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Abstract

Surface wettability is one of the crucial characteristics for determining of a material’s
use in specific application. Determination of wettability is based on the measurement
of the material surface contact angle. Contact angle is the main parameter that
characterizes the drop shape on the solid surface and is also one of the directly
measurable properties of the phase interface. In this chapter, the wettability and its
related properties of pristine and modified polymer foils will be described. The
wettability depends on surface roughness and chemical composition. Changes of
these parameters can adjust the values of contact angle and, therefore, wettability. In
the case of pristine polymer materials, their wettability is unsuitable for a wide range
of applications (such as tissue engineering, printing, and coating). Polymer surfaces
can easily be modified by, e.g., plasma discharge, whereas the bulk properties remain
unchanged. This modification leads to oxidation of the treated layer and creation of
new chemical groups that mainly contain oxygen. Immediately after plasma treat‐
ment, the values of the contact angles of the modified polymer significantly decrease.
In the case of a specific polymer, the strongly hydrophilic surface is created and leads
to total spreading of the water drop. Wettability is strongly dependent on time from
modification.

Wettability plays a key role, e.g., in the development of biomaterials in tissue
engineering and regenerative medicine. Biocompatibility tests of the cell adhesion,
proliferation and viability are performed in an aqueous medium, and it is necessary
to control the surface wettability. Various cell types have different requirements on
surface properties, but while maintaining suitable parameters, the optimal value of
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water contact angle for cell adhesion is in the interval of 50-70°. In the case of polymers,
which have usually higher values of contact angles, the decrease in water contact angle
and adjustment of the surface may be accomplished by introducing selected chemical
groups (by plasma treatment), chemical compounds (by grafting, i.e., chemical bath
deposition), or nanoparticles. In the case of grafting of polyethylene glycol (PEG) on
the plasma activated high-density polyethylene was under “properly” selected
conditions of modification (molecular weight of PEG, concentration of PEG in
solution) prepared layers that positively influenced the cell adhesion. In addition, low
concentration of gold nanoparticles increased the number of adhered cells without
decreasing cell viability.

Whether the surface of the polymeric substrate is attractive for the adhesion and
proliferation of cells is determined not only by wettability but also by a range of other
surface properties of the substrate. Some of these properties, e.g., morphology,
chemical composition, and electrokinetic potential (zeta potential), will be discussed
in this chapter. These properties will also be discussed in relation to the cytocompat‐
ibility of surface.

Keywords: wettability, polymer, surface modification, plasma, morphology

1. Introduction

Polymeric materials can be used in many applications due to their mechanical (e.g., elastic)
characteristics, chemical stability, and light weight, as well as their several design possibilities.
Polymers are very well applied in tissue engineering, in particular, due to a wide range of
physical, mechanical, and chemical properties, cytocompatibility, microstructure, and
biodegradability [1, 2]. These properties can precisely be controlled by the composition and
processing of polymers. Many of these polymers were originally developed as plastics,
elastomers, or fibers for medical and industrial applications, but the latter have been adopted
for biomedical use [3–5]. Polymeric materials differ in their molecular weight, polydispersity,
crystallinity, thermal transitions, and decomposition rate, which can significantly affect the
properties of the polymer matrix [6]. The chemical composition, structure, and morphology
of polymers influence the surface-free energy and thus have a great influence on wettability
[7, 8]. Wettability is a fundamental property of solid-state surfaces that plays important roles
in the industry [9]. The wettability of a material surface is generally characterized in terms of
the contact angle (CA) between solid and liquid interfaces [10]. Wettability can be described
as a property governed by intermolecular interactions that characterizes the degree of wetting
of a solid surface by a liquid droplet. One common way of characterizing wettability is through
the measurement of the static CA θeq that results from the equilibrium between the interfacial
tensions between solid, liquid, and vapor phases [11]. A surface is typically defined as water
wetting for (approximately) θint<60° to 75° (measured through the aqueous phase), NAPL
(non-aqueous phase liquid) wetting for θint>105° to 120°, and intermediate wetting for
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75°<θint<105° [12]. The exact boundaries between each class are quite inexact, particularly
regarding the limits that separate hydrophilicity/hydrophobicity and hydrophobicity/
superhydrophobicity. Wettability is a very important parameter of materials that specifies and
limits the next material’s application [13, 14]. Assessment of the wettability, namely, meas‐
urement of the CA, can also be used to determine the surface stabilization of the modified
polymer [15].

Summarized results of our scientific group in the field of research

Ing. Nikola Slepičková Kasálková, Ph.D., born 1981; assistant professor; plasma modification of polymers; surface
structure characterization; study of polymer surface cytocompatibility (cell adhesion and proliferation) and
goniometry; according to Web of Science - publications 36, H index 8, citations 188.
References: [15, 57, 78, 79, 80, 92, 106, 107, 109, 110, 112]

Doc. Ing. Petr Slepička, Ph.D., born 1980; associate professor of Materials Science and Engineering; plasma and laser
beam modification of polymers; modification of surface structure; coatings patterning; microscopy (AFM, confocal and
FIB SEM) characterization; according to Web of Science - publications 94, H index 17, citations 874).
References: [15, 16, 18, 19, 38, 40, 42, 43, 57, 78, 79, 92, 106, 107, 109, 110, 112, 114]

Doc. Ing. Zdeňka Kolská, Ph.D., born 1969; associate professor of Physical Chemistry; modification of surface structure of
materials; physicochemical characterization of material surfaces (electrokinetic and surface area analyses, goniometry);
according to Web of Science - publications 76, H index 14, citations 543.
References: [15, 16, 18, 38, 40, 41, 78, 92, 111, 112]

Prof. Ing. Václav Švorčík, DrSc., born 1957; professor of Materials Science and Engineering; ion, plasma and laser beam
modification of polymers; modification of surface structure; surface, chemical, physical properties and
cytocompatibility of polymers, metal nanostructures, preparation and characterization; according to Web of Science -
publications 324, H index 28, citations 3051.
References: [15, 16, 18, 19, 38, 40, 41, 42, 43, 57, 78, 79, 80, 81, 92, 95, 102, 106, 107, 109, 110, 111, 112, 114, 116]

2. Laser-treated surfaces

Surface modification can be applied with respect to the applicability of polymer surface and
interface in the construction of surface-enhanced substrates, which, for instance, provide
biocompatibility or anti-microbial properties, may be used in sensor applications or for
support of metal layers deposition [16-20]. Surface properties, such as wettability, morphology,
and surface chemistry, play a crucial role in polymer/material application. A compilation of
surface and interface analysis techniques will be described in this chapter, since besides the
surface laser treatment itself, it is of great importance to understand the surface changes
induced by a particular laser type (semiconductor, excimer, etc.) or by set up of input irradi‐
ation parameters. The determination of the CA and surface-free energy is one the most widely
used surface characterization techniques. It provides very valuable information on the wetting
properties of the surface and is determined by the upper molecular layer at the surface. The
interpretation of measured values is complex and also involves discussion of measured values
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for different liquids, surface roughness influence, and other factors that involve surface
chemistry changes, which can significantly be modified by the laser beam treatment [16–24].

The surface and interfacial properties of polymers play a key role in many technological
processes, such as polymer processing, metallization, or their cytocompatibility. All these
processes are controlled by wetting and adhesion phenomena. Based on the conclusions of
wettability measurement, we can estimate the surface chemistry with regard to polar or
nonpolar functional groups as well as acidic or basic sites available at the modified surface
region. In addition, the interaction of the solid surface with consequently applied (e.g., grafted
and sputtered) surface-active substances can be influenced, or the biocompatibility is enhanced
[16, 17, 20]. The importance of wettability in adhesion lies in the quality of adhesive bonding
and coatings, which strongly depend on the spreading of these materials on the adherent or
solid substrate. The laser surface treatment also significantly influences the surface energy (SE),
and CA measurements are believed to be one of the simplest and most straightforward
approaches to obtain surface-free energies of pristine or modified solids. The solid surfaces
may very often be chemically heterogeneous, roughness can significantly be altered, or the
reorientation of functional surface groups may occur during aging processes.

 
 

 
 
 
 
 
 
 







 

Figure 1. Detail of surface morphology (2D, 3x3 μm2) of PEN treated with 10 mJ cm-2 and the number of laser pulses
(A) 1000 and (B) 6000. Ra represents the average surface roughness in nanometers [18].

Several types of polymers may be changed by the laser treatment of the polymer surface. A
broad spectrum of wavelengths, laser types, and pulse durations can be used. One of the most
important types of polymer surface treatment is excimer irradiation. The excimer laser
treatment of polymers can deliver periodic dimensional features in arrays across the surface
of a substrate with lateral dimension close to 100 nm. Excimer laser can induce periodic
nanopatterns on the surface of different polymers, which can absorb appropriate wavelengths
[16, 17]. Besides polymers such as polyethylene naphthalate (PEN) [18], polyethylenetereph‐
thalate (PET) [19], polystyrene (PS) [20], and polyethersulfone (PES) [21], surface changes (e.g.,
morphology and chemistry) can also be induced (Fig. 1) by excimer laser treatment on
biopolymers or biocompatible polymer blends.

Laser surface modification of polyether-ether-ketone (PEEK) as a polymer with great mechan‐
ical and chemical properties was performed with the aim of wettability changes. A systematic
approach of the laser irradiation wavelength influences the modification of surface layers of

Wetting and Wettability326



PEEK under laser wavelengths (λ = 1064, 532, and 355 nm), with the focus on the determination
of the optimal experiment parameters to increase the roughness and wettability, was executed
[22]. It was found that a statistically significant factor during the processing using the 1064 nm
laser radiation is the combination of pulse frequency, scanning speed, spot diameter, and pulse
overlapping. In order to minimize the CA and improve wettability, the utilization of high-
pulse-frequency, low-scanning-speed, low-overlapping, and small spot diameter was deter‐
mined. On the other hand, the most influencing factors, using the 532 nm laser radiation, were
the scanning speed and spot diameter [22]. Ultraviolet (UV) irradiation (172 nm) was used for
the exposure of chosen polymer foils, i.e., polyethylene (PE), polyimide (PI), and polytetra‐
fluoroethylene (PTFE), in air atmosphere [23]. The wettability (characterized by CAs and water
drops) of the PE and PI films significantly increased after the exposure of excimer laser in air
atmosphere. The subsequent X-ray photoelectron spectroscopy (XPS) study of the irradiated
layers determined that the decrease of CAs was ascribed to the increase in the oxygen
concentration at the modified surface. The surface characteristics of the PTFE film, however,
was not considerably changed by the UV exposure. The aged UV exposed PE and PI films
exhibited a significant decrease in wettability [23]. The influence of surface morphology on
wettability was reported in [24], wherein a novel approach to creating hierarchically patterned
PEEK surfaces composed of nanostructures and microstructures was introduced. The method
was reported to be fast, easy, and applicable to large areas without using complicated
lithography and mask-based techniques. Surfaces with a wide spectrum of wetting parameters
ranging from a super-hydrophilic to a hydrophobic nature were reported [24]. The biological
response on the performed surface materials modification is strongly dependent on the
changes in surface properties (e.g., surface morphology, roughness, and composition). The
modification of the surface of carbon-coated high-molecular-weight polyethylene (HMWPE)
by different laser wavelengths (λ = 1064, 532, and 355 nm) was conducted [25]. The influence
of experimental conditions (pulse frequency, scanning speed, and spot overlapping) on the
changes in the surface properties of material was studied. It was found that the laser treatment
of these carbon-coated samples always improved the wettability of the samples. The effect of
the laser power on wettability was similar under the three laser treatments. The results
suggested that the increment in the scanning speed reduces the CA during the surface
treatment at 1064 nm. On the contrary, this parameter increments the CA during the surface
treatment at 355 nm [25]. KrF laser was successfully applied for both laser-induced patterning
and whole-area irradiative processing to modulate the wettability characteristics and osteo‐
blast cell response following 24-h and 4-day incubation [26]. For the patterned samples, the
CA was increased by up to 25°, which was attributed to a mixed-state wetting regime. For all
samples, CA was a decreasing function of the SE [26]. The effects of using CO2 and F2 lasers to
modify the wettability of a nylon,6-6 by producing 50 μm spaced (with depths between 1 and
10 μm) trench-like patterns using various laser parameters such as laser power for the CO2

laser and the number of pulses for the excimer laser was studied in [27]. The CO2 laser couples
into the material through resonant coupling, which gives rise to bond vibrations, allowing the
temperature to rise and melt the material. Upon cooling, the molten material resolidifies, and
a protrusion away from the surface becomes evident on the surface. The CO2 laser was proved
to be capable of producing CAs that are slightly larger compared with the as-received sample.
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In contrast, for the F2 excimer laser-patterned samples, the apparent polar component and
surface O2 content decreased by up to 11.69 mJ.m-2 and 1.6 at %, respectively. It has been
proposed that the increase in CA that results from the laser modifications is due to the
patterned topographies [27].

The type of atmosphere during the modification process was reported to have a great influence
on the wettability of a polymer [28]. The surface of poly(e-caprolactone) (PCL) fiber scaffolds
was significantly altered by femtosecond laser irradiation. Variations in input parameters (e.g.,
laser fluence and scanning area) led to a change in the surface CA. Scaffolds that were treated
in ambient air or oxygen exhibited increased atomic oxygen concentration and also ablation
of material. The concentrations of oxygen were generally larger, and sessile drop CAs smaller
for surfaces for which the ablation was more pronounced. This effect was independent of the
fact that the ablation was caused by higher laser power, decreased scanning space, or smaller
defocusing distance [28]. The influence of roughness changes induced by femtosecond laser
on the polypropylene (PP) surface was investigated in [29], wherein the influence of multi-
scale roughness on CA measurements was described. An experimental investigation of the
static CA measured on PP textured surfaces by a femtosecond laser with multi-scale roughness
shown the dependence of the 3D roughness parameters. The proposed physical approach
showed that the drop is not in such a case as in the state described by Wenzel or Cassie–Baxter,
even with the roughness parameters calculated at the relevant scales [29]. The use of CO2 laser-
induced surface patterns to modify the wettability of poly(methyl methacrylate)(PMMA) with
respect to the surface roughness of patterns was reported [30].

Different types of polymers were treated with excimer lasers, with the aim of modifying the
surface wettability of treated samples. Polystyrene (PS) substrates were modified with excimer
laser (ArF excimer pulsed laser, λ=193 nm) argon, and oxygen plasmas (radio frequency (RF)
glow discharge). The substrates were processed at different experimental conditions (number
of pulses or treatment times) [31]. Contact angle determination showed higher wettability for
the modified PS with both argon and oxygen plasmas and lower wettability for the laser-
treated samples. It was also observed that, in the case of laser irradiation, wettability and
surface morphology affect cell attachment and spreading [31]. Laser modifications of PS using
suitable exposure doses and an appropriate choice of the processing gas (helium or oxygen)
enabled a highly localized control of wetting. The hydrophilic and hydrophobic behavior was
caused by chemical and topographical surface changes [32]. The wettability of PI surfaces that
were microstructured using KrF laser radiation at fluences above the material ablation
threshold was studied by static CA measurements. The morphology of laser-treated surfaces
consisted of conical features whose dimensions and areal density depended on the fluence [33].
The effect of the cone geometry on the surface CA depended on the wetting regime. When
wetting occurred in the homogeneous regime, the CA of the treated surfaces increased with
the radiation fluence because the cone dimensions increased. In contrast, for the heterogeneous
regime, an increase in CA was observed due to an increase in the average distance between
cones [33].

Surface wettability changes may also influence the growth and adhesion of consequently
deposited metal layers. The effect of an excimer laser treatment at low laser fluences on a PET
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surface was investigated, as well as its efficiency in improving the metal/polymer adhesion
when the treated polymer is coated with aluminum [34]. For all treatments, an important
increase in hydrophilicity was detected at low pulse numbers. When increasing the pulse
number (>200), the evolution of the hydrophilicity depended on the laser process parameters.
At 248 nm, the wettability either remained constant or even decreased at a high number of
pulses due to the surface decarboxylation. At 193 nm, increasing the pulse number improved
the hydrophilicity, and very low water contact angles (WCAs) were obtained [34].
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Figure 2. A) Dependence of the CA of laser-treated PS on several laser pulses treated with fluences of 6-12 mJ cm-2. (B)
Dependence of the CA on time from the laser treatment (aging time) for samples exposed with 6 000 pulses and laser
fluence of 6, 9 and 12 mJ cm-2 [38].

Excimer laser and femtosecond laser were also used for the surface modification of PCL
membranes for tissue engineering applications [35]. In the case of femtosecond laser, the results
gathered from the wettability test revealed that the PCL membranes with holes perforated at
lower pulse numbers had higher SEs. At lower pulse numbers, the degree of surface roughness
was higher because there were more surface asperities due to a greater ‘‘splattering’’ effect [35].
If compared, the results from the KrF treatment suggested that increasing the pulse number
(corresponding to a longer laser irradiation time) at both energies increased the surface
hydrophilicity of the PCL. The improvement in surface hydrophilicity after laser irradiation
was proposed to be due to the sufficient energy of the excimer laser provided to overcome the
bond strength of the PCL chemical structure at these irradiated regions [35]. Advanced
functional surface patterns with high lateral resolution can be obtained by an appropriate
combination of laser microstructuring or nanostructuring and laser surface modification. A
flexible and rapid surface functionalization of amorphous carbon films showed a great
potential for various applications such as biological surfaces and tribological systems [36]. The
formation of carboxyl groups at the surface was detected, which corresponds to an improved
wettability of water. The SE has shown a linear dependence on the laser energy dose and laser
pulse number, respectively. For laser fluences near the ablation threshold, a selective ablation
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of hydrogen-enriched domains seems to be responsible for the formation of micro-sized cones
[36]. Recently, a modification of a method for CA measurement, an axisymmetric drop shape
method, has also been used for wettability analysis [37]. Contact angle hysteresis phenomena
on polymer surfaces have been studied through CA measurements using sessile liquid
droplets and captive air bubbles in conjunction with a drop shape. This method was reported
to be promising also for characterization of wettability of laser treated surfaces with controlled
roughness and chemical composition [37].

Excimer laser is able to create regular or semi-regular patterns on the surface of polymer, which
comply with specific parameters (e.g., ability to absorb the wavelength). A study of KrF laser
treatment on a PS foil surface was performed. The influence of several laser pulses and laser
fluence on surface properties (morphology, wettability, and chemistry) of PS was investigated
[38]. The optimal input parameters for ripple nano-patterning with high regularity were
determined. It was observed that increasing the number of laser pulses at all laser fluences
applied led to a decrease in CA (Fig. 2A), which confirms the increase in wettability after laser
exposure and is also with an excellent agreement with the work in [20]. Hydrophilicity is
increased due to the formation of surface radicals after polymer bonds breakage caused by the
impact and absorption of laser beam and consequent creation of new oxygen (polar) groups.
Consequently, samples treated with 6-12 mJ cm-2 and 6 000 pulses remained at ambient
atmosphere, so they can undergo aging procedures for an interval of 1–72 h (Fig. 2B).

When a laser fluence of 6 mJ cm-2 was applied, a mild decrease in CA was observed, down to
50°. The treatment with a fluence of 9 mJ cm-2 at the first stages of aging primarily resulted in
the fluctuation of CA. After 24 h of consequent aging, the mild constant decrease was deter‐
mined. A different situation was observed when a fluence of 12 mJ cm-2 was applied. At this
laser fluence, a sharp increase of up to 70° was first observed, and after achieving its maximum,
a slow decrease was detected. After 72 h, the polymer surfaces can be signed as “aged,” i.e.,
with no further significant changes. The modification induced in PS by the ArF excimer laser
radiation has also been investigated [39]. The disperse component of the SE approximately
raised linearly with the Ra value, whereas the polar component remained approximately
constant. Surprisingly, laser-induced oxidation of the PS surface layer had no appreciable
impact on the SE polar component. Laser-induced surface roughness was reported to be the
main factor that influences the SE.

The wettability of laser-induced nano-ripples on PEN foils was studied in [40]. Polyethylene
naphthalate (PEN) is chemically “similar” to PET, which is a widely industrially used polymer.
Due to the presence of condensed benzene rings PEN has “higher” properties (mechanical,
chemical, and thermal) compared with PET. The consequent measurements of PEN foils
treated with several laser pulses (1000–6000) and laser fluence of 6-12 mJ cm-2 were conducted
from the point of wettability changes. A sharp decrease in surface CA was observed for all
three studied laser fluences with an increasing number of laser pulses. The selected samples
were chosen for the consequent aging studies. The CA of the laser-modified surface was
evaluated for 1, 2, 4, 8, 24, and 72 h from the treatment. The lowest laser fluence first exhibited
a small decrease during the process. After 8 h, no significant fluctuation could be observed.
Rather, a different situation occurred for samples treated with higher laser fluences (9 and 12
mJ cm-2). A sharp increase during the initial stage of the aging process was observed. After

Wetting and Wettability330



approximately 8 h, a mild decrease was determined, and the surface CA was almost constant
after 72 h. For longer aging periods, no more fluctuations have been observed [40].

Polymer films (PE, PP, PTFE, PS, and PET) were modified by a F2 laser (157 nm) [41]. The
modification led to a degradation of the polymer surface layer and ablation. Wettability,
characterized by the measurement of the CA, was determined as a function of the number of
laser pulses. The laser irradiation led to a decrease in contact in all cases, except for PP sub‐
strates. The values of the CAs are affected not only on surface morphology but also on chemi‐
cal composition. After an initial fast increase in wettability, a saturation of the CA was achieved.
For more than 2000 laser pulses the CA remained unchanged [41]. An initial fast increase in
wettability was detected on PE and PET, and a much slower increase for PTFE and PS.

Biopolymer surfaces can also be significantly altered by the use of laser treatment. Excimer
laser irradiation can induce significant morphology (Fig. 3) and wettability changes [42, 43],
or even a regular nanopattern can be constructed [44]. Different types of laser treatment also
lead to the significant degradation of biopolymers. Degradation of poly(L-lactide) under a
CO2 laser treatment above the ablation threshold was reported in [45], but ablation of the
poly(L-lactide) by CO2 laser did not affect the wettability of the surface of the material, which
confirmed the lack of formation of polar functional groups. A different situation can be
observed if excimer laser is used.

Figure 3. Surface morphology of plasma pretreated PLLA, consequently exposed with a laser beam of 9 mJ cm-2 and
different numbers of pulses (1000, 3000, and 6000). Ra represents the arithmetic mean roughness in nanometers [43].
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Surface ablation of poly(L-lactide acid) (PLLA) induced by excimer laser was studied in [42].
It was found that irradiation by KrF laser results in an increase in wettability of PLLA. This
increase significantly depended on processing parameters (e.g., the number of pulses and laser
fluence). The substrates treated with 500 pulses exhibited the smallest difference in wettability
compared with the pristine PLLA. With an increasing count of laser pulses, the wettability
increased (see Fig. 4). However, for laser fluences above 30 mJ cm−2, the increase in wettability
was neutralized, and a “constant” behavior was detected. This phenomenon is probably
connected with both a significant change in surface morphology, roughness, and changes in
structure and with the ablation of the biopolymer (Fig. 5).
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Plasma pretreatment strongly influences the CA of consecutively treated biopolymer [37]. The
samples that were pretreated with plasma and aged for more than 72 h (which means that the
input values of the PLLA CA before laser exposure were those of 90° (surface is stabilized))
were consecutively treated with KrF laser. The samples treated with 500 pulses exhibited the
highest values of CA compared with the samples exposed to a higher number of pulses. With
increasing laser fluence, the surface morphology was strongly influenced, and surface
chemistry was significantly altered. The macromolecular chains’ rearrangement ability and
the chemical structure of the modified surface were influenced by the laser fluence. Slight
fluctuations of CA appeared, probably due to the ablation of the polymer surface. The most
pronounced decrease in CA was observed for samples treated for 6 000 pulses. However, a
slight increase with higher laser fluence (40 mJ cm–2) was observed, probably due to more
pronounced ablation [43].

3. Plasma-treated polymer

Many polymers have good bulk properties, which are used in a wide range of applications. In
many application areas, surface properties besides bulk characterization are equally important
for their successful use. However, their surface properties, especially adhesion, wettability,
and cytocompatibility, are unsuitable for many applications. The effective method leading to
the modification of the surface and changes of the chosen parameters is modification by plasma
discharge [46, 47].

The polymer generally has a low surface reactivity. Using physical modification requires the
use of high-energy particles, by which an inert polymer surface is bombarded. Most of the
modifications are performed using low-temperature or “cold” plasma [48]. When we speak of
plasma, we mean the highly ionized gas consisting of neutral and charged particles (ions,
radicals, excited molecules, and electrons), wherein the total charge remains neutral [49].
Plasma can provide modification of the upper layer of polymer surface without using solvent
or generating chemical waste and with less degradation and roughening of the material
compared with many wet chemical treatments [50]. This procedure enables the modification
of heat-sensitive materials, e.g., polymers [48, 51]. This type of plasma can be generated in
many ways, e.g., by corona discharge treatment, UV radiation, X-ray beam, and gamma
irradiation.

The plasma modification of polymers is very often used in surface cleaning or etching [52],
changes in surface wettability and adhesion [53], reducing friction [54], or regulation of the
cell adhesion in cytocompatibility studies [55]. The creation of the polar groups on the modified
surface reaction by the reaction of activated polymer surface with gas atmosphere leads to the
augmentation of adhesion, increasing hydrophilicity, or modifying the surface morphology
(Fig. 6). It is known that modification by plasma treatment leads to changes in the surface layers
(approximately 10 nm or less), whereas the bulk properties are not affected. The choice of the
gas used to modification may affect the chemical composition of the “newly created” functional
groups introduced to the polymer surface [56,57].
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Figure 6. Surface morphology of pristine PLLA and PLLA treated in Ar plasma discharge (discharge power: 3 W; time
of modification: 300 s). Ra represents the arithmetic mean roughness in nanometers.

The plasma treatment is a complex process, and a variety of chemical and physical reactions
can occur. Plasma processing is generally used for film deposition or etching and may also be
used for resist development and removal [58]. The type of functionalization can be varied by
a selection of plasma gas (Ar, N2, O2, CO2, and NH3) and processing parameters (power, time,
pressure, and gas flow rate). Plasma treatment with oxygen or nitrogen plasma provides polar
functional groups on the surface, which alters the SE of polymers [59–61] and enhances the
attachment of consequently applied chemical substances or particles. It is known that oxygen
plasma can react with a wide range of polymers to produce a variety of oxygen functional
groups. Oxygen plasma provides different functional groups on the polymer surface, e.g., the
C–O, C=O, and O=C–O groups [61–63]. The wettability of surface as well as its biocompatibility
can significantly be altered by plasmas containing nitrogen [64]. Cell affinity was enhanced
using ammonia plasma treatment on PS [65]. Nitrogen- or ammonia-based plasmas were
applied to create amino-binding sites [66] or to increase the peel strength between polymers
[67]. The plasma is able to increase adhesive strengths on the polymer surface [68].

3.1. Oxygen in plasma gas and the surface wettability of modified polymer

Although PLLA and polyhydroxybutyrate with 8 % polyhydroxyvalerate (PHBV) can be
found in biomedical applications, both are hydrophobic, making their interaction with cells
difficult. Thus, the surface modification of these polymers is important for all applications
involving their contact with physiological components [69, 70]. The influence of the oxygen
and nitrogen plasmas on the hydrophilicity of the PLLA and PHBV was studied. The oxygen
plasma treatments on both PLLA and PHBV samples, in general, caused a reduction in the CA
and an increase in the SE. This increase in the SE reflects an increase in surface hydrophilicity.
Changes in the surface morphology were observed, as well as a decrease in CA, and an increase
in SE and polar components was detected. These modifications were associated with the
plasma parameters (pressure, power, and time) and made both polymers more hydrophilic
[49]. In a study aimed at the evaluation of plasma treatment effects on the surface properties
of PLLA, film air plasma was used at a pressure of 10–20 Pa, and a discharge current of 50 mA
for 60 s was applied. The CA of wettability measurements of the films showed that plasma
modification led to an increase in hydrophilicity and SE [71]. The use of oxygen plasma
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treatment on fibril tip surfaces in polymer elastomeric polyurethane (PU) and polydimethyl‐
siloxane (PDMS) fibrillar adhesives improved their wettability and adhesion capacity. Surface
modifications of fibril tips involved UV/ozone and oxygen plasma treatments to make the fibril
tips more hydrophilic. Treatment of fibril tip surfaces renders them more hydrophilic, and the
adhesion capacity of treated fibrillar arrays is sensitive to the relative humidity of the envi‐
ronment [72]. Surface effects induced by oxygen plasma exposition (time of treatment: 60 s;
constant pressure: 15 Pa; and at different process powers, ranging from 20 W to 200 W) on PET
wettability were investigated by WCA measurements. Plasma treatment produced surface
modifications with the incorporation of hydrophilic functional groups such as carbonyl (C=O)
and carboxylic (–COOH) groups. At a low power level (20 W), the plasma was mainly rich of
radical species that react with methylene (C–O) and ester groups (O–C=O) present in the
polymeric chains, producing a slight etching of the material and new hydrophilic species as
carbonyl groups are introduced. At a high power level (200 W), a more efficient incorporation
of hydrophilic species into the PET surface was observed. Contact angle measurements
confirmed the enhancement of the surface wettability as a function of plasma power [73]. The
degree of hydrophilicity of the treated HMWPE surface was determined by measuring the CA
of a water droplet on the surface. The plasma was generated using compressed air as the
ionization gas. It was found that plasma power and scan speed affect the grafting process. The
lower power and lower scan speed generally resulted in a greater change in CA from the
HMWPE [74]. Experiments on plasma treatment of PP and PET foils were carried out with the
use of atmospheric pressure plasma sources operating with ambient air as plasma forming
gases. The atmospheric pressure plasma source was ambient airflow as a plasma-forming gas.
Airflow was perpendicularly directed to the electric current. The velocity of airflow was about
20 m s−1. The average power of this dc plasma source was 35 W. The results of measurements
made within about 1 min after plasma processing indicated that the air plasma processing of
PP and PET resulted in a decrease in CA till a processing time value of 1 s, followed by a phase
of a nearly constant value of 36° for PP and 30° for PET. The effect was noticeably stronger for
the PP surface. This was explained by different chemical compositions of these polymers [75].
The effect of low-pressure O2 plasma treatments on the surface-free energy and morphology
of PP films was studied in [76]. The treatment was performed at a pressure of 0.35 bar. Each
PP sample was treated at 10, 30, and 50 W for 10, 20, 30, 60, 120, 180, and 300 s, respectively.
Based on the surface-free energy calculation and Fourier transform infrared spectroscopy-
attenuated total reflection (FTIR–ATR) spectroscopy, it was evident that the changes in the SE
PP film significantly increased already after a very short treatment time (20 s). The surface
modifications with O2 plasma proceeded only with hydrophilic modification. The SE reached
the maximum value for a short treatment time and then leveled off [76]. For improving
wettability, RF plasma treatment in the air atmosphere was reported to be a very effective tool.
The high-density polyethylene (HDPE) was modified by air and oxygen plasmas (operating
pressure from 0.1 to 1 Torr, power ranging between 5 W and 10 W). The CA measurement,
ATR FTIR, and XPS analysis showed that plasma treatment leads to a dramatic increase of the
hydrophilic character of the HDPE surfaces. A hydrophilic surface was created mainly due to
the generation of the carboxylic, carbonyl, and peroxide groups at the surface interface [77].

In all the above-mentioned cases, the oxygen-containing plasma treatment leads to a decrease
in WCA and increase in hydrophilicity of the polymer surface.
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3.2. Inert plasma treatment and wettability of modified polymers

The influence of Ar plasma on the surface polarity and wettability on the PLLA and poly-4-
methyl-1-pentene was studied by measuring the CA. The samples were modified in diode
plasma discharge for 0–240 s, using DC Ar plasma (gas purity: 99.997%; power: 3 W and 8 W).
Exposed samples exhibited a sharp decrease in CA immediately after modification. It was
found that the values of CA depend on both exposure time and discharge power. As a reset
of the plasma treatment, the polarity of the polymer surface increased, the CA decreased, and
the SE increased. With an increasing aging time, the surface polarity was spontaneously
reduced. The increase in CA of the polymer surface and decrease in wettability may be caused
by the reorientation of polar groups into the polymer bulk [78]. The dependence of the WCA
and surface-free energy on exposure time at different discharge powers was determined on
plasma-modified PHBV. The samples were modified in diode plasma discharge on Balzers
SCD 050 device for 0–240 s, using dc Ar plasma (gas purity: 99.997%; power: 3 W, 5 W, and 8
W). Based on the CA measurement using a goniometry technique, it was concluded that the
treatment of PHBV in Ar plasma leads to a decrease in the measured WCA (increase in
wettability). Exposure to the lowest plasma discharge power of 3 W led to fast decrease in CA
after 10 s of treatment. For a 40-s exposure, WCA achieved a minimum value of about 30°. For
exposure times above 40 s, WCA slowly increased with increasing exposure times. It was
proposed that this turnout in WCA dependence may be due to the surface ablation and change
in surface roughness. A similar trend was observed at a higher discharge power of 5 W, where
the lowest WCA (36.6°) was observed for an exposure time of 10 s. At 8 W, the discharge power
was monotonous, but a slow WCA decrease with an increasing exposure time was shown.
Differences in WCA and SE during the aging of the plasma-modified PHBV were observed;
however, after some time, a saturated, constant value was achieved. Both effects strongly
depended on the plasma discharge power [79]. The work focused on the modification of PHBV
and PLLA foil with Ar plasma and presented the influence of different conditions of plasma
treatment on the wettability of the two biopolymers. Both biopolymers were treated with Ar
plasma discharge (discharge power: 3 W; time of modification: 25–400 s). For both polymers,
it was determined that immediately (5 min) after irradiation, all samples exhibit a sharp
decrease in CA to a minimum value. With an increasing aging time, the CA increases. The
stabilization of the polymer surface was observed after 10 days (for PLLA) and 13 days (for
PHBV) from the treatment (Fig. 7). Finally, the CA was strongly dependent on the exposure
time. Substrates modified for a shorter times (5–75 s) had a significantly lower CA than
substrates modified for longer times (300–400 s) [57].

The changes in wettability of 2-hydroxy-ethyl-methacrylate (HEMA) and 2-ethyl-oxy-
ethylmethacrylate (EOEMA) induced by Ar plasma treatment were measured using goniom‐
etry. The experiment was performed on a Balzers SCD 050 device, and the processing
parameters were as follows: the time of modification was 0–400 s, and the discharge power
was 1.7 W [80]. Based on the analyses, the creation of the “new” groups containing oxygen on
HEMA and EOEMA chains leads to changes in wettability. The CAs were immediately
evaluated (in 6 min) and 386 h after the plasma irradiation. It was found that the plasma
modification leads to the rapid decrease in CA in the first few minutes after modification. The
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decrease was higher for longer modification times. Comparable dependence was observed for
both polymers. Then, 386 h after plasma modification, the CA increased compared with the
CA measured immediately after the plasma treatment. The experiment in [81] proved that the
concentration of oxygen groups created by Ar plasma irradiation does not change with time
from modification. This result [81] and the finding from goniometry analyses [80] can be
explained by the reorganization of surface layers and rotation of degraded macromolecules
and newly created structures to the “free volume of polymer” [80, 82]. The studies of plasma
treatments processed by Ar on the drug release from the poly(ethylene-co-vinyl acetate) (EVA)
polymer films demonstrated the effects of plasma modification on the wettability of a typical
biocompatible polymer. Plasma treatment was carried out using RF plasma-enhanced
chemical vapor deposition: power was 200 W, and the total pressure was kept at 13.3 Pa. The
plasma processing time was changed from 0 s (untreated) to 45 s in order to evaluate the plasma
processing time effects on the drug eluting characteristics. After stabilizing the sample in air
for 1 day, the CA measurements of the samples were performed. The plasma treatment by Ar
resulted in a significant reduction in WCA, even by a short plasma treatment time of only 5 s.
By longer than 5 s of the plasma treatment, the WCA became relatively low and stayed almost
constant thereafter, regardless of the plasma processing time. This behavior led to a reduction
of the drug release amount from EVA by only a short plasma processing time [83]. The aging
behavior of the plasma-irradiated PP and PET polymer foils was studied by goniometry.
Measurement was performed by the determination of the WCA. Plasma modification causes
the creation of oxidized structures on the polymer surface. The exposure of the irradiated
samples to the air atmosphere occurs at the reorientation of the oxygen groups from the surface
into the bulk of the material. The influence of aging time on the CA showed the change of the
values of CAs of the plasma-modified polymer foils (PP and PET) as a function of storage time.
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Based on the results, it is evident that the aging is characterized by a fast decrease in wettability
during the first few hours of storage. At longer storage times, the wettability decreases more
slowly, and the CA finally reaches a plateau value [84].

4. Grafting of plasma-treated polymers

The plasma treatment of polymers leads to a modification of polymer surface due to the
production of reactive sites or changes in cross-linking or molecular weight. The bombardment
of polymer surfaces by energetic particles breaks the covalent bonds, and this process results
in the formation of surface radicals. The typical gas used for activating the polymer surface by
forming radicals is Ar or He. These active sites (radicals) can later react with other chemical
substances. The polymer surface can also be functionalized by “plasma-induced grafting,”
which is the combination of plasma activation and conventional chemistry [46]. Grafting is a
method in which new compounds are bounded from the gas or liquid phase on the activated
polymer surface [85]. Grafting may be realized to the polymer surface with the use of one or
more substances. In the first case, modification is performed in one step, and in the latter case,
it may occur for networking several substances simultaneously or in consecutive steps. Not
only radicals but also the functional groups created due to plasma treatment, such as carboxyl,
hydroxyl, or amine groups, can be used for subsequent modification of the polymer surface.

For many applications, it is necessary to bind suitable substances on the polymer surface.
In tissue engineering, development of biosensors and other biodiagnostic devices is of great
importance, and immobilizing of proteins onto a surface is a key step in many biotechno‐
logical  processes  and  applications.  Various  immobilization  techniques  such  as  physical
adsorption,  covalent  immobilization,  and  bioaffinity  immobilization  have  widely  been
practiced [86]. For polymers, a technique for covalently binding of proteins, i.e., pretreat‐
ing the polymer surface in plasma discharge combined with the bath deposition, may be
used. On plasma-activated surfaces, proteins can be immobilized through a reaction with
the amine and carboxyl groups [87].

In the development of, e.g., biomarkers and biosensors or in molecular design, nanoparticles
are very often applied [88-90]. These may be prepared from organic materials (e.g., polymers)
and inorganic materials (e.g., metal nanoparticles). In addition, one can design nanoparticles
with controlled hydrophilic/hydrophobic characteristics, with positive or negative charge,
with response to external pH or thermal stimuli, and, finally, with high resistivity or conduc‐
tivity. It is therefore clear that combining nanoparticles with different nature, shape, chemistry,
and physical properties together with polymer substrates permits the design of an infinity of
systems for a plethora of applications [91]. Metal nanoparticles can be prepared through
physical (mechanical separation of metal aggregates) or chemical (nucleation and growth
nucleus) methods. Colloidal solutions of metal nanoparticles and nanoparticle composites
with ceramic or various organic materials are currently prepared in particular. The most
widely used metals include gold, silver, and platinum, as well as iron and their compounds.
Hence, a key aim of materials science is to understand roles that substances or particles bonded
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on material surface play at the interface of materials. It is clear that the grafting a new material
on the surface leads to changes in chemical structures and composition, surface morphology
(Fig. 8), roughness, and other parameters, and they affect surface wettability.

Figure 8. Surface morphology of the PE treated with plasma for 100 s (Plasma), PE treated with plasma and subse‐
quently grafted with biphenyl-1,4-dithiol (Plasma/BFD), and PE grafted with biphenyl-1,4-dithiol and Au nanoparti‐
cles (Plasma/BFD/AuNS). Ra represents the arithmetic mean roughness in nanometers [92].

4.1. Wettability of grafted polymer surface and cytocompatibility

One of the most studied nanomaterials for biomedical applications are carbon materials
(nanotubes as a carrier for biosensors, fullerenes), polymer nanofibers with high porosity
(dressings, tissue engineering, and targeted drug delivery), hydrogels (dressings for open
wounds and materials release medicines), or dendrimers (cancer treatment) and inorganic
materials (silica and metal nanoparticles) [93, 94]. Fullerenes, spherical molecules composed
solely of carbon atoms (e.g., C60), exhibit a broad spectrum of biological activity. Their unique
shape and ability to “capture” some substances or compounds within their structure make
fullerenes significant, especially in their potential use for targeted drug delivery or gene
therapy [95, 96]. After irradiation with ultraviolet or visible light, fullerenes may convert
molecular oxygen to become highly reactive and cause photodynamic disintegration of
biological systems. This effect can be used in the therapy against cancerous growths, viruses,
and bacteria that are resistive to broad-spectrum drugs. In their original unmodified state,
fullerenes are highly hydrophobic and insoluble in water. On the other hand, they are relatively
reactive, allowing modification of their structure. The modification leads to the increase in
their hydrophilicity and wettability. They will also become soluble in aqueous solutions, which
improves their interaction with biological systems [97, 98]. Deposition and grafting of gold–
silver particles on polymer grafts has been the subject of a large number of studies for their

Wettability and Other Surface Properties of Modified Polymers
http://dx.doi.org/10.5772/60824

339



potential application in electronic and optical detection systems, therapeutics, catalysis, and
the environment [99-101]. Metallic nanoparticles such as iron oxide, gold, and silver have been
developed and adopted for use in targeted drug delivery and diagnostic imaging. Super
paramagnetic nanoparticles composed of nanoparticles of oxides, such as magnetite (Fe3O4)
and hematite (Fe2O3), allow sensitive detection with high-resolution MRI. Elemental silver and
silver salts are well known due to their relative non-toxicity in human cells and their antibac‐
terial effects. Silver nanoparticles have been developed for antibacterial applications, because
they more easily penetrate the cell wall of microbes and, thus, are more effective [102].

In the case of modification of the material that is in contact with cells, the nanoparticles or the
other compounds grafted on the polymer surface change the surface wettability (Fig. 9) and
thus significantly affect the adhesion and proliferation of living cells.
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Figure 9. Dependence of the CA on the plasma exposure time for plasma-treated PE (plasma), plasma-treated and Au
nanoparticle grafted PE (plasma/AuNS), plasma-treated and biphenyl-1,4-dithiol grafted PE (plasma/BFD), and plas‐
ma-treated and biphenyl-1,4-dithiol and Au nanoparticle grafted PE (plasma/BFD/AuNS) [92].

It was found that the unique properties of nanomaterials may not only affect the cell adhesion
and interconnectivity across the cell structure on the surface of the sample but also represent
an important factor for the structural and organizational stability of the cells [103]. The
properties of the substrate significantly affect the subsequent establishment and organization
of various cell types. Cells are “attached” to the substrate surface through the adhesive points
that constitute the communication channels between the substrate’s surface and the cellular
cytoskeleton. Formation of this interface is influenced not only by the surface chemistry of the
substrate but also by the surface charge, wettability, and modulus of elasticity [104, 105]. One
widely accepted advanced “trend” in tissue engineering is the creation of surfaces that promote
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cell colonization. For this application, it is necessarily suitable to adjust not only chemical
composition but also surface wettability. The decrease in surface wettability influenced by the
grafting of adhesive molecules was studied in [106]. In this work, the changes in surface
properties and biocompatibility of PE substrates after the plasma activation and subsequent
grafting with chosen molecules glycine (Gly), tripeptide arginine–glycine–aspartate (RGD),
fibronectine (FN), vitronectin (VN), and collagen (CG) were determined. It was found that
plasma activation and grafting with molecules led to significant changes in the surface
properties (polarity, chemical composition, morphology, and roughness) of the substrates.

Grafting of PE with molecules led to a strong decrease in CA. The biocompatibility of the
substrates and cell–material interactions were studied by in vitro experiments. It was found
that the surface activation of PE samples by Ar plasma discharge had a favorable effect on the
adhesion, spreading, homogeneity of distribution, and, moderately, proliferation activity of
mouse embryonic fibroblasts (NIH 3T3 cells). This effect was even more apparent on the
samples coated with biomolecules. In the experiment, it was demonstrated that the treatment
of PE by Ar plasma discharge and subsequent grafting with molecules dramatically increased
the attractiveness of the presented polymer foils for cytocompatibility of NIH 3T3 cells [106].
The decrease in CA on polyolefins (e.g., PE) may also occur due to the interaction of their
surfaces with Gly [80]. The grafting of this molecule on the PE surface leads to the increase in
oxygen concentration on the modified surface and decrease in WCA. Combination with other
surface properties (morphology and roughness) leads grafting with Gly to an increase in the
attractiveness of PE for vascular smooth muscle cell (VSMC) colonization [107].

Grafting of poly(ethylene)glycol (PEG) on polymer surface grafts has been the subject of a large
number of recent studies because of their properties applicable for creating polymer brushes.
Polymer brushes are used as model systems in polymer science, in colloids and surfactant
sciences, colloidal stabilization, lubrication polymers, and compatibilization between organic
and inorganic materials. In particular, PEG brushes can be used to repress protein adsorption,
which is responsible for several unwanted effects, such as fouling of contact lenses, clotting
on blood-containing devices, and triggering of inflammation around artificial organs [108].
Several studies were focused on the grafting of PEG in order to improve the cytocompatibility
of substrate and creating the cell’s attractive scaffolds [60]. Three PEGs with different molecular
weights (molecular weight was 300, 6 000, and 20 000 g mol-1) were grafted on the plasma-
activated polymer surface [109]. Dependences of the CA on the aging time for plasma-modified
PE and plasma-modified PE and subsequently grafted with PEG showed a pronounced
decrease in CA after PEG grafting due to the binding of oxygen-rich compounds onto the
activated polymer surface. Based on the biological experiments performed in vitro with the
VSMCs, it was found that the cell’s adhesion, proliferation, and viability is strongly dependent
on PEG concentration on the polymer surface and on the length of its chain (Fig. 10).

Cells very well proliferated and were grown on the substrates grafted with PEG with very low
or very high molecular weight. In addition, the viability of cells cultivated on these samples
was very high. The best results (the higher number of the cells) was achieved on the samples
treated in plasma for 50 s and subsequently grafted with 20 000 g mol-1 PEG. On the other hand,
the samples grafted with 6 000 g mol-1 PEG showed a significant anti-adhesion character and
were for the cell’s undesirable cultivation (Fig. 11) [109].
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The influence of the presence of the gold nanoparticles on the surface wettability and biocom‐
patibility of substrates was investigated in [110]. Golden, spherically shaped nanoparticles
(AuNPs) with an average diameter of 12 nm were bound on the plasma pretreated polymer
surface, which is concretely polyolefin, HDPE. The AuNPs were “grafted” from the citrate
colloid solution. Surface wettability was measured by goniometry, i.e., the static (sessile) water
drop CA method. The samples exhibited an increase in wettability after modification by
plasma discharge and AuNPs. This increase was more pronounced for samples pretreated in
plasma for a lower time. The cell–material interaction was studied using two different types
of cells (VSMCs) and mouse embryonic fibroblasts (NIH 3T3)). Based on the test results, it was
evident that the plasma treatment of the polymer and the presence of AuNPs had a positive
influence on the spreading, proliferation activity, and homogeneity of the distribution of
VSMCs and NIH 3T3 on the material surface [110].

Figure 11. Photographs of the adhered (first day) and proliferated (seventh day) VSMCs on PE treated on plasma dis‐
charge and subsequent grafted by PEG with a molecular weight of 300, 6 000, or 20 000 g mol-1.
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Several vicinal compounds grafted on plasma-treated polymer foils were studied in [111] and
[112]. First, surfaces of PET and PTFE were modified by plasma discharge and subsequently
grafted with three different thiols: (i) 2-mercaptoethanol; (ii) 4,4´-biphenyldithiol; and (iii)
cysteamine. The thiols are expected to be fixed through one of –OH, –SH, or –NH2 groups to
reactive places on the polymer surface created by the plasma treatment. ‘‘Free’’ –SH groups
are allowed to interact (graft) with gold nanoparticles and nanorods [111]. During this research,
we have found an interesting behavior of cysteamine molecule, which bonds to the surface
through either the –SH group with the “free” –NH2 group or reversely depending on the
polarity of substrate surface.

Cysteamine  was  grafted  on  several  polymer  foils  of  different  polarity  (PLLA,  PS,  low-
density polyethylenes (LDPE), HDPE, PET, PTFE, polyvinylfluoride (PVF) and polyvinyli‐
denefluoride (PVDF))  previously  activated in  plasma discharge [112].  Surface  properties
including surface wettability of the sample before and after plasma treatment and cystea‐
mine grafting were studied using various methods. Surface chemistry was studied with X-
ray photoelectron spectroscopy, chemistry, and polarity by electrokinetic analysis and by
goniometry, and roughness and morphology by atomic force microscopy. Representatives
of unmodified and modified polymers were used for an in vitro study of the adhesion and
proliferation of VSMCs [112].

Wettability was determined by measurement of WCA on all samples, pristine, plasma treated
for different times, plasma treated, and subsequently cysteamine grafted. It was found that
plasma treatment leads to a dramatic decrease in CA, indicating an increase in surface
wettability of all polymers. For some polymers, this CA decrease strongly depended on the
plasma exposure time (e.g., PTFE), but for others, the plasma exposure time is not of such
importance (e.g., HDPE and LDPE) [112]. The most dramatic dependence of CA is observed
on PTFE. The cysteamine grafting caused a dramatic increase in CA (i.e., decrease in surface
wettability) on all polymers, and the increase was the highest on PTFE. These results are mainly
a combination of the so-called aging process on polymer surface after plasma treatment, which
has been earlier studied for different polymers [92, 112–114] and subsequent grafting of
cysteamine. Aging of the plasma-treated surface leads to an increase in CA and hydrophobicity
due to the rearrangement of polar groups created on the surface during plasma treatment [92,
112–114], whereas subsequent grafting of hydrophilic functional groups on the surface
increased surface hydrophilicity [112]. Due to a small concentration of cysteamine bonded on
the surface, the hydrophilicity only slightly increased in this case, and the combination of these
steps resulted in hydrophobicity increase compared with the freshly plasma-treated surface.

Electrokinetic analysis and XPS measurement work provided information on surface chemis‐
try and surface charge. Both of these are important for cell adhesion. Fig. 12 shows the results
of electrokinetic analysis (zeta potential values) for pristine polymers, plasma-treated poly‐
mers, and plasma-treated polymers subsequently grafted with cysteamine. The zeta potential
is known to depend on surface chemistry, polarity, charge, and surface morphology and
roughness [115]. It is evident in Fig. 12 that the zeta potential depends on the polymer surface
properties and it changes after plasma treatment and also after cysteamine grafting. Plasma
treatment leads to changes in the surface charge, chemistry, and polarity and to a change in
the zeta potential too. A significant increase in the zeta potential was observed on PTFE, HDPE,
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PET, and PLLA. Plasma treatment resulted in a cleavage of original bonds (e.g., C–H, C–C,
and C–O) and the creation of new reactive places on the polymer surface (“free” radicals,
double bonds, and new chemical groups, e.g., carbonyl, carboxyl, and ester groups) [116]. The
plasma treatment led to the creation of excessive oxygen containing groups and subsequently
to an increase in surface polarity on these four polymers mentioned above [112]. On PVF,
PVDF, LDPE, and PS, the plasma treatment caused only a mild decrease in the zeta potential,
indicating a decrease in surface polarity. The effect may also be due to an increase in surface
roughness [112]. More pronounced results are obtained after cysteamine grafting. The most
dramatic increase in the zeta potential was obtained on nonpolar polymers (PTFE and HDPE),
whereas on more polar polymers (PET and PLLA), the zeta potential remained almost
unchanged. The different behavior of these two groups of polymers may be due to (i) different
amounts of grafted cysteamine and also (ii) different characters of the preferential bond of
cysteamine (via the –SH or –NH2 group) to the surface. Cysteamine grafting resulted in the
creation of the new chemical functional groups on the polymer surface.

The results of ARXPS measurement of C, O, N, S, and F atomic concentrations on pristine
polymers, plasma-treated polymers, and plasma-treated polymers subsequently grafted with
cysteamine confirmed changes in the surface chemistry of all polymers after (i) the plasma
treatment and (ii) subsequent cysteamine grafting [112]. After subsequent cysteamine grafting,
the sulphur (S) and the nitrogen (N) containing groups appeared on the surface of all polymers,
but their concentrations were different for individual polymers [112]. The highest concentra‐
tion of N and S was detected at PTFE, PS, PVF, and PVDF, quite less at HDPE and LDPE, and
minimal at PET and PLLA. This correlates well with the results of electrokinetic analysis (see
Fig. 12), according to which the highest amount of cysteamine was grafted (the highest increase

Figure 12. Zeta potentials of polymers: pristine (pristine), plasma treated for 120 s (plasma), and plasma treated and
cysteamine grafted (plasma/CYST) determined by streaming the current method and calculated by the Helmholtze–
Smoluchowski equation [112].
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of zeta potential) at PTFE, PS, PVF, and PVDF, quite less at HDPE and LDPE, and almost none
at PET and PLLA. Comparison of the XPS results obtained on grafted samples showed a higher
amount of concentration of N on PTFE, PS, PVF, and PVDF compared with S [112]. This
indicates that cysteamine is preferentially bonded at these surfaces through the –SH group to
the surface and with the –NH2 group remaining “free”. On the other hand, the concentrations
of N and S at PET and PLLA are almost the same, so no preferential bonding of cysteamine at
these polymers was observed [112]. Cysteamine is bonded to these polar polymers without
preference through the –SH and –NH2 groups. Both electrokinetic analysis and XPS measure‐
ment confirmed the successful grafting of cysteamine. The schematic diagram of cysteamine
grafting on different polymers is presented in Fig. 13. On PTFE, PS, PVF, and PVDF, cysteamine
is bonded with a higher amount and even preferentially through the –SH group with the “free”
–NH2 group, which creates a positive charge on the surface in the presence of a KCl water
solution. As a result, the zeta potential increases to more positive values. On the other hand,
on polar polymers (PET and PLLA), cysteamine is grafted much less (the concentration of N
and S is significantly lower), and none of the possible bonding mechanisms is preferred [112].
Probably, on these polymers, the binding of cysteamine is accomplished by both mechanisms,
i.e., via (i) the –SH group with the “free” –NH2 group, which creates a positive charge on surface
in presence of a KCl water solution and also (ii) the –NH2 group with the “free” –SH group,
which creates a negative surface charge in the presence of a KCl water solution connected with
a more negative zeta potential [112].

Figure 13. Schematic diagram of the grafting of cysteamine on plasma-treated polymers [112].
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5. Conclusions

Surface properties of polymer substrates may be significantly enhanced by different treatment
methods. Laser and plasma treatment or grafting processes can be applied to alter surface
wettability, which can be also influenced by several other factors, including surface chemistry
(introducing new functional groups on the solid substrate surface) or morphology (specific
pattern and roughness change). The surface and interface properties of polymers play a key
role in many technological processes, such as polymer processing, metallization, or their
biocompatibility. All these processes can be controlled by wetting and adhesion phenomena.
Based on the conclusions of the wettability measurement, we can estimate the surface chem‐
istry with regard to polar or nonpolar functional groups as well as acidic or basic sites available
at the modified surface region. The wettability changes in the laser-treated surface with respect
to the type of laser treatment (excimer laser, fs/ns laser, etc.) and the dependence of the CA on
the processing parameters of laser treatment (number of pulses and laser fluence) were
described. The changes in wettability of polymers and biopolymers due to the treatment and
during aging were described. Related properties (morphology and chemistry changes, and
ablation) were discussed with respect to the CA and surface-free energy of the surface. The
polymer generally has a low surface reactivity. Different types of plasma treatment were
described in detail with respect to the change of the surface properties of exposed substrates.
A broad range of functional groups can be introduced at the surface by variation of the gas
that is used or by consequential grafting processes. The influence of grafting of either metal
nanoparticles (e.g., Au) or chemical substances (e.g., PEG) on the wettability of modified
polymers was described in detail. The properties of plasma treatment and grafting procedures
that have a positive influence on the spreading, proliferation activity, and homogeneity of the
distribution of several cell types were introduced.
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