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Abstract

In this chapter we discus molecular imprinting technology (MIT), molecular imprint‐
ed polymers (MIPs), and their compatibility on a proper transducer to construct a
sensing system. Molecularly imprinted sensors (MISens), in other words, artificial
receptor-based sensors synthesized in the presence of the target molecule, are capable
of sensing target molecules by using their specific cavities and are compatible with
the target molecule. This MIP technology is a viable alternative of artificial receptor
technology, and the sensor technology is capable of detecting any kind of molecule
without pre-analytic preparations. In this chapter, you can find examples, sensor
construction techniques and fundamentals of MIP and sensor combinations to look
forward in your studies. For sensor technology, we explained and discussed the new
sensing technologies of MIP-based electrochemical, optical (especially surface
plasmon resonance, SPR), and piezoelectric techniques. Therefore, this chapter
presents a short guideline of MISens.

Keywords: molecular imprinting, sensors, artificial receptors, impedimetric sensors,
capacitive sensors, potentiometric sensors, amperometric sensors, fluorimetric sen‐
sors, SPR sensors, QCM sensors, piezoelectric sensors

1. Introduction

Nowadays, technology develops exponentially and the rate of article publishing and patent
applications are immensely high reflecting the growth of technological improvements and
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discoveries. The purpose of all developmental statuses is to simplify human life. Therefore,
every system is being designed in an “all in one fashion” for devices and equipment. You can
imagine, for instance, that if we compare the current mobile phone systems with 10 years
earlier, we will see that there is a big jump. This technological development has a wide area
of application ranging from health to food applications, from environment to space. The best
providence of this technology is its ability to provide people a simpler life, which comes within
the simplified new treatment systems for medicine, or with the control of the environmental
balance more easily by simple devices. These simple devices are being developed especially
for personal use such as chemical sensors and biosensors. These devices are famous for their
features such as that they are easy to use, cost-effective with a high sensitivity and selectivity.
Therefore, sensor technology is widely used in different platforms ranging from health
technologies to environmental analysis methods [1-6]. Generally, sensors consist of three parts:
transducers, recognition elements, and an analytical device. Transducers are part of sensors
which convert energy from one form to another. For example, piezoelectric transducers
convert electrical charges produced by piezoelectric solid materials into energy. Recognition
elements (enzyme, DNA, antibodies, etc.) and a proper analytical device to show noticeable
signals formed by transducers are the elements of chemical and biochemical sensors [7-11].
Chemical sensors use chemically formed materials (nanomaterials, MIPs, etc.) as recognition
elements, whereas biochemical sensors use biomolecules (enzymes, antibodies, DNAs,
receptors, proteins, etc.) as recognition elements. If we compare these sensor types, although
biosensors are more selective then chemical sensors, chemical sensors have advantages such
as the capacity to resist harsh conditions such as strong pH, extreme ionic strength, and a wide
variety of organic solvents. In this chapter, we especially point out these differences together
with the concepts of construction of molecularly imprinted sensors. Just like biosensors, the
chemical sensors are divided into two main functional combinations: affinity-based sensors
and catalytic sensors. Catalytic sensors are modified with different molecules that show
catalytic properties [12]. Affinitybased sensors, which are MIP-based sensors, have a specific
recognition patter mechanism of recognition for the target analyte which mimics to recognize
target analyte [13].

2. Molecular imprinting technology

In brief, molecular imprinting is defined as the formation of artificial receptors for a specific
target molecule on a polymer or on self-assembled materials. Natural receptors are widely
used for sensor technology to target the analyte, leading to electrochemical, optical, and mass
or magnetic changes on transducers [14-18]. MIPs are obtained by polymerization of a
monomer and a cross-linker, which are located around the target molecule (Fig. 1). This
assembly of a monomer around a target molecule is encouraged by covalent and non-covalent
interactions. It is easier to remove the target molecule from a non-covalently formed MIP-target
molecule complex than removing from a covalently formed MIP-target molecule complex. Just
as we described, MIPs are synthetic polymers, which can only be used as plastic antibodies for
now. It means that, currently, MIPs on sensors are only used as affinity sensors and not as a
catalytic biochemical enzyme mimicking sensors.
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Figure 1. A schematic of MIP preparation steps.

Molecular imprinting technology, in general, is developed as bulk polymerization (3-D) and
surface imprinting polymerization (2-D). Bulk polymerization is prepared as bulk materials,
so they have further preparation steps before use to recognize desired materials, for example,
grinding of bulky MIPs, which cause disruptive heterogeneous binding sites leading to poor
site accessibility. Moreover, there are embedded target molecules inside the bulk polymers
[19]. Surface imprinting is more advantageous due to controlled surface imprinting and its
convenience for sensor technology. For the sensor and the analytical device preparation by
using MIPs, there are two methods to design MIPs; one is an in situ technique that imprinted
polymer is prepared on the transducer, whereas the other is an ex situ technique that imprinted
polymer is prepared separately from transducers, where MIPs are immobilized on transducers
after this preparation to construct MISens

3. Sensors

Chemical sensors are a major class of sensors, which have many applications, such as envi‐
ronmental and food analysis, process control, and medical diagnosis. A chemical sensor is a
device that transforms chemical information, ranging from the concentration of a specific
sample component to the analysis of the total composition of a sample, into an analytically
useful signal [20] and [21]. Like many fields in science, chemical sensors have benefited from
the growing power of computers, integrated electronics, new materials, novel designs, and
processing tools. Breakthroughs over the last decade have pushed chemical sensors into new
markets, as well as to new applications within existing markets [22].

When operated, a chemical sensor performs two functions: recognition and transduction. First,
the analyte interacts in a more or less selective way with the recognition (or sensing) element,
which shows affinity for the analyte. The sensing element may be composed of distinct
molecular units called recognition receptors. Alternatively, the recognition element can be a
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material that includes certain recognition sites in its composition. Beyond this, the recognition
element can be formed of a material with no distinct recognition sites, but capable of interacting
with the analyte. In a chemical sensor, the recognition and transduction functions are inte‐
grated within the same device. An analytical device with no recognition function is not a
chemical sensor but a concentration transducer [20, 23]. The signal from a sensor is typically
electronic in nature, being a current, voltage, or impedance/conductance change caused by the
change in analyte composition or quality. While chemical sensors contain a physical transducer
and a chemically sensitive layer or recognition layer, the micro-instrument or spectrometer
sends out an energy signal, which can be thermal, electrical, or optical, and reads the change
in this same property caused by the intervening chemical and this is close to molecular
spectroscopy [24].

Biosensors have specific recognition elements of the proper chemical substances, which is
performed as an analytical devise. The biological material that serves as recognition element
is used in combination with a transducer. The transducer transforms the concentration of
substrate or product to electrical signal that is amplified and further processed. The biosensors
may utilize enzymes, antibodies, nucleic acids, organelles, plant and animal tissue, whole
organism, or organs. Biosensors that contain biological catalysts (enzymes) are called catalytic
biosensors. These types of biosensors are the most abundant, and they have their largest
application area in medicine, ecology, and environmental monitoring [25-27].

Molecularly imprinted polymers (MIPs) are synthetic materials used as recognition elements
in the design of sensors due to their higher thermal stability than biological receptor, reusa‐
bility, and selectivity compared to biological receptors. These polymeric materials bind to the
target molecules causing variations in physical parameters, such as mass, absorbance, or
refractive index depending upon the shape, charge, and functionality of the target molecule
leading to Ref. [28]. The design of these synthetic materials, which are able to mimic the
recognition processes found in nature, has become an important and active area of research
making molecular imprinting one of the strategies followed to create materials with recogni‐
tion ability comparable to the natural systems in recent years.

4. Molecularly imprinted sensors

A combination of molecularly imprinted polymers and transducers form a synergistic device.
Just as we mentioned before, MIPs have the ability to resist pH, organic environment, and ionic
strength. Therefore, their usage in sensor technology is very beneficial. Because of this, studies
including molecular imprinting are increasing year by year, which can be clearly seen in Fig.
2. Moreover, this technology is quite suitable and advantageous for non-electroactive molecule
detection. Non-electroactive species are molecules that cannot be transformed by electro‐
chemical reactions such as pesticides, drugs, etc. Therefore, they can be measured by affinity
techniques, or catalytic secondary molecule usage. Secondary molecule usage, however, has
disadvantages such as secondary molecule and target molecule interaction, solvent problems,
where template and secondary molecule may not be solved in the same solvent or harsh
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conditions can affect the reaction of target molecule, hence the measurement. Therefore,
affinity measurement is very beneficial for these kinds of molecules. Affinity measurement is
used to detect molecules depending on the affinity between target molecule and the molecule
it shows affinity. In biosensor technology DNA, antibody, protein, and receptor-based systems
are designed which could be collectively called affinity-based systems. However, these bio-
compounds are expensive, hard to immobilize onto transducers, and challenging to study on
their optimum conditions. Then, an idea came up to the scientists to avoid these disabilities
for use of MIPs on transducer surfaces. MIP-based sensors have been constructed since then
as electrochemically, optically, and piezoelectrically.

Figure 2. The number of papers referring to biosensor based on MIPs in the last 15 years (searching was performed
using “molecularly imprinted sensors” as search key terms on Google Scholar [29]).

4.1. Electrochemical MISens

The fundamentals of electrochemistry are to study the interaction between matter and
electricity (Fig. 3). This interaction gives information and provides quantitative measurement
of the analyte. Electrochemical techniques of MISens mostly measure surface properties of the
transducers, binding kinetics and polymer rearrangements. In this section we gave examples
of electrochemical MISens.

Silva and co-workers designed a novel electrochemical sensor for the determination of
trimethoprim by electropolymerization of pyrrole (PY) and molecularly imprinted polymer
(MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using
cyclic voltammetry. In their study, they used graphene (GNPs) in order to enhance the
sensitivity of the sensor by an increase in the electrochemical conductivity. The performance
of the imprinted and non-imprinted (NIP) films was investigated by electrochemical impe‐
dance spectroscopy (EIS) and the cyclic voltammetry (CV) of a ferric solution. The sensor they
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developed presented a linear range between peak current intensity and logarithm of TMP
(trimethoprim) concentration with a range from 10-6 to 10-4 M. The results were accurate (with
recoveries higher than 94%), precise (with standard deviations less than 5%), and the detection
limit was 1.3 × 10-7 M [30].

Xue et al. reported an electrochemical sensor for the amperometric detection of dopamine that
was carried out via gold nanoparticles doped MIP. In this work, dopamine (DA) was used as
the template molecule, functionalized AuNPs (F-AuNPs) as functional monomers and p-
aminobenzenethiol (p-ATP) as the cross-linker. They synthesized MIP following these steps:
An electrolyte solution containing 1 mmol L−1 DA, 10 mmol L−1 F-AuNPs, 7 mmol L−1 p-ATP,
and 0.1 mol L−1 ABS (acetate buffer solution) (pH 5.0) was kept in the dark under a nitrogenous
atmosphere at room temperature for 6 h to complete the pre-assembly between DA and F-
AuNPs through the hydrogen-bond interaction. The AuNPs-modified electrode was im‐
mersed into the electrolyte solution and the AuNPs@MIES (gold nanoparticle and MIPs
modified sensor) was prepared by the electropolymerization at a constant potential of 1.0 V
for 400 s. After that, the electrode was immersed in 0.5 mol L−1 H2SO4 and treated with a
constant potential of −0.5 V for 400 s to remove the templates and dried under nitrogen flow.
The developed sensor effectively minimized the interferences caused by ascorbic acid (AA)
and uric acid (UA). Also according to linear range (0.02 μmol L−1 to 0.54 μmol L−1) and detection
limit (with the detection limit of 7.8 nmol L−1) of reported dopamine sensor, it can be said that
the developed sensor exhibited high sensitivity and high selectivity [31].

Yu et al. designed a molecularly imprinted electrochemical sensor based on nickel nanoparti‐
cle-modified electrodes for phenobarbital determination. Reported electrochemical sensor was
developed by thermal polymerization with the use of methacrylic acid (MAA) as the functional
monomer, 2,2-azobisisobutyronitrile (AIBN) and ethylene glycol maleic rosinate (EGMRA)

Figure 3. A representative molecularly imprinted electrochemical sensor system.
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acrylate as the crosslinking agent, phenobarbitals (PBs) as the template molecule, and dimethyl
sulfoxide (DMSO) as an organic solvent. In the sensor fabrication process, 0.0464 g PB and
0.0688 g MAA were mixed in 3 mL DMSO and sonicated for 10 min. After 5 h, 1.0244 g EGMRA
and 0.0074 g AIBN were added into the mixture and sonicated for 30 min to obtain PB-
imprinted polymer solutions. After that, 10 μL of 2.0 mg mL−1 Ni nanoparticle solution dropped
on the GCE surface and then the sensor was dried at room temperature. Approximately 5 μL
of the prepared PB-imprinted polymer solution was then coated on the Ni nanoparticle-
modified GCE and vacuum dried at 75◦C for 6 h. Following the thermal polymerization, the
imprinted sensor was washed with (acetic acid) HAc/methanol (volume ratio, 3:7) for 7 min
to remove the template molecules. The electrochemical properties of the modified molecularly
imprinted and non-imprinted polymer sensors were investigated by cyclic voltammetry,
differential pulse voltammetry, electrochemical impedance spectroscopy, and chronoamper‐
ometry. Under optimized conditions, the currents were found to be proportional to the PB
concentrations within a range of 1.4 × 10−7 mol L−1 to 1.3 × 10−4 mol L−1 (r2 = 0.9976), with a
detection limit of 8.2 × 10−9 mol L−1. The developed sensor was used to determine PB in actual
fish samples [32].

Anirudhan and co-workers reported molecularly imprinted polymer-based potentiometric
sensor from the surface modified multiwalled carbon nanotube (MWCNT) for the determina‐
tion of an organochlorine pesticide that is lindane (γ-hexachlorocyclohexane). A MWCNT
modified imprinted electrochemical sensor was developed by the following these steps:
MWCNT-CH=CH2 was added to the solvent mixture of 60 mL of acetonitrile and 10 mL of
toluene in a 500 mL round-bottom flask. After that the mixture was purged with N2 gas under
a constant magnetic stirring. A mixture of γ-HCCH (γ-hexachlorocyclohexane) and MAA was
prepared and dissolved in 35 mL of N,N-dimethylformamide. It was stirred for 30 min to get
a compound of template molecule and functional monomer. To that mixture, the cross linker
ethylene glycol dimethacrylate (EGDMA) and initiator AIBN were also added; the reaction
was allowed to proceed for 16 h at 70°C. Ethanol was used to remove template molecules. A
MWCNT was grafted using glycidyl methacrylate (GMA). The reaction of MWCNT with GMA
produces MWCNT-g-GMA and the epoxide ring present in the GMA upon reaction with
allylamine produces the vinylated MWCNT (MWCNT-CH=CH2). MWCNT-based imprinted
polymer (MWCNT-MIP) was synthesized by means of methacrylic acid (MAA) as the
monomer, EGDMA as the cross linker, α,α′ azobisisobutyronitrile (AIBN) as the initiator, and
γ-HCCH, an organochlorine pesticide molecule, as the template. The properties of the
modified molecularly imprinted and non-imprinted polymer sensors were investigated by
linear sweep voltagrams, FTIR, XRD, Raman spectra, and TEM analyses. This developed
sensor presented a linear range of 10-10–10-3 M and the detection limit of 10-10 M [33].

Patra and co-workers developed a molecular imprinting-based sensor for medullary thyroid
carcinoma marker. The fabrication of the sensor was made by the following steps. Accordingly,
bipyridyl (0.2 mmol) and CuCl2 (0.1 mmol) were dissolved in 2 mL DMSO (dimethyl sulfoxide)
to obtain a solution of Cu(II)-complex. Subsequently, this complex was mixed with a ZnO
nanostructure modified monomer (10 mg, 1.0 mL DMSO), template (calcitonin, 2.0 mg, 1.0 mL
DMSO), and EGDMA (ethylene glycol dimethacrylate) (1 mmol, 180mL) in the presence of
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ascorbic acid (0.1 mmol) as the reducing agent. A sharp colour change from light blue to green
indicated the in situ reduction of Cu(II)-complex to Cu(I)-complex that catalysed the chain
propagation in the presence of the ethyl-2-bromo isobutyrate (2 mmol, 300mL) as initiator. The
whole mixture was purged with N2 gas for 10 min. A drop of this mixture (5.0μL) was spread
over the protruding tip of the functionalized PGE and kept in a pre-heated oven for half an
hour at 45˚C, resulting in calcitonin adduct polymer modified electrochemical sensor. The
morphologies and properties of the developed sensor were characterized by scanning electron
microscopy, cyclic voltammetry, difference pulse voltammetry, and chronocoulometry. Linear
responses of the imprinted sensor to calcitonin were observed for concentrations ranging from
9.99 ng L-1 to 7.919 mg L-1 and the detection limit was as low as 3.09± 0.01 ng L-1. The reported
imprinted electrochemical sensor was used to determine the concentration of calcitonin in the
human blood serum samples [34].

Karimian and co-workers reported an on/off-switchable molecularly imprinted polymer (MIP)
affinity sensor for folic acid using copolymerization of poly(N-isopropylacrylamide) (PNI‐
PAAm) with a cross-linker (N,N'-methylenebisacrylamide) (MBA) and additional monomer
(o-phenylenediamine (o-PD)), in the presence of folic acid as template. Polymerization was
carried out following these steps: The folic acid molecularly imprinted film was prepared by
the electrochemical polymerization of PNIPAAm and o-PD on the surface of gold electrode,
using cyclic voltammetry in the potential range between 0 and 1.1 V (versus Ag/AgCl), for 20
cycles at a scanning rate of 50 mV s−1. The polymerization mixture consisted of an aqueous
solution containing 10 mM o-PD, 2.5 mM PNIPAAm, 2.5 mM MBA, and 0.2 mM folic acid. For
the preparation of the polymers, the components were dissolved in acetate buffer (0.5 M, pH
5.8). For the washing procedure, the polymer film was rinsed in methanol-acetic acid (9:1,
v/v) solution for 20 min at 50°C, followed by subsequent washing with methanol to remove
the template entrapped in the polymeric matrix. The electrochemical behaviour of the thin film
(MIP) was characterized using differential pulse voltammetry and cyclic voltammetry.
Reported sensor response shows a limit of detection of 0.9 μM with linear range from 1.0 μM
to 200 μM [35].

Wang et al. have developed an electrochemical sensor for the determination of aflatoxin B1

based on MWCNT-supported Au/Pt bimetallic nanoparticles. This study involves a molecu‐
larly imprinted sensor technology, which was a modification of glassy carbon electrode (GCE)
by o-phenylenediamine (OPD), electrochemically. Carbon nanotubes were used as support
material and supported by Au/Pt bimetallic nanoparticles. Moreover, this layer formation was
monitored by cyclic voltammetry (CV). Amine groups on OPD were the donor of hydrogen
to form hydrogen bonds between AFB1’s oxygen. After MWCNT coating, Au/PtNPs were
deposited onto MWCNTs-GCE. DP and CV measurements were carried out by using
Fe(CN)6 redox solution. Template molecule was removed by using HCl solution pH=2 for 9
min. A linear relationship between the sensor response signal and the logarithm of AFB1
concentrations ranging from 1×10−10 to 1×10−5 mol L−1 was obtained with a detection limit of 30
pikomol L−1. It was applied to detect AFB1 in hogwash oil successfully [1]. As you can
understand, the main objective of this study is based on examination of the surface character‐
istics of the modified electrode. Ferricyanide oxidation/reduction peaks altered, when selective
cavities of OPD/MWCNT-Au/Pt layer bind the AFB1 [36].
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Uygun and Dilgin developed a novel impedimetric sensor based on molecularly imprinted
polypyrrole (PPy) modified pencil graphite electrode (PGE) for trace level determination of
chlorpyrifos (CPF), which is a pesticide. In this study, they used PGE as transducer, and PGE
was modified by pyrrole electrochemically formed polymers on electrode by cyclic voltam‐
metry, and CPF was used in polymerization process simultaneously. CPF was used as template
and removed after polymerization by using pH=2 HCl solution to remove H bonds between
PPy and CPF. The whole surface polymerization steps and measurement steps were examined
by electrochemical impedance spectroscopy, which is an electrochemical electron resistance-
based surface characterization technique, by using ferri/ferrocyanide redox probes. Under
experimental conditions, the proposed impedimetric sensor has a linear response range from
20 to 300 μg L−1 CPF with a detection limit of 4.5 μg L−1 (based on 3sb). Furthermore, the
fabricated sensor was successfully applied to determine CPF in CPF-added artificial corn
leaves, tap water, and soil samples. Two types of organophosphates and two metabolite of
CPF that chlorpyrifos oxon (CPFO) and 3,5,6-trichloro-2-pyridinol (TPD) and 2,4-dichloro‐
phenoxyacetic acid (2,4D) which is a common systemic pesticide/herbicide were selected for
the control experiments [13].

Zhong et al.  have developed a pyrrole–phenyl boronic acid: a novel monomer for dopa‐
mine (DA) recognition and detection based on imprinted electrochemical sensor. They used
a new monomer for MIP by synthesizing pyrrole-phenyl boronic acid. In this study GCE
used  as  a  transducer.  Dopamine  was  used  as  template  and  polymerization  was  per‐
formed by CV. DA was extracted by H2SO4 and applied electrical force 0–0.15 V to remove
DA from imprinted polymer cavities. Differential pulse voltammetry (DPV) was used as
measurement method, a linear ranging from 5.0x10-8 to 1.0x10-5 mol L-1 for the detection of
DA was obtained with a detection limit of 3.3 × 10-8 mol L-1 (S/N=3). For the recovery tests,
the samples were spiked with 4.0 × 10-6 mol L-1, 6.0 × 10-6 mol L-1, and 8.0 × 10-6 mol L-1 DA
varied from 91.5% to 105.2% [37].

For another study of electrochemical sensor, Wang et al. developed a sensor technology that
is an ultrasensitive molecularly imprinted electrochemical sensor based on magnetic graphene
oxide/β-cyclodextrin (CD)/Au nanoparticle composites for chrysoidine, which is an azoic dye.
As you can read, a magnetic graphene oxide (MGO), cyclodextrin, which has hydrophobic and
hydrophilic residues, and gold nanoparticles as electrical conductive material were used. GCE
was used as the transducer for measurements. MGO/CD@AuNPs modified GCE was put in a
solution, which contains pyrrole and chrysoidine together to form an imprinted material by
employing CV method. After polymerization, the template molecule was removed from the
surface by soaking modified GCE in ethanol. The surface of both non-imprinted and imprinted
sensor system was characterized by SEM (scanning electron microscopy), EIS, and CV
measurements. The measurement system was based on the differential pulse voltammetry
(DPV) to quantify chrysoidine. The calibration curve data was between 5.0 × 10−8 and 5.0 ×
10−6mol L-1. The detection limit was estimated to be 1.7 × 10−8 mol L-1 at a signal-to-noise ratio
of 3σ (where σ is the standard deviation of the blank, n = 6) [38].

Yola et al. reported a study where a molecularly imprinted electrochemical biosensor based
on Fe@Au nanoparticles involved in 2-amino ethanethiol (2-AET) functionalized multiwalled
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carbon nanotubes was developed for the sensitive determination of cefixime (CEF) in human
plasma. In this study, they modified a GCE by p-nitro phenyl diazonium tetra fluoro borate
(p-NPDEFB) salt in MeCN with TBATFB (Tetrabutylammonium tetrafluoroborate) using CV,
reduced the formed nitro groups by applying negative voltage, activated MWCNT tubes that
were attached onto the modified electrode surface, and 2-AET and Fe@Au layers were formed
by self-assembling, respectively. After electrode surface modification, the modified electrode
was soaked in a solution, which contains pyrrole and CEF, to form CEF imprinted layers by
using CV. NaCl solution was used as a desorption agent of CEF. For the measurement, square
wave voltammograms were used as a function of concentration. Limit of detection(LOD) was
calculated as 2.2 × 10-11M and the calibration curve was created from 0.1 nM to 10nM [39].
Oxygen groups on the CEF and N groups on the PPy were the fundamentals of attraction of
specified cavities.

4.2. Surface plasmon resonance MISens

Surface plasmons are formed by an electromagnetic wave, which propagate along the surface
of a thin metal layer. According to Abbas et al., surface plasmon resonance (SPR) is a collective
oscillation of conduction electrons, which present at the interface of metal-dielectric media.
SPR have three features, important in terms of any new sensor: firstly the enhancement of the
electric field, secondly the propagation length, and the lastly the penetration depth [40].

The SPR phenomenon was recognized in 1960s after Otto and Kretschmann had invented
surface plasma with invisible light. The SPR sensor technique has been used in very different
areas for immunosensors, the determination of interaction between immunoglobulin G (IgG)
protein and antigen, monitoring of the interactions between drugs and biological molecules,
and so on [41]. There are plenty of planar configurations of SPR biosensors. Among these, in
general, Otto configuration is used. Generally, SPR sensor is formed of six parts, including a
light source, a detector, a transduction surface, a prism, biomolecule, and a flow system.

A typical SPR system (immunoassay technique is described), as mentioned above and can be
seen in Fig. 4., uses microfluids to pass controlled amounts of analyte across the sensor surface
to which the antibody is immobilized. With reflecting a beam of polarized light to the back
surface of the metal film, the analysis is made through a prism. After the beam of light hits the
noble metal surface, not all the light is reflected. Some of the energy of photons is absorbed by
the metal and causes electron oscillations at the interface of two materials. When molecules
are bound to the sensor surface, the refractive index (RI) changes. RI affects also reflected light
intensity, angle, and wavelength. It is measured as resonance units (RU). In general, 1 RU is
equal to 1 pg mm-2 of analyte concentration [41].

As can be seen from Fig. 4, there are two mediums and an interface. One medium is optically
denser. When light passing from the optically denser medium is exposed to the light-thinning
medium, at the interface of two mediums, total reflection will occur, if an appropriate range
of incident angles are inherent in the medium, change of resonance amplitude occurs, with a
penetration depth. For example, if antibody was hold on sensor chip and was let to interact
with antigen solution, the refractive index (RI) of the metal film surface would change. The
change of SPR resonance angle would change with a change of refractive index. The change
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of refractive index will be proportional to mass change, due to the absorption of antigens to
antibodies. This means that the mass change of biological macromolecules causes refractive
index change with SPR resonance angle change [42].

Optical sensor research has very advantageous features that it allows label-free analysis, it is
simple to construct, and has the ease of use – inexpensive and highly sensitive [41].

Carlucci et al. made a study to determine Vitamin D (25OHD) with a novel optical and
electrochemical-based biosensor. For SPR measurements, first, gold SPR disks were cleaned
with fresh piranha solution (3:1 H2SO4 98% : H2O2 30%). Then, a self-assembled monolayer
with 11-mercaptoundecanoic acid (MUA) was formed on gold surface. The carboxyl functions
on the SAM layer were activated with a mixture of N-(3-dimethylaminopropyl)-N’-ethylcar‐
bodiimide (EDC) and N-hydroxysuccinimide (NHS). After removing the mixture, making
later steps, a LOD of 2 μg mL-1 but when vitamin D was modified with gold nanoparticles
(AuNPs) a lower LOD of 1 μg mL-1 was reached. With an electrochemical biosensor, which
was based on the reaction of vitamin D with 4-ferrocenylmethyl-1,2,4-triazoline-3,5-dione
(FMTAD), vitamin D was determined with a LOD of 10 ng mL-1 [44].

In  a  study  of  Choi  et  al.,  Zearalenone,  found  in  a  number  of  cereal  crops,  was  deter‐
mined via surface plasmon resonance sensor. Zearalenone is a mycoestrogen, which acts
like  an  endocrine  disruptor.  For  determination,  pyrrole  was  electropolymerized  in  the
presence of Zearalenone. Electropolymerization was made with a three-electrode electro‐
chemical system. Au film was used as the working electrode, Ag/AgCl as reference, and
Pt grid as  counter.  After  that,  PPy-coated Au chips were mounted on the SPR cell  and
change  of  incident  angle  of  laser  was  measured.  According  to  the  results,  the  sensor
exhibited a linear response in the range of 0.3–3000 ng mL-1 with a LOD of 0.3 ng g-1. For
selectivity  test,  structural  analogues  of  Zearalenone  were  used  (α-Zearalenone,  Zearale‐

Figure 4. Schematic representation of SPR.
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none, β-Zearalenone). Among these compounds, the sensor showed the highest selectivi‐
ty to Zearalenone, due to the strong binding capacity [45].

Yao et al. made a SPR sensor to determine pesticide, which has high toxicity and binds
irreversibly to acetylcholinesterase (AChE). Because of this, it causes serious harm in the
respiratory tract, human nervous system, and cardiovascular system. To detect and enhance
detection sensitivity, magnetic molecularly imprinted nanoparticles (NPs) were used. Mag‐
netic NPs were prepared through the self-polymerization of dopamine on the Fe3O4 NP surface
in the presence of template, chlorpyrifos (CPF). Using these NPs, pesticide was detected in a
range from 0.001 to 10 μM with a detection limit of 0.76 nM [46].

Like other examples, the SPR technique is also used for the detection of another organic
molecule, domoic acid (DA), which is a neurotoxic amino acid. This toxin accumulates in
mussels  (such as  Mytilus  edulis),  crabs  or  anchovies  and when DA-contaminated shell‐
fish is taken,) called an intoxication syndrome known as amnesic shellfish poisoning (ASP)
can  occur.  The  typical  symptoms  of  ASP  are  vomiting,  cramps,  and  diarrhoea  and
neurological  symptoms  including  severe  headache,  seizures,  and  either  temporary  or
permanent memory loss. Lotierzo et al. prepared a MIP film by direct photo-grafting onto
a gold chip. Firstly, the gold surface was functionalized with a self-assembled monolayer
of  2-mercaptoethylamine  and  subsequent  carbodiimide.  This  provided  covalent  attach‐
ment of the photo initiator 4,4’-azobis(cyanovaleric acid). After proper steps, DA contain‐
ing polymerization solution was deposited on the gold surface, and for polymerization the
chip was irradiated with ultraviolet light. Non-printed control chips were prepared with
the  same  procedure  but  without  the  template,  DA.  According  to  the  results,  DA  was
detected in a range of 2-3300 μg L-1.  After a number of tests,  molecularly imprinted DA
sensor protected its stability until 30 (±5) analysis [47].

Molecular imprinting based surface plasmon resonance technology can be applied also for
enzyme detection. Matsunaga et al. prepared molecularly imprinted polymers for lysozyme
with acrylic acid (AAc) as the functional monomer, and N,N’-methylenebisacrylamide
(MBAA) as the cross-linker. For preparation of SPR sensor, firstly an Au-coated SPR sensor
chip was immersed in N,N’-bis(acryloyl)cystamine to bear vinyl groups on Au surface. A
polymerization mixture (including template, lysozyme) was applied on Au and polymerized
by radical polymerization. For polymerization, the vinyl group grafted SPR sensor chip was
poured on glass, on which the polymerization mixture had been poured. After that another
glass plate and a weight were placed on the sensor. A non-imprinted polymer thin film was
prepared with the same procedure but without adding template. After proper steps, SPR
measurements were made. To examine the effect of salt concentration on the rebinding of
lysozyme, imprinted sensors were prepared in various concentrations of NaCl (0, 20, 40 mM).
It was seen that the bound amounts of proteins were decreased with the increasing concen‐
trations of NaCl in the rebinding buffer. From this result, it can be thought that electrostatic
interactions took place between proteins and acrylic acid residues. With examples of different
proteins, it was seen that binding changed upon isoelectric points of amino acid residues. For
example at pH 7.4, lysozyme (pI:11), Cytochrome C (pI:10), and RNAse (ribonucleotidase) (pI:
9,5) were positively charged and strongly bound to the films via acrylic acid residues. At the
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same pH value, myoglobin (pI:7) and lactalbumin (pI:4,5) were negatively charged and that is
why they showed almost no binding because of this electrostatic repulsion. This study is also
an example for selective protein sensors with SPR sensing technique [48].

Enterotoxins can be detected with SPR technique just in the same way as with quartz crystal
microbalance (QCM) sensors. Homola et al. developed a new SPR sensor for Staphylococcal
enterotoxin B (SEB), which is a soluble protein, secreted by Staphylococcus aureus. According to
the results SEB could be detected at low concentrations, such as 5.0 μg L-1, in pure samples,
directly. But, by using a sandwich assay, this limit has been decreased to 0.5 μg L-1 in both pure
samples and in milk [49].

Food allergens can be detected via SPR technology. Yman et al. detected peanut allergen
protein with optical sensor with both direct and sandwich immunoassays. By these methods
they detected milk, hazelnut, sesam, egg, and peanut proteins in food samples. They used
polyclonal antibodies to detect these allergens. According to the results, allergens were
detected in the range of 1.0–12.5 μg g-1 in food samples [50].

As it can be seen from these examples, SPR sensing technology can be used in a variety of areas
changing from protein detection to environmental pollutants with a low detection range, faster
attainment of results, and selectivity.

4.3. Quartz Crystal Microbalance (QCM) MISens

The QCM consists of a thin piezoelectric plate, which has acoustic resonances in the MHz
range. When the crystal comes into contact with the sample, the resonance properties change.
QCM technology was first recognized by Sauerbrey in 1959. He indicated usefulness of the
method for measuring the characteristic frequency of an oscillator circuit. The frequency
changes were determined by using a piezoelectric crystal and as can be seen in Fig. 5, the
oscillating frequency of the crystal decreases with the adsorption of foreign substances on the
surface.

Figure 5. Frequency change on QCM electrode, while interacting with sample.
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Because of the sensitive nature of quartz crystal, this method was described as a very precise
method. The results of this work are embodied in the equation. According to the Sauerbrey
equation, the mass change per unit area at the QCM electrode surface and frequency changes
are proportional.

The observed change in oscillation frequency of the crystal:

f =–Cf× mD D (1)

where

∆f = the observed frequency change (Hz)

∆m= the change in mass per unit area (g/cm2)

Cf = the sensitivity factor for the crystal (56.6 Hz μg-1 cm2 for a 5 MHz AT-cut quartz crystal at
room temperature)

As mentioned above, the Sauerbrey equation relies on a linear sensitivity factor, Cf, which is
a fundamental property of the QCM crystal. The method was also utilized for the direct
weighed of a mass [51]. QCM, which is used for the biosensor experiment, is consisted of
piezoelectric crystal, oscillator, and frequency counter(Fig 6.).

The piezoelectric quartz crystal is driven by a low-frequency transistor oscillator. The fre‐
quency of the vibrating crystal is monitored by the frequency counter. The crystal, which is
mounted on its holder, is connected to the oscillator circuit. The frequency counter is connected
to the oscillatory device. By frequency counter, frequency changes are recorded after each step
in coating or in interaction with the sample.

Figure 6. The schematic diagram of experimental piezoelectric sensor.
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The advantages of the technique are surface specificity, monolayer sensitivity, and high
acoustic contrast for dilute adsorbents [52]. Besides QCM does not require any labelling, has
low barriers of entry, ease-of-use, low cost, and speed to result [54].

The theoretical detection limit of oscillating quartz crystals is about 10–12 g, which means a
detection in pictogram range. With this low detection limit, the QCM can be used in trace
analysis, immunosensors, DNA biosensors, and drug analysis. Piezoelectric crystals can also
be used in microbalances for thin film technology [53].

Because of expense, sensitivity, and short shelf life of biological materials, molecularly
imprinted polymers (MIPs) are used on sensor surface. In addition in QCM analysis, MIPs are
used to achieve a specific binding site and a high affinity. MIPs are advantageous because of
their features, like high similarity to natural receptors, physicochemical, mechanic, thermal
stability, simple preparation, and easy adaptation of application [53].

The crystal frequency changes when the interaction occurs between imprinted polymer and
template solution. It can be seen that before and after the interaction crystal frequency
decreases due to the uptake of template by the imprinted polymer. Liao et al. made a study
for stereospecific L-histidine sensor with imprinted polyacrylamide membranes. According
to the study when the crystals were interacted with L-histidine, the net frequency shifts of the
crystal modified with L-histidine is found much more than the shifts, which belongs to D-
histidine. It can be concluded that the L-histidine imprinted membrane showed better
selectivity to L-histidine. Besides specificity, selectivity is also an important feature of im‐
printed polymers. In this study, L-tyrosine and L-arginine were tested with the L-histidine
imprinted membrane and DL-phenylalanine was tested with D-histidine imprinted mem‐
brane. Under the same reaction conditions (time, concentration, etc.), the imprinted membrane
showed much more affinity to the same molecule, which was used as template because of
specific cavities, formed in the polymer. From these results, it can be concluded that this
imprinted piezoelectric sensor can be used for the chiral separation of histidine [55].

In another study, Liu et al. reported a novel method for the separation of D- and L-tryptophan
using molecularly imprinted quartz crystal microbalance (QCM) sensor. They fabricated the
sensor by using molecularly imprinted polymers, which was prepared by using acrylamide
(AM) as monomer and 1,1,1-trimethylolpropane trimethacrylate (TRIM) as cross-linker in
different molar ratios. With the fabricated optimum imprinted polymer, the binding of
template L-tryptophan was about four-fold to three-fold larger than that obtained with the D-
tryptophan enantiomer. It was calculated that the enantiomeric selectivity coefficient of the
fabricated molecularly imprinted sensor was 6.4. Moreover, it was observed that the binding
of L- and D-tryptophan enantiomers on the non-imprinted polymer (NIP) was almost the same.
This indicated the sensitivity and enantioselectivity of molecularly imprinted polymer [52].

It is also possible to make mass determinations in protein mixtures via MIP-QCM sensor. Lin
et al. prepared an albumin imprinted copolymer of 3-dimethylaminopropyl methacrylamide
(DMAPMA) and different acrylate series cross-linking agents. Gold surface was used and four
kinds of Au-coated crystals were prepared. One of them was bare and the other three were
prepared with different functional groups bonded to the surface of the sensor. As functional
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groups, they used –NH2, –OH, –COOH on Au surface. According to the results, the greatest
adsorption capacity belonged to Au-OH electrode and to a lesser extent, to bare Au electrode.
However, according to the time effectiveness to obtain stability and according to the adsorbed
albumin amount, Au-NH2 and Au-OH were the optimal electrodes. Between NIP and MIP
electrodes prepared, the molecularly imprinted electrode showed more efficient albumin
determination than non-imprinted electrode with the time taken to receive a steady state
frequency and adsorbed amount of albumin. In addition to this, the prepared albumin-
imprinted QCM sensor showed largest adsorption of albumin among similar molecules like
cytochrome c, lysozyme, and myoglobin, whose molecular sizes were far smaller than
albumin. In the range between 60 and 150 ppm, albumin was obtained. With results of this
study, it can be indicated that the presence of albumin-specific cavities in the prepared
electrode gave a greater adsorption and a smaller diffusion resistance, which makes response
time shorter [53].

Sun et al. used piezoelectric quartz crystal for sensing taste-causing molecules by using
molecular imprinting technology. A PQC (piezoelectric quartz crystal) sensor array, which is
MIP coated, is developed to quickly and more sensitively detect taste-causing compounds in
beverage. They studied quinine, which is a bitter-taste causing compound, and usually
flavoured with saccharine to reduce its unpleasant bitter taste. Because of this they used
quinine and saccharine as template molecules. Methacrylic acid (MAA) is used as a monomer.
The MIP coated PQC sensor array was studied under flow injection analysis and results were
compared with the results of volunteer human taste panellists. With the satisfactory repeata‐
bility, and with a high sensitivity to detect the change in bitter taste in tonic water with much
less suppressing effect in the presence of saccharine, the developed sensor was very compre‐
hensive. According to results, the quinine-MIP modified PQC sensor displayed a linear
working range for quinine from 10 mg L-1 to 1080 mg L-1 and for saccharine from 51 mg L-1 to
3420 mg L-1. The calculated limit of detection is 2.04 mg/L for quinine and 32.8 mg L-1 for
saccharine [56].

MIP-PQC is used not only for taste application but also to distinguish different taste causing
compounds [57] and to detect organic pollutants with taste implication such as organic/
inorganic acids and amines in drinking water [58].

Due to the use of QCM in the gas phase, it has application as odour sensors. Ji et al. used 2-
methylisoborneol (MIB) and geosmin (GEO) as off-flavour compounds which cause odour
problems in drinking water. They are produced by some microorganisms. These odour
chemicals were analysed with GC-MS or Enzyme-Linked Immunosorbent Assay(ELISA) and
detection limits were ca. 1 ng/L and 1 μg/L, respectively. But these methods need a high budget
in terms of chemicals and equipment. But with the piezoelectric sensor, the analysis could be
done at a lower cost and more sensitively. In their study, they made pre-treatment with nylon
layers to QCM electrode. After that, they used MIB and GEO as template molecules and
imprinted polymers are prepared with methacrylic acid as functional monomer, ethylene
glycol dimethacrylate as cross-linker, and 2,2’-azobis (2,4-dimethyl)valeronitrile as initiator.
They were all dissolved in hexane, used as porogen, under nitrogenous atmosphere. Five
microliters of this solution were pipetted onto prepared QCM and polymerized at 40°C for 48
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h. Non-imprinted polymers were synthesized under the same conditions except the use of the
template. The prepared QCMs were interacted with template molecules in a thermostat
chamber in a stream of nitrogen flowing. After interaction, imprinted sensors showed an
average frequency change of 2864 Hz ± 6.26 % (n=3) and NIP-sensors 3014 Hz ± 5.14%. It
indicates a similar amount of substrate immobilization on sensors (ca. 3 μg). It was observed
that the frequency change after MIP application to the nylon sublayer was about 50% higher
than after application of the MIP to a bare QCM. To analyse selectivity except MIB and GEO,
some other odorants like terpinol, β-ionone, and citronellol were also interacted with MIB-
imprinted sensor and it was found that the highest frequency change was observed at MIB-
sensor after interaction with MIB. In spite of their previous sensor with an LOD of 200 ppb,
these synthesized sensors could detect above 10 ppb. This means approximately 20-fold more
sensitive detection capacity [59].

QCM sensor could be used for influenza detection. Either influenza virus can be detected or
influenza virus binding capabilities can be analysed. Diltemiz et al. have developed a sensor
for recognition of the hemagglutinin (HA) protein, which occurs by influenza virus with
infection and causes hemagglutination. For this, they used 4-aminophenyl boronic acid (4-
APBA) as a new ligand for binding of sialic acid (SA), which has a valuable role in the binding
of HA through boronic acid sugar interaction. QCM sensor surface was modified with thiol
groups and then 4-aminophenyl boronic acid and sialic acid were immobilized on sensor
surfaces, respectively. To do these, first QCM electrodes were cleaned with alkaline piranha
solution (1:1:5 deionized water : H2O2: NH3 v/v). After cleaning, electrode surfaces were
modified with 11-mercaptoundecanoic (MUA) acid. By using MUA, carboxyl fictionalization
were achieved. After that, QCM electrodes were modified with imide groups by using N-(3-
dimethylaminopropyl)-N’-ethylcarbodiimide and N-hydroxysuccinimide for immobilization
of 4-APBA and SA. After interaction with the samples, the binding capacity and limit of
detection of QCM sensors were found to be 4.7×10-2 μM and 0.26 μM ml-1, respectively [60].

As mentioned above, QCM finds lots of application areas in terms of low cost, speed to result,
and low detection limit. Because of these advantages, studies made with QCM sensor are
increasing day by day.

5. Comparison of MI-sensors

In this section we compared MISens by showing Table 1 to describe polymer type, measure‐
ment type, LOD, and detection range.

Sensor Type Modification Target Molecule Detection Range LOD Reference

Impedimetric PGE/PPy CPF 20 to 300 μg L−1 4.5 ug L-1 13

Impedimetric/
voltammetric

GCE/PPy Trimethoprim 10-6–10-4 M 0.13 μM 30
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Sensor Type Modification Target Molecule Detection Range LOD Reference

Amperometric AuE/
AuNPs@MIES

Dopamine 7.8 nM 31

CV/DPV/
Amperometric

GCE/Ni/MIP Phenobarbital 0.14uM–1.3mM 8.2 nM 32

Potentiometric
detection

CuE/MWCNT-
MIP

γ-
hexachlorocycloh
exane

10-9–10-3 M 10-10 M 33

CV/DPV/
chronocoulometry

PGE/MAA Calcitonin 9.99ngL-1–7.919mgL-1 3.09 ng L-1 34

DPV/CV AuE/
PNIPAAm/o-PD

Folic Acid 1–200 μM 0.9 μM 35

DPV/CV GCE/
MWCNT/Au-
Pt/oPD

Aflatoxin B1 1×10−10 – 1×10−5 mol L−1 30 pmol L−1 36

DPV GCE/
AuNPs/oCD/MG
O

Chrysodine 5.0 × 10−8 –
5.0 × 10−6 mol L-1

1.7 × 10-8 mol L-1 38

SWV GCE/MWCNT/p-
NPDEFB/2-AET-
Fe@Au

Cefexime 0.1 nM–10nM 2.2× 10-11M 39

Table 1. Modification, measurement type, LOD, and detection range

Sensor Type Modification Target Molecule Detection Range LOD Reference

Optical GOx/PtOEP Glucose 2–120 mg dL-1 1.5±0.2 mg dL-1 44

Optical Au/MUA Vitamin D 0.05–1.0 μg mL-1 0.045 μg mL-1 45

Optical Au/Pyrrole Zearalenone 0.3–3000 ng mL-1 0.3 ng g-1 46

Optical Au/MUA Chlorpyrifos
(CPF)

0.001–10 μM 0.76 nM 47

Piezoelectric Au electrode/Acrylamide L-Tryptophan 1–4 mM 8.8 μM 53

Piezoelectric Au electrode/Methacrylic
Acid

Quinine
Saccharine

10–1080 mg L-1

51–3420 mg L-1

2,04 mg L-1

32.8 mg L-1

56

PGE: Pencil Graphite Electrode, PPy: Polypyrrole, CPF: Chlorpyrifos, GCE: Glassy Carbon Electrode, AuE: Gold
Electrode, MIES: MIP modified electrode, Ni: Nickel, MWCNT: Multi-Walled Carbon Nanotube, MAA: Methacrylic Acid,
o-PD: o-Phenylenediamine, o-CD: o-Cyclodextrin, MGO: Magnetic graphene oxide, AET: Aminoethenethiol, MUA:
Mercaptoundecanoicacid

Table 2. Modification type, measurement type, LOD, and detection range
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6. Conclusion

As a result of these examples and studies, molecularly imprinted sensor systems have been
developing, and they will continue to be developed. Just as we mentioned above, biological
receptors are restricted to detect analyte by environmental parameters. Therefore, the combi‐
nation of molecular imprinting technology and the chemical sensor technologies useful to be
employed as bio-mimicking measurement system, and these combinations are easy to
construct as well as they have a low cost causing them to become more prominent to focus on.

Acknowledgements

We, the authors of this chapter, would like to thank PhD. Elif KARADADAŞ, who studies in
Ege University Medical Biochemistry Department. Thanks to her efforts, comments, and
revisions in the publishing process.

Author details

Zihni Onur Uygun1*, Hilmiye Deniz Ertuğrul Uygun2, Nihal Ermiş3 and Erhan Canbay1

*Address all correspondence to: onur_uygun@hotmail.com

1 Ege University, Faculty of Medicine, Medical Biochemistry Department, Bornova, İzmir,
Turkey

2 Dokuz Eylül University, Faculty of Science, Chemistry Department, Buca, İzmir, Turkey”,
Turkey

3 Ondokuz Mayıs University, Faculty of Science and Arts, Chemistry Department, Kurupe‐
lit, İzmir, Tu rkey

References

[1] Rodriguez-Mozaz S, Lopez de Alda MJ, Marco MP, Barcelo D. Biosensors for envi‐
ronmental monitoring: a global perspective. Talanta. 2005; 65: 291–297.

[2] Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent ad‐
vances in threat agent detection and medicine. Chem Soc Rev. 2014; 42(22): 8733-68.

[3] Liu SQ, Zheng ZZ, Li XY. Advances in pesticide biosensors: current status, challeng‐
es, and future perspectives. Anal Bioanal Chem. 2013; 405(1): 63-90.

Molecularly Imprinted Sensors — New Sensing Technologies
http://dx.doi.org/10.5772/60781

103



[4] Yadav R, Dwivedi S, Kumar S, Chaudhury A. Trends and perspectives of biosensors
for food and environmental virology. Food Environ Virol. 2010; 2(2): 53-63.

[5] Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, et al. Re‐
cent advances in recognition elements of food and environmental biosensors: A re‐
view. Biosens Bioelectron. 2010 Dec 15; 26(4): 1178-94.

[6] Thakur MS, Ragavan KV. Biosensors in food processing. J Food Sci Tech Mys. 2013;
50(4): 625-41.

[7] Park JW, Lee C, Jang J. High-performance field-effect transistor-type glucose biosen‐
sor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene
sheet transducer. Sensor Actuat B-Chem. 2015 Mar 1; 208: 532-7.

[8] Banerjee S, Sarkar P, Turner APF. Amperometric biosensor based on Prussian Blue
nanoparticle-modified screen-printed electrode for estimation of glucose-6-phos‐
phate. Anal Biochem. 2013 Aug 15; 439(2): 194-200.

[9] Krieg AK, Gauglitz G. An optical sensor for the detection of human pancreatic lipase.
Sensor Actuat B-Chem. 2014 Nov; 203: 663-9.

[10] Ali MA, Singh N, Srivastava S, Agrawal VV, John R, Onoda M, et al. Chitosan-modi‐
fied carbon nanotubes-based platform for low-density lipoprotein detection. Appl Bi‐
ochem Biotech. 2014 Oct; 174(3): 926-35.

[11] Massad-Ivanir N, Segal E. Porous silicon for bacteria detection. Woodh Publ Ser Bi‐
om. 2014; (68): 286-303.

[12] Li RY, Zhang JJ, Wang ZP, Li ZJ, Liu JK, Gu ZG, et al. Novel graphene-gold nanohy‐
brid with excellent electrocatalytic performance for the electrochemical detection of
glucose. Sensor Actuat B-Chem. 2015 Mar 1; 208: 421-8.

[13] Uygun ZO, Dilgin Y. A novel impedimetric sensor based on molecularly imprinted
polypyrrole modified pencil graphite electrode for trace level determination of chlor‐
pyrifos. Sensor Actuat B-Chem. 2013 Nov; 188: 78-84.

[14] Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K. Aptamer
biosensor for selective and rapid determination of insulin. Anal Lett. 2015 Mar 4;
48(4): 672-81.

[15] Zhu GC, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion as‐
says. Analyst. 2014 Dec 21; 139(24): 6326-42.

[16] De Avila BEF, Escamilla-Gomez V, Campuzano S, Pedrero M, Salvador JP, Marco
MP, et al. Ultrasensitive amperometric magnetoimmunosensor for human C-reactive
protein quantification in serum. Sensor Actuat B-Chem. 2013 Nov; 188: 212-20.

[17] Date Y, Aota A, Sasaki K, Namiki Y, Matsumoto N, Watanabe Y, et al. Label-free im‐
pedimetric immunoassay for trace levels of polychlorinated biphenyls in insulating
oil. Anal Chem. 2014 Mar 18; 86(6): 2989-96.

Biosensors - Micro and Nanoscale Applications104



[18] Baykov IK, Matveev AL, Stronin OV, Ryzhikov AB, Matveev LE, Kasakin MF, et al.
A protective chimeric antibody to tick-borne encephalitis virus. Vaccine. 2014 Jun 17;
32(29): 3589-94.

[19] Mosbach K. The promise of molecular imprinting. Sci Am. 2006 Oct; 295(4): 86-91.

[20] Hulanicki A, Geab S, Ingman F. Chemical sensors: definitions and classification. Pure
Appl. Chem. 1991; (63): 1247–50.

[21] Cammann K, Ross B, Katerkamp A, Reinbold J, Grundig B, Renneberg R. Chemical
and Biochemical Sensors, Ullmann’s Encyclopedia of Industrial Chemistry Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, 109–221.

[22] Praveen K.S., Eric L.B., Rangachary M., Fernando H.G. Chemical sensors for environ‐
mental monitoring and homeland security. The Electrochemical Society. 2010; 35-40.

[23] Florinel-Gabriel B. Chemical Sensors and Biosensors; Fundamantels and Applica‐
tions, Wiley, 2012.

[24] Joseph RS, William RP, Sheng Y. Sensors, Chemical sensors, electrochemical sensors,
and ECS. Journal of the Electrochemical Society. 2003; (150): 11-6.

[25] Canbay E, Habip A, Kara G, Eren Z, Akyılmaz E. A microbial biosensor based on
Lactobacillus delbruecki sp. bacterial cells for simultaneous determination of lactic
and pyruvic acid. Food Chemistry. 2015; (169): 197-202.

[26] Wilson JS, Sensor Technology Handbook, Elsevier, Amsterdam/ Boston, 2005.

[27] Blum LJ, Coulet PR (Eds.). Biosensor Principles and Applications, Marcel Dekker,
New York, 1991.

[28] Avila M, Zougagh M, Ríos Á. Molecularly Imprinted Polymers for Selective Piezo‐
electric Sensing of Small Molecules. Trends Anal. Chem. 2008; (27): 54–65.

[29] www.scholar.google.com

[30] Silva H, Júlia JGP, Subramanian MCSM, Matos VCD. A MIP-graphene-modified
glassy carbon electrode for the determination of trimethoprim. Biosensors and Bioe‐
lectronics. 2014; (52): 56–61.

[31] Xue C, Han Q, Wang Y, Wu J, Wen T, Wang R, Hong J, Zhou X, Jiang H. Ampero‐
metric detection of dopamine in human serum by electrochemical sensor based on
gold nanoparticles doped molecularly imprinted polymers. Biosensors and Bioelec‐
tronics. 2013; (49): 199–203.

[32] Yu HC, Huang XY, Lei FH, Tan XC, Wei YC, Li H. Molecularly imprinted electro‐
chemical sensor based on nickel nanoparticle-modified electrodes for phenobarbital
determination. Electrochimica Acta. 2014, (141), 45–50.

[33] Anirudhan TS, Alexander S. Design and fabrication of molecularly imprinted poly‐
mer-based potentiometric sensor from the surface modified multiwalled carbon

Molecularly Imprinted Sensors — New Sensing Technologies
http://dx.doi.org/10.5772/60781

105



nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organo‐
chlorine pesticide. Biosensors and Bioelectronics. 2015; (64): 586–93.

[34] Patra S, Roy E, Madhuri R, Sharma PK. Imprinted ZnO nanostructure-based electro‐
chemical sensing of calcitonin: A clinical marker for medullary thyroid carcinoma.
Analytica Chimica Acta. 2015; (853): 271–284.

[35] Karimian N, Zavar MHA, Chamsaz M, Turner APF, Tiwari A. On/off-switchable
electrochemical folic acid sensor based on molecularly imprinted polymer electrode.
Electrochemistry Communications. 2013; (36): 92–5.

[36] Wang ZH, Li JS, Xu LJ, Feng YJ, Lu XQ. Electrochemical sensor for determination of
aflatoxin B-1 based on multiwalled carbon nanotubes-supported Au/Pt bimetallic
nanoparticles. J Solid State Electr. 2014 Sep; 18(9):2487-96.

[37] Zhong M, Teng Y, Pang SF, Yan LQ, Kan XW. Pyrrole-phenylboronic acid: A novel
monomer for dopamine recognition and detection based on imprinted electrochemi‐
cal sensor. Biosens Bioelectron. 2015 Feb 15; 64: 212-8.

[38] Wang XJ, Li XJ, Luo CN, Sun M, Li LL, Duan HM. Ultrasensitive molecularly im‐
printed electrochemical sensor based on magnetism graphene oxide/beta-cyclodex‐
trin/Au nanoparticles composites for chrysoidine analysis. Electrochim Acta. 2014
Jun 1; 130: 519-25.

[39] Yola ML, Eren T, Atar N. Molecularly imprinted electrochemical biosensor based on
Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled
carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens
Bioelectron. 2014 Oct 15; 60: 277-85.

[40] Abbas A, Linman MJ, Cheng QA. New trends in instrumental design for surface
plasmon resonance-based biosensors. Biosens Bioelectron. 2011 Jan 15; 26(5): 1815-24.

[41] Holford TRJ, Davis F, Higson SPJ. Recent trends in antibody based sensors. Biosens
Bioelectron. 2012 Apr 15; 34(1): 12-24.

[42] Xu X, Ye ZZ, Wu JA, Ying YB. Application and research development of surface plas‐
mon resonance-based immunosensors for protein detection. Chinese J Anal Chem.
2010 Jul; 38(7): 1052-9.

[43] Stein EW, Grant PS, Zhu HG, McShane MJ. Microscale enzymatic optical biosensors
using mass transport limiting nanofilms. 1. Fabrication and characterization using
glucose as a model analyte. Anal Chem. 2007 Feb 15; 79(4): 1339-48.

[44] Carlucci L, Favero G, Tortolini C, Di Fusco M, Romagnoli E, Minisola S, et al. Several
approaches for vitamin D determination by surface plasmon resonance and electro‐
chemical affinity biosensors. Biosens Bioelectron. 2013 Feb 15; 40(1): 350-5.

Biosensors - Micro and Nanoscale Applications106



[45] Choi SW, Chang HJ, Lee N, Kim JH, Chun HS. Detection of mycoestrogen zearale‐
none by a molecularly imprinted polypyrrole-based surface plasmon resonance
(SPR) sensor. J Agr Food Chem. 2009 Feb 25; 57(4): 1113-8.

[46] Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD. Surface plasmon resonance sensor
based on magnetic molecularly imprinted polymers amplification for pesticide rec‐
ognition. Anal Chem. 2013 Dec 17; 85(24): 11944-51.

[47] Lotierzo M, Henry OYF, Piletsky S, Tothill I, Cullen D, Kania M, et al. Surface plas‐
mon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens
Bioelectron. 2004 Sep 15; 20(2): 145-52.

[48] Matsunaga T, Hishiya T, Takeuchi T. Surface plasmon resonance sensor for lysozyme
based on molecularly imprinted thin films. Anal Chim Acta. 2007 May 15; 591(1):
63-7.

[49] Homola J, Dostalek J, Chen SF, Rasooly A, Jiang SY, Yee SS. Spectral surface plasmon
resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int J Food
Microbiol. 2002 May 5; 75(1-2): 61-9.

[50] Yman IM, Eriksson A, Johansson MA, Hellenas KE. Food allergen detection with bio‐
sensor immunoassays. J Aoac Int. 2006 May-Jun; 89(3): 856-61.

[51] Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und
zur Mikrowagung. Zeitschrift für Physik 1959; 155(2): 206-222.

[52] Liu F, Liu X, Ng SC, Chan HSO. Enantioselective molecular imprinting polymer coat‐
ed QCM for the recognition of L-tryptophan. Sensor Actuat B-Chem. 2006 Jan 17;
113(1): 234-40.

[53] Lin TY, Hu CH, Chou TC. Determination of albumin concentration by MIP-QCM
sensor. Biosens Bioelectron. 2004 Jul 30; 20(1): 75-81.

[54] Uludag Y, Piletsky SA, Turner APF, Cooper MA. Piezoelectric sensors based on mo‐
lecular imprinted polymers for detection of low molecular mass analytes. Febs J. 2007
Nov; 274(21): 5471-80.

[55] Liao HP, Zhang ZH, Nie LH, Yao SZ. Electrosynthesis of imprinted polyacrylamide
membranes for the stereospecific L-histidine sensor and its characterization by AC
impedance spectroscopy and piezoelectric quartz crystal technique. J Biochem Bioph
Meth. 2004 Apr 30; 59(1): 75-87.

[56] Sun H, Mo ZH, Choy JTS, Zhu DR, Fung YS. Piezoelectric quartz crystal sensor for
sensing taste-causing compounds in food. Sensor Actuat B-Chem. 2008 Apr 14;
131(1): 148-58.

[57] Leonte II, Sehra G, Cole M, Hesketh P, Gardner JW. Taste sensors utilizing high-fre‐
quency SH-SAW devices. Sensor Actuat B-Chem. 2006 Oct 25; 118(1-2): 349-55.

Molecularly Imprinted Sensors — New Sensing Technologies
http://dx.doi.org/10.5772/60781

107



[58] Rosler S, Lucklum R, Borngraber R, Hartmann J, Hauptmann P. Sensor system for
the detection of organic pollutants in water by thickness shear mode resonators. Sen‐
sor Actuat B-Chem. 1998 May 30; 48(1-3): 415-24.

[59] Ji HS, McNiven S, Lee KH, Saito T, Ikebukuro K, Karube I. Increasing the sensitivity
of piezoelectric odour sensors based on molecularly imprinted polymers. Biosens Bi‐
oelectron. 2000 Oct; 15(7-8): 403-9.

[60] Diltemiz SE, Ersoz A, Hur D, Kecili R, Say R. 4-Aminophenyl boronic acid modified
gold platforms for influenza diagnosis. Mat Sci Eng C-Mater. 2013 Mar 1; 33(2):
824-30.

Biosensors - Micro and Nanoscale Applications108


