrology. The presented
method is not the unique way of calibrating an SEM and can be a good start to
inspire other methods of calibration.

Keywords: Calibration of microscopes, Drift calibration, Distortion calibration,

Projection calibration

1. Introduction

SEM calibration is required in many applications: 3D reconstruction of microscale and
nanoscale specimens [1–3], deformation measurement [4], nanomaterial tracking [3, 5, 6],
positioning and handling [7], mobile robot positioning [8], etc. The image acquisition process
of a standard SEM has usually three stages: (i) The conditioning of the electron beam from
the electron gun to the area of the observed specimen. In this stage, the electron beam
goes through condensation process by magnetic lenses and a final deflection coils that move
the beam in a raster fashion over a rectangular area of the specimen. (ii) The interaction
between the deflected beam and the observed object, usually called specimen. When the
deflected beam hits the specimen, it results in an emission of energy that can be amplified
and detected by specific electronic detectors. (iii) The conversion of the emitted energy to
pixel intensity. In this process, each position of the deflected beam that hits the specimen
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corresponds to a pixel in the image. An appropriate transform between the detected energy
and the gray-scale values is then applied to obtain the corresponding pixel intensity. In
the case of a distortion-free imaging process, the obtained image would be the result of
the projection of the 3D rastered area onto the image plane. According to an increasing
magnification scale, this projection goes from the perspective for small magnification to the
weak perspective for average magnification and ends up with orthographic projection with
high magnification. However in reality, stages (i) and (ii) bring some distortion artifacts to
these projection transforms. Indeed, the hysteresis effect of the magnetic coils distorts the
deflected beam during the observation process. These distortions cause some drifts of the
pixels from their original projected positions. For instance, these drifts can exceed tenth
of pixels (hundreds of microns) in an hour at 10 k× magnification with a JEOL JSM 820.
These drifts can be modeled as a combination of static (spatial) and dynamic (spatiotemporal)
mappings which will be composed with the projection mapping to obtain the acquired image.

State-of-the-art studies have established that dynamical drift is time dependent and
magnification dependent but space independent [9]. Among estimation methods, the drift
was estimated in full field based on digital image correlation (DIC) in [9–12]. In [13], it
was estimated in the frequency domain using FFT. The trajectory flow of the drift over time
has been modeled using of B-spline curve fitting [9]. A second-order dynamical system
embedded in a Kalman filter was tested and validated to model a thermal drift calibration in
scanning probe microscopy [14]. The spatial calibration which involves both static distortion
calibration and projection calibration was modeled similarly as with classic optical imaging
systems [15, 16]. Some state-of-the-art works assumed a non-radial behavior of the static
distortion and address this problem using B-splines to fit the spatial evolution of distortion
and then warp it to a 3D-to-2D projection. Other works considered a perspective projection
in the case of low magnifications (up to 5 k×) and an orthographic projection in the case of
high magnifications (more than 5 k×) [1, 9, 17, 18].

In this chapter, we go through an empirical calibration method to fit a system of partial
differential equations (PDEs). The partial derivatives of the calibration parameters are
estimated with respect to time and magnification. These parameters include the amount
of drift in pixel, the amount of static distortion, the focal length, and the principal point.
This modeling provides a systematic and flexible solution to this calibration problem. It
allows us to smoothly update calibration parameters across the variation of magnification
scales and to continuously compensate pixel drifts during experiments.

1.1. Notations

Two-dimensional points in homogeneous coordinates are denoted by symbols in typewriter
font (e.g., u = (ux, uy, 1)T). Three-dimensional points are indicated by plain letters (e.g.,

C = (Cx, Cy, Cz)T). Matrices are denoted by uppercase sans serif font (e.g., A). This notation
is also adopted for n-dimensional vectors. However, vectors providing a direction in 3D are

represented using plain lowercase topped by an arrow (e.g., ~l). For convenience, and given

two 3× 1 vectors~l and ~m, the dot product is indicated either using < . , . > or using regular

matrix/vector multiplication (e.g., <~l, ~m >= ~l T ~m), and the cross product is carried either

using the symbol × or using the skew symmetric matrix (e.g.,~l × ~m = [~l]× ~m). ||.||2 denotes
the vector 2-norm in any real vector space Rn of finite dimension n. The symbols µm and nm
designate, respectively, micrometer and nanometer unit distances. The abbreviation “w.r.t.”
stands for “with respect to.”

Modern Electron Microscopy in Physical and Life Sciences28
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Figure 1. Scanning electron microscope with the corresponding imaging model.

500 nm

500 nm
 100 μm

Figure 2. Left figure: Gold-on-carbon specimen. Right figure: Multi-scale calibration grid designed at FEMTO-ST lab.

2. Formulation of the imaging model

The imaging model of a SEM is the composition of three mappings [19, 20] which are
depicted in Figure 1:

1. A pixel-drift mapping from drifted to non-drifted image. It is both magnification and time
dependent. To experimentally quantify this drift, we acquire images of a usual specimen
(see Figure 2 left) at different times and for different magnifications. Correlation in the

Spatiotemporal Calibration of Electron Microscopes
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frequency domain of successive pairs of images is used to estimate the drift [13]. The
dynamic of the drift with respect to time t and magnification g is modeled by two partial
differential equations (PDEs) whose coefficients are estimated by means of the principal
differential analysis (PDA) approach [21].

2. A spatial distortion mapping which is magnification dependent. It may concern both
radial and tangential distortions [22]. In this chapter, we consider only radial distortions.

3. A 3D-to-2D projection mapping. The type of projection to be applied depends on
the magnification. For low magnifications, it can be considered as central perspective
projection. But for magnifications above 1000×, it should be interpreted as parallel
projective [9]. A specific calibration specimen is used [20]; see Figure 2 right. It contains
squares of various sizes, enabling the calibration over a wide range of magnification.
Images of this specimen are acquired for various magnifications and poses. An
image-centered radial and tangential model that expresses the distorted points w.r.t. the
undistorted points is developed. PDEs with respect to magnification of the evolution
of the static distortion parameters are established. The estimation of the projection
matrix where the magnification factor is embedded is proposed. A bundle-adjustment
optimization [23] of the reprojection error between 3D points and their corresponding
image pixels allows us to refine the estimated parameters.

Mathematically speaking, the above description can be formalized as:

q̂ = T
d
t,g(T

s
g(Πg Q)), (1)

where Q is a 3D point of the observed specimen. q̂ is the corresponding acquired image
pixel. Td

t,g : R2
→ R

2 and T
s
g : R2

→ R
2 are two-dimensional mappings (images x-axis and

y-axis) which respectively represent the dynamical drift and the static distortion. Πg is the
3D-to-2D projective mapping. To retrieve a 3D ray incident from a 3D point of scanned scene,
the corresponding pixel is first corrected from the drift effect; then it is statically undistorted
and finally back-projected. In the following, we show how to estimate these mappings. Also,
we provide examples of application on a JEOL JSM 820 SEM in secondary electron (SE)
imaging mode for time ranging from 0 to 30 min and magnification ranging from 100× to
10 k×.

3. Magnification-smooth dynamical drift modeling and calibration

3.1. Drift modeling

The dynamical drift of an image frame at a time t can be represented as a trajectory flow
(x(t), y(t))T of pixels with respect to time:

Ît(x0 + x(x0, y0, t), y0 + y(x0, y0, t)) = It(x0, y0), (2)

where Ît is the intensity of the acquired image which is submitted to drift. It is the ideal
image without drift effects. (x0, y0)

T is the non-drifted pixel position and (x(t), y(t))T is
the amount of drift. As described previously, SEM images are produced pixel by pixel with

Modern Electron Microscopy in Physical and Life Sciences30
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a rastering process. An exact identification of the drift should be to follow the amount of
drift flow in a pixel-wise manner (x(x0, t), y(y0, t))T . In [10, 19], a full-field correction of the
image drift is proposed. For SEMs where the acquisition time tF of one frame is faster than
the pixel-wise dynamic of the drift, it can be assumed as being a global pixel drift between
frames especially at low magnification (less than 5000×). This global drift displacement can
be easily assessed using image cross-correlation computation between frames. In this case,
the first acquired image is considered as the ideal one at t = 0. Taking into account this
assumption, equation (2) can be reconsidered as

Î0(x0, y0) = I0(x0, y0), (3)

Ît(x0 + δx(t), y0 + δy(t)) = Ît+1(x0, y0). (4)

From now on, we drop the hat symbol on the notation of acquired image unless it is worth
to mention it. If two successive image frames It−1 and It contain the same view at different
pixel positions, the cross-correlation integral has a large value at the vector (δx(t), δy(t))T

which corresponds to the drift of the features.

(δx(t), δy(t)) = arg max
x,y

{

CIt−1,It
(x, y)

}

, (5)

with

CIt−1,It
(x, y) = ∑

i
∑

j

It−1(i, j) It(i + x, j + y), (6)

where i+ x, j+ y, x, and y are pixel coordinates running over the image domain. According to
[10], at magnification higher than 5000×, the dynamical drift varies even during the scanning
process. It showed that the amount of drift variation within an image ranged from 0.3 to 0.9
pixels at 10 k×. In this chapter, the use of an EKF allows us to face this amount of single
pixel drift by assuming a Gaussian noise of 1 pixel in the state model [19].

For a given magnification range from g0 to g f with a step G and a time interval from t0 to t f

with an image acquisition at each sample time T, the image drifts are estimated as follows:

for g = g0 to g f with step G do

for t = t0 to t f with step T do

acquire images of the specimen pattern;
estimate drift elements δx and δy between frame t0 and current frame;

end

end
Algorithm 1: Processing of Drift Data.

At the end of this step, two data matrices ∆x(t, g) and ∆y(t, g) of
t f −t0

T rows and
g f −g0

G
columns are obtained. The next step is to use this data drift and PDA to evaluate the
dynamics of the drift trajectory functions ∆x(t, g) and ∆y(t, g).

Spatiotemporal Calibration of Electron Microscopes
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Blob

   1 μm    1 μm   1 μm

Figure 3. An example of drift behavior. The image size is of 512 × 512 pixels. Left figure: The initial figure. Middle
figure: After 15 min, the enclosed feature and all the image features have moved. Right figure: The results of the
intercorrelation between the two images. The distance between the blob and the center of the image represents the
amount of drift.

3.2. Estimating PDEs of the dynamical drift

When describing PDA for linear PDE models, Ramsay and Silverman [24] view the system
dynamics as a linear differential operator (LDO) acting upon the process variables. For
example, let ∆x(t, gi) be the observed data drift which varies w.r.t. the time parameter t at
sampled time T from t = t0 until t = t f . Let Dmxi be the mth derivative of the function
∆x(t, g) w.r.t. t. The function ∆x(t, g) is assumed to be square integrable. In this chapter, we
consider the identification of a second-order LDO which determines the first (speed)- and
second (acceleration)-order parameters of the dynamic of the drift [19]:

L = wx
0 + wx

1 D + D2 (7)

that comes as close as possible to satisfy the homogeneous linear differential equation:

L . ∆x = 0 (8)

In other words, if we estimate the first and second derivatives D∆x and D2
∆x of ∆x(t, gi)

w.r.t. time using finite differences, we wish the operator L to annihilate the drift function
∆x(t, g) as nearly as possible. Thus, we seek a linear differential equation model so that our
data satisfies:

D2
∆x = −wx

0(gi)∆x − wx
1(gi)D ∆x (9)

to the best possible degree of approximation. To carry out PDA, we adopt a least squares
approach to the fitting of the differential equation model. The fitting criterion is to minimize,
over

(

wx
0(gi) wx

1(gi)
)

, the sum of squared norms:

J =

∥

∥

∥

∥

A

(

wx
0(gi)

wx
1(gi)

)

+ b

∥

∥

∥

∥

2

(10)

Modern Electron Microscopy in Physical and Life Sciences32
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where

A =







∆x(t0, gi) D∆x(t0, gi)
...

...
∆x(t f , gi) D∆x(t f , gi)






, b =







D2
∆x(t0, gi)

...
D2

∆x(t f , gi)






(11)

A is a matrix of
t f −t0

T rows and 2 columns and is always of rank 2. b is a vector of
t f −t0

T
elements. The solution of such an overdetermined least square problem is given as

(

wx
0(gi)

wx
1(gi)

)

= (A⊤
A)−1

Ab (12)

Solving equation (12) for each gi = g0, g0 + G, . . . , g f gives rise to the following weight
matrix:

W =

(

wx
0(g0) wx

0(g0 + G) · · · wx
0(g f )

wx
1(g0) wx

1(g0 + G) · · · wx
1(g f )

)

(13)

W is a matrix of 2 rows and
g f −g0

G columns. The first row represents a discrete sampling of
the function wx

0(g) and the second row a discrete sampling of wx
1(g). Once again, computing

the first- and second-order derivatives of the first and the second row using finite differences
on the variation of the magnification gives rise to two differential equations, driving wx

0 and
wx

1 variation w.r.t. magnification:

D2
gwi = −α0iwi − α1iDgwi, i = 0, 1 (14)

The two real valued vectors
(

α0i α1i

)

, i = 0, 1 are estimated as in equation (12) after
constructing the corresponding matrix A and vector b by using matrix W, the first and second
finite differences of each row w.r.t. g. Equation (14) becomes then a PDE of second order that
can be easily solved.

Henceforth, the differential equation related to drift function ∆x can be expressed w.r.t.
smooth magnification-dependent weight functions:

D2
∆x = −wx

0(g)∆x − wx
1(g)D ∆x, g ∈ [g0, g f ] (15)

Finally, equation (15) can be solved as a second-order PDE giving rise to a smooth drift
function ∆(t, g). The development conducted to represent ∆x can be easily followed to
represent ∆y:

D2
∆y = −w

y
0(g)∆y − w

y
1(g)D ∆y, g ∈ [g0, g f ] (16)

In order to take into account the noise in the data estimation and the finite differences
computation, we choose to embed the differential equations (15) and (16) related to ∆x and
∆y in an EKF using a state modeling of the drift function.

Spatiotemporal Calibration of Electron Microscopes
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3.3. Embedding PDEs of the drift in an EKF

If we assume that x(g, t) and y(g, t) are corrupted by a zero mean Gaussian noise ωx(g, t)
and ωy(g, t) with covariance Qx(g) and Qy(g), then the stochastic state model can be written
as

x(g, t + T) =

(
0 1

−wx
0(g) −wx

1(g)

)

︸ ︷︷ ︸

Ax(g)

x(g, t) + ωx(g, t)

x(g, t) =
(
1 0

)

︸ ︷︷ ︸

C

x(g, t) + γx(g, t)

(17)

y(g, t + T) =

(
0 1

−w
y
0(g) −w

y
1(g)

)

︸ ︷︷ ︸

Ay(g)

y(g, t) + ωy(g, t)

y(g, t) =
(
1 0

)

︸ ︷︷ ︸

C

y(g, t) + γy(g, t)

(18)

where x(g, t) =
(
x(g, t), vx(g, t)

)⊤
and y(g, t) =

(
y(g, t), vy(g, t)

)⊤
are the state vectors with

vx and vy the speeds of the drift. The observed variable being the displacement flow x(g, t)
and y(g, t), they are assumed to be corrupted by zero mean Gaussian noises γx(g, t) and
γy(g, t) of covariances Rx(g) and Ry(g) . This space model representation allows us to write
the EKF time update and prediction equations:

x̂(g, t + T|t) = Ax(g)x̂(g, t + T|t) (predicted state drift),

Px(g, t + T|t) = Ax(g)Px(g, t|t)A⊤
x (g) +Qx(g) (predicted covariance drift),

(19)

Kx(g, t) = Px(g, t|t − T)C
(

CPx(g, t|t − T)C⊤ + Rx(g, t)
)−1

(optimal Kalman gain),

x̂(g, t|t) = x̂(g, t|t − T) +Kx(t) (x̃(g, t)− Cx̂(g, t|t − T)) (updated state drift),
Px(g, t|t) = (I−Kx(t)C)Px(g, t|t − T) (updated covariance drift),

(20)

The same EKF equations can be stated for the drift flow y(g, t).

3.4. The multi-scale drift calibration algorithm

In summary, the multi-scale drift flow is characterized in both magnification axis and
time axis. Therefore, using the PDA approach, the PDEs w.r.t. time and the PDEs w.r.t.
magnification are assessed. Assume a calibration through the range [g0, g f ] of magnifications.
A calibration pattern with random shapes is positioned upon the stage inside the chamber.

Modern Electron Microscopy in Physical and Life Sciences34
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The scene is static, and a set of images are taken at each sample time T. The different steps
of the dynamical drift calibration can be summarized in Algorithm 2.

Data: ∆x(t, g), ∆y(t, g)
for g = g0 to g f with step G do

estimate wx
0(gi), wx

1(gi) with equation (10);

estimate w
y
0(gi), w

y
1(gi) with equation (10);

end
estimate α00 and α10 as in equation (10);
estimate α01 and α11 as in equation (10);
embed equations (13) and (14) in an EKF as explained in Section 3.3;

Algorithm 2: Dynamical drift calibration

condenser lenses

electron gun

aperture

scan coils

objective lens

inside chamber

S.E. detector

Figure 4. The JSM 820 SEM manufactured by JEOL.

3.5. An example of dynamical drift calibration of the JEOL JSM 820

In this paragraph, we show how to use the method developed so far to calibrate the
dynamical drift of the JSM 820, a SEM manufactured by JEOL (see Figure 4 for an illustration).
The electron gun is equipped with a tungsten filament that can support from 0.3 kV up to
30 kV of acceleration voltage. The acquired images have a size of 512 × 512 pixels. The
acceleration voltage is 15 kV, the scan rate is 15 frames per second, and the number of scans
average is 8. The calibration is done for magnifications from g0 = 100× up to g f = 30 k×.

3.5.1. Data drift estimation

To assess the pixel displacement between two frames, a specimen of particles of gold deposed
above a layer of carbon is used (Figure 2 left). The particles are randomly positioned and
have random shapes of different sizes so that the maximum of cross-correlation images of

Spatiotemporal Calibration of Electron Microscopes
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such a sample can be calculated with less errors [10]. According to the cross-correlation
theorem [25], the cross-correlation can be calculated using the Fourier transform. The widely
used FFTW3 [26] library is applied for Fourier transform calculations. In order to improve
the accuracy of the peak calculation, the cross-correlation is combined with the frequency
filtering. A set of 55 images per magnification scale are taken every 30 s. The magnification
scale is tuned from 100× until 10 k×. Some of these images are shown in Figure 5 with an
illustration of the cross-correlation, resulting peaks between the first frame and the following
frames. The pixel displacement vector of all images across time and magnification is depicted
in Figure 6. It can be shown that at higher magnification, the drift is more important and can
reach up to (20, 90)T pixel after 20 min of image acquisition. Now, the multi-scale calibration
method of Section 3.4 can be applied. The first 30 images of each scale are used to construct
the PDA model, and the 25 last images are used as validation data.
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Figure 5. Left figure: A sample of images at four successive times along three magnification scales. Right figure: The
bright point shows the maximum of the cross-correlation function between the first frame and the following frames. It
can be seen that it moves after some acquisition time.
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Figure 6. The pixel drift across time and magnification (left, image x-axis; right, image y-axis).
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Figure 7. The Kalman filter prediction absolute error across time and magnification (left, image x-axis; right, image
y-axis). Less than 0.9 pixel error in the x-axis and less than 1 pixel error in the y-axis. 0.28 pixel of global RMS error in
the x-axis and 0.23 pixel of RMS error in the y-axis can be observed.

3.5.2. PDE estimation of the dynamical drift and EKF embedding

Using PDA, the estimated differential equations associated to wx
0 and wx

1 are

D2
gwx

0 = −169.31 wx
0 + 0.55 · 10−2Dgwx

0

wx
0(g0) = −1.27 · 10−7, wx

0(g f ) = −1.91 · 10−5,
(21)

D2
gwx

1 = 9.61 104 wx
1 − 0.17Dgwx

1

wx
1(g0) = 3.01 · 10−4, wx

1(g f ) = 0.04,
(22)

Similarly, the weights w
y
0(g) and w

y
1(g) describing the ODE of ∆y(t, g) are the solution of the

two following differential equations:

D2
gw

y
0 = −169.31 w

y
0 + 0.0055Dgw

y
0

w
y
0(g0) = −1.20 · 10−6, w

y
0(g f ) = −1.44 · 10−6,

(23)

D2
gw

y
1 = 9.61 104 w

y
1 − 0.17Dgw

y
1

w
y
1(g0) = 0.16 · 10−2, w

y
1(g f ) = 0.14 · 10−2,

(24)

The PDA study of the collected data shows that the time dependence is more likely to be
a second-order differential equation and so is for the magnification dependence. This order
may not be accurate because of the noise in the data. Thus, to take into account this noise,
the two dynamical models of equations (15) and (16) are embedded in an EKF. The Gaussian
noise associated to the state model and observation of ∆x and ∆y has a zero mean and 0.25
pixels of standard deviation. The plots of the prediction error are shown in Figure 7. Less
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than 0.9 pixel error in the x-axis and less than 1 pixel error in the y-axis can be observed.
Also, 0.28 pixel of global RMS error in the x-axis and 0.23 pixel of RMS error in the y-axis
can be observed.

4. Multi-scale static calibration

The multi-scale static calibration concerns the estimation of the static distortion parameters as
well as the projection parameters. They are independent of time, but they are magnification
dependent.

4.1. Static distortion calibration

In contrast with the dynamical drift, at low magnification, the static distortion is much more
significant than at high magnification. This is due to the fact that at high magnification, the
scanned area is much smaller than at low ones.

4.1.1. The static distortion model

The most commonly used distortion model represents this physical phenomenon as a
decentered distortion which has both a radial and tangential component [27]:

qd − e =
2

1 +
√

1 − 4 ξr r2
u

(qu − e)

︸ ︷︷ ︸

radial

+ ξt(r
2
u + 2(xd − xu)2)

︸ ︷︷ ︸

tangential

, (25)

where ξr, ξt are, respectively, the radial and tangential distortion parameters. e is the center
of distortion and
λ = 2/1 +

√

1 − 4 ξr r2
u is called the factor of distortion.

4.1.2. Estimation of the center of distortion

The estimation of the center of distortion requires the use of a geometrically structured
calibration pattern as the one shown in Figure 8. It consists on a planar grid of vertices
{qc

i }i∈N. The positions of the points qc
i are assumed to be known in a Euclidean coordinate

frame attached to the grid. If qd
i are the corresponding points in the distorted image, then

each pair of points (qc
i , qd

i ) is linked by the epipolar relation proposed in [28] and stated as

qd
i [e]xH
︸ ︷︷ ︸

F

qc
i = 0. (26)

[e]x is the skew-symmetric 3× 3 matrix representing the cross product. H is the homography
between the planar grid and the image plane. The matrix F may be called the fundamental
matrix for radial distortion. It may be estimated using state-of-the-art methods [15], and the
center of radial distortion can be estimated as the left epipole. In the case of no presence
of radial distortion, the estimation of the fundamental matrix is unstable, and the value of
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Figure 8. An example of static distortion at 400× of magnification. The image size is of 512 × 512 pixels, and the size
of the squares is of 25µm per side. The estimated center of distortion is at ∼ (290, 300)T pixels.

e is meaningless. This situation can be detected during the estimation of the fundamental
matrix.

The estimation of the distortion parameters ξr and ξt is processed iteratively. It is first
assumed that ξt = 0 and estimate e. Then ξt and ξr are initialized to zero and estimated
using bundle adjustment methods [23].

4.2. Projection model

The 3D-to-2D projection mapping can vary from perspective to orthographic. State-of-the-art
works [18, 29] use either a perspective model at low magnification or an orthographic
projection for high magnification with projection switch at the magnification of
transition which is experimentally determined (usually 5 k×). In this chapter, a
magnification-dependent projection model which smoothly switches from a perspective
projection to an orthographic projection is detailed [20]. A perspective camera model can
be written as

P0 = KR[I − C] = K







~r1
T
−~r1

TC

~r2
T
−~r2

TC

~r3
T
−~r3

TC






, (27)

where C ∈ R3 is the position of the projection center. R ∈ SO(3) is the orientation of the
projection frame. ~ri is the i-th row of R, and K is the matrix of intrinsics of the form

K =





a f s px

0 a−1 f py

0 0 1



 . (28)
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f , a, and s are, respectively, the focal length, the ratio factor, and the skew parameter.
(px, py)T are the coordinates of the principal point e0. The principal ray of the imaging

system is in the direction of the vector ~r3, and the value d0 = −~r3
TC is the distance of the

planar grid origin from the camera center in the direction of the principal ray.

Multiplying the magnification by a scale factor g acts similarly as moving the camera center
backward along the principal ray. The center of the camera is then moved to C − g ~r3.
Replacing C by C − g ~r3 in equation (27) gives the projection matrix at magnification g:

Pg = Kg







~r1
T
−~r1

T(C − g ~r3)

~r2
T
−~r2

T(C − g ~r3)

~r3
T
−~r3

T(C − g ~r3)






= Kg







~r1
T
−~r1

TC

~r2
T
−~r2

TC

~r3
T dg






, (29)

where the terms ~ri
T
~r3 are zeros for i = 1, 2 because R is a rotation matrix. The scalar

dg = −~r3
TC + g is the depth of the world origin with respect to the imaging system center in

the direction of the principal ray ~r3. The effect of zooming by a factor g is to move an image
point qu on a line radiating from the principal point e0 to the point q′u = gqu + (1 − g)e0.
From similar triangles, we obtain that

g =
fg

f0
=

dg

d0
(30)

The resulting projection matrix at a magnification g is

Pg = K





g 0 0
0 g 0
0 0 1











~r1
T
−~r1

TC

~r2
T
−~r2

TC

~r3
T dg






(31)

= gK







~r1
T

−~r1
TC

~r2
T

−~r2
TC

~r3
T g−1 d0







When g → ∞, the projection mapping tends to an orthographic projection.

4.3. The static calibration method

Let us consider a calibration at the interval of magnification [g0, gt]. This range is uniformly
discretized at a sampling step of δg. The different steps of the static calibration can be
outlined by Algorithm 3.

To estimate f (g), a(g), and s(g), we use second-order PDEs and we drive the same reasoning
as the computation of drift PDEs in Section 3.4. Since f , a, and s are time independent, only
one PDE of second-order is estimated for each parameter.

Modern Electron Microscopy in Physical and Life Sciences40



❙♣❛t✐♦t❡♠♣♦r❛❧ ❈❛❧✐❜r❛t✐♦♥ ♦❢ ❊❧❡❝tr♦♥ ▼✐❝r♦s❝♦♣❡s ✶✺

✶✵✳✺✼✼✷✴✻✶✾✹✼

for g = g0 to g f with step G do
Data: A set of N image with grid points
calibrate the projection matrix assuming ξr(gi) = 0 and ξt(gi) = 0 [15];
comptue f (gi), s(gi) and a(gi). estimate distortion center e(gi) as explained in
Section 4.1.2;
if e(gi) is not degenerate then

initialize ξt and ξr to zero and estimate them using bundle adjustment method[23];
else

set e(gi) to the principal point and ξr = 0;
initialize ξt to zero and estimate it using bundle adjustment method[23];

end

end
estimate f (g), a(g) and s(g) using PDA;

Algorithm 3: Static calibration

4.4. Static calibration of the JEOL JSM 820

This calibration is done with a multi-scale planar grid; see Figure 2 right [20]. This grid
contains multiple chessboards of different sizes: 25µm, 10µm, 5µm, 2µm, and 1µm; see
Figure 9. The grid calibration points {Qc

i }i∈N are selected, and three images are taken for
each magnification scale g. This calibration is done for magnifications from g0 = 100× up
to g f = 10 k× with a step of 500×. The static calibration follows the procedure explained in
Section 4.3. The following results were obtained [20]:

Figure 9. From left to right: Square side sizes are, respectively, of 25µm, 10µm, 5µm, and 1µm.

PDE g1 = 100× g2 = 10 k× solution

ex ëx = −0.02ex 230.21 225.08 ex(g) = 230 + 10(1 − exp(2
g

106 ))

ey ëy = −0.02ey 270.34 265.10 ey(g) = 270 + 10(1 − exp(2
g

106 ))

PDE g1 = 100× g2 = 10 k×
ξr ξ̈r = −0.0086ξ̇r + 0.015ξr 0.003 0.002

ξt ξ̈t = −0.0042ξ̇r + 0.0007ξr −7 · 10−7 −59 · 10−8

and solutions are

ξr(g) = 0.003 − 13 · 10−12g − 6 · 10−9g2

ξt(g) = −7 · 10−7 − 13 · 10−13g + 6 · 10−13g2
(32)
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PDE g1 = 100× g2 = 10 k×

focal length ḟ − 0.35 · 10−4 = 0 0.35 · 104

aspect ratio 1013 ä = −0.2225 ȧ + 0.0017 a 1 1.1

skew 1013 s̈ = −0.2059 ṡ + 0.0016 s 10−3 1.9 · 10−3

and solutions are

f (g) = 0.35 · 10−4 g

a(g) = 0.05(g · 10−4) + 0.95(g · 10−4)2

s(g) =
−0.05 + 0.65(g · 10−4) + 0.40(g · 10−4)2

103

(33)

The calibration results show variations of 10 pixels at most around a median principal point
of (245, 260)T pixel. Finally, Figure 10 shows the RMS reprojection error between image
points and back-projected planar grid points. It corresponds to a median value of 7 pixels
without any correction and to 3 pixels after drift compensation, and without distortion
correction, it decreases down to 1.45 pixel with both drift and distortion correction.
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Figure 10. The RMS reprojection error through magnification scales. The average RMS error is about 0.9 pixel.

5. A small toy application: Cantilever deformation measurement

As a simple application to conclude this chapter, we propose to quantify the deformations of
a cantilever that we deform with a micromanipulator. The cantilever is 35µm long, 3.5µm
wide, and 300 nm thick. The micromanipulator is the Kleindiek MM3A-EM with a rigid
tool mounted on the tip. The cantilever is fixed within a holder and is deformed by the
moving of the tool tip; see Figure 11. Such an experiment may have several applications
in the mechanical characterization of cantilevers [30], of biological deformable objects [31],
etc. To check the accuracy of the calibration process, a simple test can be made. We
estimate the repeatability of the measures for three different magnifications: 190×, 230×,
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and 260× [20]. The deformation measures which evaluate our calibration method use the
magnification-smooth calibration parameters described in the previous section. It is worth to
notice that these parameters were not estimated directly at these three magnification scales,
but the estimated magnification-smooth functions allow us to find the calibration parameters
at any magnification factor in the range [100× , 10 k×]. A set of 11 configurations are taken
for each magnification factor (11 × 3 images). Initially the cantilever is straight and free
from any contact with the planar surface. Then, it comes close to the tip of the cantilever
which is progressively pushed forward by the MM3A-EM. After 7 × 3 acquired images at
different configurations of the deformation, the cantilever is progressively dragged backward
to the initial contact-free configuration; see Figure 12. Through the whole experiment, a
time tracking frame acquisition is automatically processed using the PC processor’s clock
trigger. This time acquisition is important to retrieve the amount of pixel by which the
acquired images have drifted. The acquired images are undrifted and undistorted with the
estimated calibration parameters. We assume that during the deformation, the cantilever
sweeps a virtual plane. The affine homography between image pixels and this deformation
plane is estimated [16] by taking into account the estimated parameters of the projection
model. The Euclidean stratification is done using the length of the cantilever provided by
the manufacturer. The stratified homography gives us the mapping between distances in
the image and their corresponding metric values in the deformation plane. The amount of
deformation is measured as the distance between the tip of the cantilever at rest and its
position after deformation. The measured deformation reaches a maximum of 250 nm. After
drift and distortion correction, the standard deviation of the error among the three scales is
of about 10 nm which is an acceptable amount of error at this scale of magnification.

2

4

3

4

3

1

Figure 11. The setup of the example: 1. Holder of the cantilever; 2. Kleindiek MM3A-EM; 3. deforming tool; and 4.
cantilever.
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Figure 12. Three configurations of deformation (pose: 2, 7 and 10) at the three different magnification factors. The
maximum of the deformation is at pose 7. Poses: 1 and 11 are contact-free between the cantilever and the plan.
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Figure 13. Left figure: Measured deformation without neither drift compensation nor static distortion correction.
Middle figure: Measured deformation after drift compensation but without static distortion correction. Right figure:
Deformation measures for the three magnification scales with drift and static distortion correction. The repeatability
10 nm. It can be seen that the drift and distortion correction improve considerably the repeatability of the measurements
for the three scales.
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6. Conclusion

In this chapter, a spatiotemporal calibration model for SEM imaging systems was presented.
This model has the advantage of being smooth with respect to magnification scales. Both
dynamic (temporal) and static (spatial) mappings are treated. The evolution over time and
magnification of the pixel drifts and of the spatial distortion and projection matrices are
modeled by mean of PDA.
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