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1. Introduction

The interest in ionic liquids (ILs) that has developed during in the past few decades is well-
recognized. This interest has developed mainly due to their special properties such as high
thermal stability, high electrical conductivity, high heat capacity per unit volume, wide
temperature range in a liquid state, good solvent properties and especially their negligible
vapour pressure, which render them popular compounds. This popularity is reflected in the
great deal of publications that relate the potential applications of ILs in different fields, among
which can be highlighted their use as solvents, electrochemical applications and more recently,
as heat transfer fluids.

In order to use the ILs at an industrial scale, deep knowledge of their thermophysical properties
is vital, since these properties not only determine the equipment size needed, but also directly
influence its design parameters; for example, melting and glass transition temperatures are
needed to set a feasible temperature operation range and heat capacity is essential for esti-
mating the heat exchange in unit operations, as well as heat storage capacity. Moreover,
knowledge of these thermophysical properties, such as freezing, melting, cold crystallization,
glass transition temperatures and heat capacities, allows for better understanding the stabili-
ties and structures of these relatively new compounds.

In the extensive literature dealing with thermophysical properties of pure ILs, different authors
have applied various methodologies and equipment for the study of the thermal behaviour of
ILs and for the determination of their heat capacities. This has led to discovering discrepancies
in these literature values. For this reason, special attention must be paid to experimental
procedures and to the different factors affecting the determination of these properties.
Recently, differential scanning calorimetry (DSC) has been widely used for the determination
of these properties due to its simplicity and because only a small sample is required. For all of
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the above-mentioned factors, a suitable working protocol for the correct determination of
phase transition temperatures and heat capacities using DSC will be described in this chapter.

Nowadays, there are enough experimental data available in the literature concerning the
thermal analysis and heat capacities of pure ionic liquids, which allows for drawing general
conclusions about the influence of the structure of ionic liquids on these thermophysical
properties. As such, the main behaviours of ionic liquids as found in the literature will be
described and analysed in this chapter, together with the influence of the structures of the ionic
liquids (cation, anion and alkyl-side chains of the cation) on their heat capacities.

In addition, different methods for the estimation of melting and glass transition temperatures,
as well as heat capacities can be found in the literature; the basis of these methods, as well as
some applications for estimating the thermal properties of IL will be presented. The extension
of the selected database for these methods and their average deviation will be compared.

2. Thermal analysis

Thermal analysis allows for establishing the behaviour of a material when it is heated or cooled.
The structure of a material undergoes changes such as melting and freezing when it is subjected
to changes in temperature. In the case of ionic liquids, this process is necessary not only because
most ionic liquids are new substances and therefore have unknown properties, but also
because their applicability is conditioned to their liquid state.

Regarding the interpretation of the thermal analyses, in this chapter, melting temperature (Tm)
was taken as the onset of an endothermic peak (downward deflection of the curve peak) upon
heating, freezing temperature (Tf) as the onset of an exothermic peak (upward deflection of
the curve peak) upon cooling, cold crystallization temperature (Tcc) as the onset of an
exothermic peak upon heating from a subcooled liquid state to a crystalline solid state, solid-
solid transition (Tss) as the onset of an exothermic or endothermic peak upon heating from a
crystalline solid state and glass transition temperature (Tg) as the midpoint of a small heat
capacity change upon heating from the amorphous glass state to a liquid state.

2.1. Methodology

Although thermal analysis is a widely known technique applied for studying the thermal
behaviour of substances, there are several factors that affect the determination of transition
temperatures. Among these, the most important are sample size, the thermal history of the
sample and the cooling and heating rate of the scan. Nowadays, the most used technique for
the thermal analysis of pure ionic liquids is differential scanning calorimetry (DSC). Hence, in
this section, an adequate work methodology using DSC is described as attending to all of the
above-mentioned factors in an attempt to standardize the thermal analysis determination.
Standardization of the work methodology is important for comparing data obtained from
different authors, since the research studies available in the existing literature do not always
state their applied methods in detail. Below, the suggested work methodology is described:
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i Sample preparation.

a.

Sample amount. The sample amount recommended for a study on phase
transitions is approximately 4-8 mg, since the sample amount is directly related
to the peak size (the greater the sample size the greater the signal); however, the
resolution will be lower and overlapped effects may appear. For this reason, for
the determination of transition temperatures, it is recommended that a small
sample size is used.

Weighing. Considering that the sample weight is directly related to the accuracy
of the measurement, it is vital to use a balance with a precision of at least +0.00001
g. Additionally, since the DSC technique uses a reference crucible, it is advisable
that the mass of both crucibles (sample and reference) is as similar as possible.

Crucibles. Most of the thermal transitions are perfectly determined with a
standard aluminium crucible. With this technique, it is possible to work with the
crucible open (without lid) or to have it hermetically sealed. It is recommended
that hermetically sealed crucibles be used, because in this way, heat flow caused
by evaporation is avoided and radiation emitted by the sealed sample and
reference crucible, are similar. In addition, when working with sealed crucibles
there is the possibility of making a pinhole in the lid to avoid a pressure increase
inside the crucible.

Sample placement. Besides the usual conditions applied in any experimental
measurement, careful attention should be paid to sample placement, which
should be done in a manner that facilitates good contact between the sample and
the crucible bottom.

ii. Method.

a.

Dry step. Due to the known influence of the water amount and impurities
present in the properties of ILs, it is necessary to subject the simple to a previous
drying step. Therefore, the sample should be heated at a temperature high
enough to evaporate water and impurities; for instance, a suggested dry step will
be to maintain the sample at T'=120°C for 30 minutes inside the furnace. A good
way to know the dryness degree of the sample is to weigh the sample before and
after the dry step.

Thermal history. Various materials present different thermal effects, depending
on their thermal history; this thermal history can be eliminated by subjecting the
sample to a previous heating. For this reason, the working protocol must begin
with a heating of the sample to eliminate its thermal history which could lead to
incorrect results. Note that if the dry step is carried out inside the furnace of the
DSC, the thermal history of the ionic liquid will be eliminated.

Heating and cooling rate. This is the most important factor in any thermal
analysis, as crystallization transitions strongly depend on the cooling and
heating rate (low rates can give the ionic liquid time enough to form crystals).

201
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Due to the special nature of ionic liquids, variations upon heating and cooling
rates are useful for studying their thermal transitions. Taking into account that
at fast rates the phase transition peaks can appear overlapped, while at slow rates
these peaks can move apart from each other, a recommended practice is to begin
the study of a sample by a scan carried out at a relatively slow heating rate of
2°C/min to gain better information about the thermal behaviour of the sample,
including whether the ionic liquid is a crystal or a glass former, the presence of
polymorphs, etc.

Taking into account all of the above-mentioned factors, the proposed work methodology for
the thermal analysis of pure ionic liquid is explained below.

1.

2.

Dry step.

First cooling and heating cycle. The thermal analyses start with a “slow method”
consisting of a cooling cycle from 120°C to -140°C, followed by a heating cycle from -140°C
to 120°C at 2°C/min. The chosen start and end temperatures are 120°C and -140°C,
respectively, because the usual behaviour of ionic liquids shows that in case the IL presents
a glass transition, this transition will appear at low temperatures and the ILs will not
present transitions above 120°C. It is important for the correct characterization of the
thermal behaviour of ILs to reach temperatures low enough to observe the possible
apparition of a glass transition. This is why, in the literature, many studies remain
incomplete, because in their temperature range the cooling cycle began at room temper-
ature and the heating cycle also ends at room temperature.

Complementary cycles. Depending on the transitions appearing in the first cooling and
heating cycle, for a complete and correct characterization of the sample, other heating and
cooling cycles should be carried out. If only a Tg appears in the slow method, the study
of the thermal behaviour of this IL is completed and it can be concluded that the studied
ionic liquid shows a strong tendency for forming glass. However, if the slow method
shows that the ionic liquid presents any other transition but does not present a glass
transition, the sample is subjected to a faster cooling or quenching to avoid crystallization.
This cooling can be performed in different ways: by cooling the sample from 120°C to
-140°C at 40°C/min, followed by a heating cycle, or by introducing the sample into liquid
nitrogen to achieve rapid fast cooling. The problem lies in the scans where the association
between peaks and phase transition is not clear. At this point, a customized protocol
should be proposed.

Study of polymorphic behaviours. Following on, an approach to the study of an ionic
liquid presenting polymorphic behaviour will be discussed with the help of Figure 1. As
can be observed, this IL did not form crystals upon cooling at 2°C/min, while upon heating,
the IL presented a Tg and Tcc at -90°C and -70°C, respectively. These two transitions were
easily assigned; the peaks with difficult interpretation were those placed between -35°C
and -20°C, which is typical in polymorphic compounds. The peak appearing at -35°C is
an endothermic transition; however, it is unclear whether this peak represents a solid-
solid or a melting transition. The next peak (which are actually two peaks overlapped)
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may have been caused by the melting of different crystals or by a solid-solid transition
followed by a melting, or by a melting followed by a recrystallization, which immediately
melted. In order to assign with certain reliability these peaks to their corresponding
transitions, further experimentation has to be conducted. To answer the first question, a
run with a different heating rate that aims to determine whether this peak disappears or
moves will be useful; in case it moves, the melting transition is not probable and it can be
stated that represents a solid-solid transition (in general, the formation of a metastable
crystal). Once confirmed that the first peak corresponds to a solid-solid transition, the
second peak can be more easily interpreted. This peak can be associated with the melting
of the metastable crystal, which occurs with the recrystallization of a stable crystal that
finally melts. In cases like this example, if further cooling and heating rates do not yield
better information, it will be necessary to use techniques such as X-ray diffraction. This
example shows the importance of subjecting the IL to different heating and cooling rates
in order to interpret the thermograms.

Aexo

mW

| T

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 °C
Lab: METTLER STAR®°SW 9.30

Figure 1. Thermogram of the ionic liquid BMpyrNTf, cooling from 120°C to -140°C, followed by heating from -140°C
to 120°C at 2°C/min.

It is remarkable that in this example, there was only one solid-solid transition (endothermic),
but it is usual in polymorphic ionic liquids that several solid-solid transitions, endothermic
and/or exothermic, are present, which increases the difficulty of the interpretation of DSC
curves.

In Table 1 below, the transition temperatures observed by several authors for the IL
BMpyrNTf, are presented. Here, the disparities within the results taken from literature
obtained using different methods for the same IL are reflected.
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Ref. Tg/°C Tec/°C Tss/°C Tss/°C Tm/°C Tm /°C

1 -87¢ -55 -24 -18

2 -85° -53 -30 -18
-85° -53 -7

3 -92¢ -69 -47 -11
-87¢ -56 -34 -21
-87¢ -56 -34 -21 -11

4 -6

5 -874 -53 -18

? taken as the onset of the transition upon heating
b taken as the midpoint of the transition upon heating
¢ not stated

4 taken as the midpoint of the transition upon cooling

Table 1. Transition temperatures for the IL BMpyrNTf, obtained by several authors.

MacFarlane et al. [1] determined in their study the phase transitions of the IL BMpyrNTf, by
heating at 10°C/min after quenching from the liquid state; Kunze et al. [2] obtained similar
results with a similar method (heating at 10°C/min after quenching at 40°C/min from 40°C to
-150°C) and by changing the cooling rate to 2°C/min, determined a Tm =-7°C without detecting
a solid-solid transition. The most extensive study on thermal analysis for this ionic liquid was
carried out by Stefan et al. [3], who performed three different methods for fully characterizing
the IL and found three types of crystals. In the paper published by Kunze et al. [4], the
researchers only registered the melting transition by cooling the sample at 20°C/min and
heating it at 10°C/min. Finally, Jin et al. [5] reported similar values than those presented in [1]
and [2], but did not report the solid-solid transition. The method used by these authors was
first a heating cycle to 80°C, followed by a cooling to -150°C at 10°C/min and a final heating
cycle to 80°C at 10°C/min. The DSC experimental results shown in Table 1 indicate, as expected,
that phase transitions were dependent on the scanning rate and on the cooling method used
to obtain the solid phase (quenching or slow cooling).

Finally, it is not always possible to correctly identify the different transitions appearing in a
thermogram of a polymorphic ionic liquid using DSC. The techniques that can be used to
achieve a clear interpretation are those attached to the DSC, such as crossed polarizing filters
or a microscope, as well as techniques that are carried out separately such as X-ray diffraction
and infrared spectrometry.

2.2. Types of thermal behaviours of ILs

In this part of the chapter, the main types of thermal behaviours found for ILs are described.
In general, in the literature [6-10], these behaviours are divided into three groups:

i The first type of behaviour is formed by ionic liquids characterized by presenting
only the formation of amorphous glass.
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The second type of behaviour is characterized by presenting a freezing transition,
forming crystals upon cooling and a melting transition upon heating.

The third type of behaviour that appears in ILs does not show a tendency to crystallize
upon cooling; however, upon heating, cold crystallization is exhibited.

The thermal behaviour of ILs is not directly related to their structure; for this reason, some
examples of ILs presenting each of the three thermal behaviours above will be presented, in a
way to explain how ionic liquids with different structures present the same behaviour and
ionic liquid with similar structures present different behaviours.

i

As mentioned above, the first type of behaviour is characterized by no true phase
transitions, but only the formation of an amorphous glass. The ILs included in this
type do not have melting or freezing points, only glass transition temperatures. These
ILs are good glassy-formers, which indicates that they present a weak tendency for
crystallization. Several examples of ILs presenting this behaviour can be found in the
literature, among them BMimBF, [10], BMMimPE, [10], C;CNMimDCA [8],
BMpyNTf, [6], EMpYESO, [6], BMpyBr [6], PMimNTf, [11], HMimDCA [11] and
PMpyNTf, [12]. Taking into account that the glass transitions of ILs usually appear
at low temperatures, it is important to work at temperatures as low as -120°C. The
glass transition appears both in the cooling and in the heating cycles; when a glass
transition temperature for an IL is given, the cycle where it is observed (cooling or
heating) must be specified. Figure 2 shows a thermogram for PMpyNTf, at a cooling
and heating rate of 10°C/min; this IL is characterized by the presence of only a glass
transition. In the following section, the influence of the cooling and heating rate on
this phase transition temperature will be discussed.

Aexo
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Lab: METTLER STAR® SW 9.30

Figure 2. Thermogram of the ionic liquid PMpyNTf, [12] cooling from 120°C to -140°C, followed by heating from
-140°C to 120°C at 10°C/min.
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ii.

The ILs presenting a freezing transition upon cooling and a melting transition upon
heating belong to the second type of behaviour. These ILs present a strong tendency
for forming crystals. However, there are ILs that in other cooling conditions will
undergo a glass transition. To test their tendency to form crystals, these ILs should
be subjected to a faster cooling rate to avoid crystallization; this methodology was
adopted for the present study, as was indicated in the previous section. Generally, in
these ILs freezing temperatures are markedly lower than melting temperatures, an
effect known as supercooling. The ILs EMimNT{, [11], BMpyTFO [12], BMimTFO
[12], EMpyNTf, [12], HMimTFO [11], EMMimNT{, [10], CBCNTMANTI, [8] and
BpyBr [6] are examples of ILs presenting this behaviour. In Figure 3, a typical
thermogram for this type of behaviour is presented.

rexo

20
mw

r T T T T T T T T T T T T T T T T 1
-140 -120 -100 -80 -60 -40 20 0 20 40 60 80 100 °c

Lab: METTLER STAR®° SW 9.30

Figure 3. Thermogram of the ionic liquid EMpyNTf, [12] cooling from 120°C to -140°C, followed by heating from
-140°C to 120°C at 2°C/min.

iii.

The ILs that do not form crystals upon cooling, but present a glass transition at low
temperatures and upon heating, and that first suffer a glass transition followed by a
cold crystallization to finally melt, are included in the third type of behaviour. The
subcooling phenomenon (cold crystallization) is usually associated with polymers
and other amorphous materials, and is present in the thermal behaviour of many
ionic liquids. Among the ILs belonging to this group are BMimNTf, [11],
HMimNTHf, [11], BMimDCA [10,12], EMimNT{, [10], BMimPF, [10], BMMimBF, [10],
HpyNTf, [6] and C3CNMMimPF; [8]. In Figure 4 below, the typical scan for this third
behaviour is illustrated.

Note that the three behaviours explained above are the simplest behaviours that can be found
in the study of ionic liquids, since the polymorphism phenomenon can be found on ILs
included in the second and third groups. This phenomenon deserves careful attention, because
the association between peaks and transitions is not always clear. It is noteworthy that an IL
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Figure 4. Thermogram of the ionic liquid BMimDCA [12] cooling from 120°C to -140°C, followed by heating from
-140°C to 120°C at 2°C/min.

belonging to a certain group and subjected to different conditions can become part of a different
group. Figure 5 below illustrates how the ionic liquid BMpyTFO, belonging to the second
group, when subjected to a cooling and heating rate of 2°C or 10°C/min becomes an IL
belonging to the third group when it is quenched.

Lab: METTLER STAR® SW 9.30 Lab: METTLER STAR* SW 9.30

@ ®)

2 00 & @ @ w e
Lab: METTLER STAR®*SW 9.30

©

Figure 5. Thermogram of the ionic liquid BMpyTFO [12] cooling from 120°C to -140°C, followed by heating from
-140°C to 120°C at (a) 2°C/min; (b) 10°C/min; (c) cooled by quenching at 40°C/min and heated at 10°C/min.
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2.3. Influence of the rate on phase transitions

In Figure 6, a thermal scan of the ionic liquid PMpyNTf, at cooling and heating rates of
2°C/min and at 10°C/min is presented as an example of the effect of the cooling and heating
rate on the glass transition. As can be seen, an increase in the rate leads to higher glass transition
temperatures, both upon cooling and heating.

Aexo
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Figure 6. Thermogram of the ionic liquid PMpyNTf, [12] cooling from 120°C to -140°C, followed by heating from
-140°C to 120°C at 2°C/min (dashed line) and at 10°C/min (solid line).

Aexo
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Figure 7. Thermogram of the ionic liquid BMimDCA [12] cooling from 120°C to -140°C, followed by heating from
-140°C to 120°C at 2°C/min (solid line) and at 10°C/min (dashed line).
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Figure 7 shows the influence of the heating rate on Tg, Tcc and Tm. In this example, it can be
observed that an increase in the heating rate caused the cold crystallization transition to shift
to a higher temperature. Here it can also be seen that, as previously explained in the work
methodology section, by increasing the scan rate the cold crystallization and melting peaks
overlapped.

As expected, the scan rate did not affect the melting temperature since, as is well-known, the
melting temperature of a certain crystal does not change along with the heating rate.

Regarding the influence of cooling rate on the freezing transition, it must be taken into account
that nucleation and crystal growth are somehow probabilistic events; thus, the determination
of the freezing temperature is not always reproducible. This means that for an IL that suffers
freezing upon cooling, when performing the same method for the same IL sample, the freezing
peak might not occur at the same temperature.

3. Heat capacities

Heat capacity (c,) is defined as the amount of energy required to raise the temperature of 1 g
(or 1 mole) of a substance by 1 K. From this definition, it can be inferred that heat capacity is
an important property for estimating the heating and cooling requirements of a substance and
is therefore vital for the application of ILs in industrial applications.

In order to analyse the heat capacity values published in the literature for pure ionic liquids,
several factors need to be taken into account. On determining heat capacities, different
apparatuses can be used, such as adiabatic calorimeters (AC), differential scanning calorime-
ters (DSC), modulated DSC (MDSC) or Tian-Calvet DSC (TC). For the determination of the
heat capacities of ionic liquids, a desirable characteristic in the technique used is for a small
amount of IL to be enough for the determination of its heat capacity. In this context, the DSC
and MDSC use much smaller samples than the adiabatic calorimeter or Tian-Calvet DSC.
Between these two calorimeters, the MDSC has the advantage that it permits the separation of
the signals into their thermodynamic and kinetic components, separating overlapped effects.

In the past few years, due to the simplicity of the technique and the small amount of sample
required, DSC has been widely used in the determination of heat capacities. With this techni-
que, different methods can also be followed, i.e., those directly calculating c, values, the direct
and the steady state methods, methods using a reference for calculating the sample c,, as well
as the ADSC and the sapphire methods. The sapphire method is more frequently used due to
its higher accuracy [11].

Besides the experimental technique and method used, other variables should be considered
for analysing heat capacity values. Among these variables that can affect the experimental
values are sample size, the mass of the different crucibles used for the sample and as reference,
the interval in which the measurement is carried out and the heating rate; these factors should
be considered in addition to the usual considerations concerning the purity and dryness of the
ionic liquid sample.
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In this section, a proper methodology for the determination of heat capacities of ionic liquids
using DSC with the sapphire method is suggested and the influence of the structure of the
ionic liquid on this property is discussed.

3.1. Research methodology

As different techniques and methods have been used in the literature for the experimental
determination of heat capacities and especially because in many of these studies not all the
variables have been stated, the comparison among the values from different studies is
particularly difficult. Consequently, taking into account the different aspects that need to be
considered, a research methodology for the determination of heat capacities of pure ILs using
differential scanning calorimetry and the sapphire method is proposed. A brief description of
the sapphire method is provided here to gain a better understanding of the research method-
ology: in the sapphire method, the DSC signal of the sample was compared with the DSC signal
of the calibration sample (sapphire), which had a known specific heat. A total of three
measurements were needed for this method: blank measurement (empty crucible), sapphire
measurement and the sample measurement.

i Sample preparation.

a. Weighing. The accuracy of the weighing is very important in any measurement
of heat capacity; it is vital to carry out all weighing in a precise balance. In the
case of the sapphire method, an error in the weighing step will affect the weight
of the sample, sapphire and reference crucibles, dramatically increasing uncer-
tainty in the measurement of the heat capacities.

b. Samplesize.Itisbelieved that for the determination of heat capacities, the bigger
the sample amount the better, since the signal size is proportional to the sample
amount; nevertheless, it should be taken into account that the sapphire method
uses a reference compound for the determination of c,. This means that more
reliable results will be obtained when the sample signal is closer to the reference
signal (sapphire signal). The differences in the chosen sample size by different
authors may be an explanation for the different values obtained for heat capacity
for the same ionic liquid. In summary, the quantity of sapphire and sample size
should be chosen for yielding signals as close as possible (within the limits
recommended for the determination of ¢, in the DSC, usually 40-80 mg);
therefore, it was desirable that all weighing results involved in the experimental
determination of this property were given in the studies.

c. Crucibles. The crucibles used for the sample, sapphire and as reference must be
in perfect condition, without deformations, especially at the bottom. The use of
a pinhole in the lid avoids pressurization inside the crucible and allows the
evaporation of water and/or impurities in the dry step.

To minimize errors, it is advisable that the weight of the three crucibles used for
each measurement (sample, sapphire and reference) be as similar as possible.
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d. Sample placement. Good contact between the sample and the crucible bottom
must be assured.

ii. Method. For the determination of heat capacities using the sapphire method, an initial
isothermal stage (usually 10-15 minutes), followed by the heating stage to a final
temperature, at which point there is another isothermal stage (usually 10-15 minutes),
is common practice.

a. Dry step. Similar to the thermal analysis method, a previous dry step is advised
prior to the determination of the heat capacities of a pure ionic liquid.

b. Temperature range. With regards to taking the c, values, it must be taken into
account that after the initial isothermal segment, some time is needed for the
sample to reach a state of dynamic equilibrium; hence, the results obtained at the
beginning of the dynamic segment should be discarded. It is also advised that
the temperature range does not exceed 90°C. The heat capacity should not be
determined during first order transitions in the physical state, for example
during a crystallization transition. With the sapphire method, it is recommended
that the heat capacities of the liquid and solid states be determined in separate
runs, i.e., melting temperature should not be included in the chosen temperature
range of the method.

c. Heating rate. A heating rate of 10°C/min was usually used in the classical c,
measurements; however, nowadays, a heating rate of 20°C/min is generally used
as this yields good results and saves time.

d. Repetition of measurements. It is advisable practice to repeat the heat capacity
measurements and to take the mean value as the final result.

e. Sapphire sample. Although the crucible with the sapphire disks can be used in
several runs, its ¢, values must be checked regularly.

In general, the more common method for the determination of ¢, in the literature consists of
an isothermal segment at 0°C for 15 minutes, followed by a dynamic segment from 0°C to 90°C
at 20°C/min and a final isothermal segment at 90°C for 15 minutes (considering that the IL is
liquid in this range). Since the most required ¢, value is a value corresponding to 25°C and
taking into account that the first part of the dynamic segment is needed to reach a state of
dynamic equilibrium, a method in which the temperature ranges from -15°C to 75°C (again
considering that the IL is liquid in this stage) will assure obtaining a reliable value at 25°C.

3.2. Influence of the structure of the IL on heat capacity

Taking all the variables in the determination of heat capacities into account and analysing the
Cp literature data for different structures, the influence of the cation, anion and alkyl-side chain
of the cation on this property can be analysed. Due to the different techniques and methods
used in literature and as mentioned above, the fact that many variables are not usually specified
in the corresponding papers, to gain an overview of the influence of the ionic liquid structure
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on this property it is more reliable to compare values obtained by the same authors instead of
using different sources.

Heat capacity provides information about the amount of energy per molecule that the
compound can store before the temperature of the compound increases; this energy is stored
in translational, vibrational and rotational modes. As such, it is logical to assume that a
molecule containing more atoms will have more energy storage modes and thus, higher heat
capacity. Taking this into consideration, the following is an analysis of the influence of the
different variables such as the different structures of the ionic liquids and the temperature on
the heat capacity values.

1000

800 -

600 -

c,/J ‘K" -mol

400 -

200 -

< ™ X © O & N
o FF LSS
N Q Q N R
Q

N\

Figure 8. Heat capacities of several ionic liquids.

Considering the influence of the anion in the ionic liquid on heat capacity values, from the
literature, it could be inferred that the ¢, values were clearly affected by the anion, the general
trend being that the higher the molar mass or number of atoms of the anion, the higher the heat
capacity [6,10,11,13]. In general, the anions more frequently studied are bromide, chloride,
tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, dicyanamide and
bis(trifluoromethylsulfonyl)imide, usually attached to imidazolium-based ionic liquids, of
which there is the most extensive data in the literature. The limited studies of pyridinium and
pyrrolidinium-based ionicliquids usually agree with the results obtained for the wider studies
onimidazolium ILs. In summary, for ILs containing similar cations and alkyl-side chains of the
cation, the values for heat capacities increase with the molar mass of the anions [6,10], despite
the fact that there are studies indicating that this general trend is not always followed [14].
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The influence of the structure of the cation has been less studied than the influence of the anion;
however, it can nonetheless be concluded that the pyridinium and pyrrolidinium-based ionic
liquids present higher heat capacities than analogous imidazolium-based ILs [12, 15]. How-
ever, unlike the influence of the anion and alkyl-side chain length of the cation, which many
studies have observed, in this case, the need for new experimental data in order to draw better
conclusions was clear. In Figure 8, the influence of the anions on the ¢, values of the 1-butyl-3-
methylimidazolium and 1-butyl-3-methylpyridinium-based ionic liquids is presented,
showing that in general, the c, values increased when the molar mass of the anion increased.
Comparisons of the ionic liquids with different cations (BMpyNTf,/BMimNTf, and BMpyBF,/
BMimBF,) can also be observed.

In the case of the influence of the alkyl-side chain length of the cation, the experimental results
from published works indicate that the addition of a -CH,~ group leads to an incremental
increase in the Cp of approximately 30-35 J/K mol [11,13,16], a similar value to that found for
liquid alkanes, indicating that the alkyl-side chains of the ILs are similar in structure to those
in liquid alkanes [16]. Moreover, it can also be concluded that the addition of a -CH,— group
has more influence at higher temperatures [11,16]. The influence of the alkyl-side chain length
of the cation in the ionic liquid for 1-alkyl-3-methylimidazolium-based ionic liquids with alkyl
= ethyl, butyl, hexyl and octyl on the c, values is plotted in Figure 9, where it can be observed
that an increase in the alkyl-side chain length means an increase in c, values.
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Figure 9. Heat capacities of 1-alkyl-3-methyilimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids.

Finally, regarding the fitting of heat capacity values as a function of temperature, these values
are generally adjusted to a polynomial expression, usually of a second, third or even fourth
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degree, depending on the temperature range taken for their determination. For example, if the
temperature range of the method ranges from 0°C to 90°C and the c, values are taken from
0°C to 90°C, it is probable that a third or fourth degree polynomial expression can be used for
the fitting; however, if the c, values are taken from 20°C to 80°C (neglecting the first minutes
to avoid stabilization errors), a first or second degree polynomial expression will provide a
proper fitting.

4. Thermal properties estimation

Due to the broad number of ILs, the experimental determination of the thermal properties of
all these compounds is not possible; consequently, in order to enhance the selection of task-
specific ionic liquids, several methods for estimating the melting temperature, the glass
transition temperature or the liquid heat capacity of ILs have been developed, most of them
based on the use of quantitative structure-property relationships (QSPR) or on group contri-
bution (GC) methods. The following is a brief description of these methods and their applica-
tion to Tm, Tg and c,..

4.1. QSPR and GC methods

4.1.1. QSPR methods

QSPR methods are based on the relationship between the molecular characteristics of a
compound and its macroscopic properties. Molecular descriptors, used for characterizing the
microscopic properties of compounds, along with experimental data of the property (Tm, Tg,
¢,, etc.) for a large number of compounds are needed in order to obtain an expression that will
allow for predicting the value of this property for different compounds. A large number of
descriptors exist for characterizing molecules; thus, the selection of the more significant among
them is one of the main drawbacks of the model. These molecular descriptors, usually
calculated using software packages such as DRAGON and CODESSA, can be classified using
quantum chemical, electronic and geometrical descriptors that provide information about
polar- or hydrogen-bonding interactions, as well as constitutional descriptors that characterize
the chemical composition of the molecule and that does not depend on geometric and
topological descriptors (TIs) that take into consideration the connectivity of atoms within a
molecule [17]. In order to find essential information about molecule structure, a geometric
optimization is generally the first stage. The general equation for QSPR methods [17] can be
written as:

Yo=bp+bixy +bhyx,+ ... +byx, (1)

where y is the dependent variable (e.g., Tm, Tg or c,), xy, X,,...x,, are the independent variables
(the descriptors), b, b,, .. .,bp are the regression coefficients and b, is the intercept.
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The quality of the experimental values selected for developing a model is essential for
obtaining good results. The main criteria for selecting the experimental values for the data set
are the number and the diversity of available data, and these should have been measured under
the same conditions, with enough reproducibility and accuracy [17]. The selected data are
divided in the training set to develop and train the correlation equation and the test set for
determining the predictive ability of the model for compounds that have not been used to
develop it.

In order to obtain the relationship between molecular descriptors and the macroscopic
property, several models such as neural networks (NN), decision trees, partial least squares
(PLS) and multiple linear regressions (MLR) are usually employed. The squared correlation
coefficients, R?, squared cross-validated correlation coefficients R?y and the Fisher criterion
value, F, are generally used to assess the quality of the model. Special care must be taken for
data points that have been poorly predicted, because this can indicate that the data were
incorrectly measured or that the model has failed to include some important characteristics of
the compounds [18].

4.1.2. Group contribution methods

Other methods widely used for the estimation of thermal properties are GC methods, which
assume that a molecule is formed by several functional groups and the properties of a
compound can be estimated as the sum of the contributions of all the functional groups that
form the molecule. The contribution of each group to a property (e.g., Tm, Tg or c,) is obtained
from the experimental data of this property and determined for other substances that contain
the same functional group. The main problem of this approach is that the way in which it
defines groups is not unique; this is the reason why different authors have defined different
groups to represent the same compound. Regarding ILs, some GC methods take the imida-
zolium or pyridinium rings as a group, whereas others divide the ring into many CH and N
groups. According to Wu and Sandler [19] the geometry of the functional group should be the
same, regardless of the molecule in which the group appears; it should have the same charge
in all molecules and it should be the smallest identity into which the molecule can be divided
in electroneutral groups. The general form of these methods [20] can be written as:

v (T ) (Epy ) @

where y is the dependent variable (e.g., Tm, Tg or ), D, E and F are the contribution of the
functional groups of order 1,2 and 3, respectively and m, n and p are the times that groups i, j
and k appear in the compound. When a=b=c=1 the model is lineal; when any of these numbers
are zero, the corresponding contribution is not taken into consideration and if they are other
values, the contributions are nonlinear. In the first-order GC methods, the groups behaved as
if they were isolated and the effect of neighbour groups was not considered. In the second
order GC methods, some information about the molecular structure was included with the
purpose of including proximity effects and differentiating among isomers. The third level was
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more convenient for the estimation of properties in the case of complex heterocyclic or large
poly-functional acyclic compounds [20].

A summary of some of the QSPR and GC models were developed for the estimation of melting
points, glass transition temperature and the heat capacity of ILs, and is presented below.

4.2. Melting point estimation

ILs are characterized by their low melting temperatures that depend on the strength of the
crystal lattice, which is controlled by several factors such as charge distribution on the anions,
H-bonding ability, the symmetry of the ions and the van der Waals interactions. Since it is an
important property in the potential applications of ILs, several methods of melting tempera-
ture estimation can be found in the literature, most of them based on QSPR methods.

4.2.1. QSPR methods

The first attempt to predict the melting temperature of ILs was made by Katritzky et al. [21].
From a database of 126 pyridinium bromides and optimizing only the cationic part, they
developed a six-descriptor equation, obtaining a value of R*=0.788. According to the authors,
the most significant descriptors were, the indices reflecting the coordination ability of the
cation, the average nucleophilic reactivity index for the N atom related to electrostatic
intermolecular interactions and the total entropy per atom related to the difference in confor-
mational and rotational degrees of freedom in solid and liquid phases. Many other models
[22-29] have been developed for several families of ILs (Table 2), most of them for imidazolium-
based ILs with the same anion; consequently, their range of application is quite limited.

A different approach in the selection of the ILs was made by Lépez-Martin et al. [30]. In this
case, 22 ILs with the same cation, the 1-ethyl-3-methylimidazolium and 22 different anions
were chosen, and the cation and anion geometries were optimized. The main disadvantages
of this approach are that the cation-anion interactions are not taken into consideration and that
the geometry optimizations correspond to the gas phase. The nine selected descriptors quantify
the influence of size, branching, charge distribution and symmetry of the anion, as was
previously reported for the cation. In order to test the effectiveness of this approach (R?=0.955),
anew data set including 62 ILs with 22 different cations and 11 different anions was correlated
and a six-descriptor equation (R?* = 0.869) was proposed.

Varnek et al. [31] performed an exhaustive study of QSRP models for melting temperature
calculation. A data set with 717 bromides of nitrogen containing organic cations (126 pyridi-
nium bromides, 384 imidazolium and benzimidazolium bromides, as well as 207 quaternary
ammonium bromides) with melting temperatures from 5°C to 320°C was selected and results
obtained using different machine-learning methods (associative neural networks, support
vector machines, k nearest neighbours, modified version of the partial least-squares analysis,
backpropagation neural network and multiple linear regression), while different types of
descriptors were analysed. The study concluded that the most efficient descriptors/methods
combination depends on the data set used. Slightly better results were obtained with neural
networks and support vector machine methods, regardless of the chosen parameters. Regard-
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ing the descriptors, the study concluded that the performance of the descriptors depends both
on the machine learning method and the data set.

Structures No. of ILs No. of parameters R? Ref.
Pyridinium bromides 126 6 0.7883 21
Imidazolium bromides 57 5 0.7445 22
Imidazolium bromides 29 5 0.7517 22
Imidazolium bromides 18 3 0.9432 22
Benzimidazolium bromides 45 5 0.6899 22
N-pyridinium bromides 126 5 0.790 23
Tetraalkyl-ammonium bromides 75 6 0.775 23
(n-Hydroxyalkyl)-trialkyl-ammonium bromides 34 5 0.716 23
1-susbstituted 4-amino-1,2,4-triazolium nitrocyanamides 7 1 0.960 24
1-susbstituted 4-amino-1,2,4-triazolium bromides 13 3 0.914 25
1-susbstituted 4-amino-1,2,4-triazolium nitrates 13 3 0.933 25
Imidazolium hexafluoroborates 29 6 0.9207 26
Imidazolium tetrafluoroborates 19 3 0.9047 26
Imidazolium bromides 30 4 0.89 27
Imidazolium chlorides 20 3 0.88 27
Imidazolium bromides and imidazolium chlorides 50 4 0.88 27

Pyridinium bromides, imidazolium bromides,
benzimidazolium bromides and 1-susbstituted 4- 288 8 0.810 28

amino-1,2,4-triazolium nitrates

Guanidinium chlorides, guanidinium bromides,
101 92 0.815 29
guanidinium iodides and guanidinium tetraphenylborate

Table 2. Some QSPR models for the estimation of melting temperature.

For the purpose of ensuring a reliable prediction for a broad range of ionic liquids, the melting
temperature of 705 ILs including sulfonium, ammonium, pyridinium, 1,3-dialkyl imidazoli-
um, tri-alkyl imidazolium, phosphonium, pyrrolidinium, double imidazolium, 1-alkyl
imidazolium, piperidinium, pyrroline, oxazolidinium, amino acids, guanidinium, morpholi-
nium, isoquinolinium and tetra-alkyl imidazolium was collected by Farahani et al. [32]. The
final proposed equation (R* = 0.658) contained 12 descriptors, eight of them describing the
characteristics of the cation and the other four the characteristics of the anion.

Yan et al. [33] proposed an equation using topological indices based on atom characters (atom
radius, atom electronegativity, etc.) and atom positions in the hydrogen suppressed molecule
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structure. The data set was composed of 394 ILs: 120 imidazolium, 43 benzimidazolium, 109
pyridinium, 19 pyrrolidinium, 65 ammonium, seven sulfonium, 20 triazolium and 11 guani-
dinium. The resulting equation incorporates 12, 14 and six TIs for the cation, the anion and
their interaction, respectively, the obtained value being R*=0.778 for the training set and 0.753
for the test set.

4.2.2. Group contribution methods

A group contribution method for the calculation of melting temperatures of ILs was developed
by Huo et al. [34] for 155 imidazolium and benzimidazolium ILs. The structural groups, up to
a total of 30, were selected in a way that rendered them as small as possible and considering
three group types: belonging to a ring, belonging to a no-ring structure and ionic groups. In
addition to the structural groups, three characteristic factors were included: (1) o, which took
the values 0 or 1, depending on whether the groups connected to a N atom in an imidazolium
ring were the same or different; (2) t, which was the number of ring groups in the molecule;
(3) &, which could be 0 if there was no group attached to the C2 position in the imidazolium
group or 1 if one group was attached. The average relative deviation in this work was 5.86%
and deviations of less than 5% were obtained for 106 ILs. The maximum relative deviation was
32.75% for 1,3-dimethylimidazolium chloride.

Using a first-order contribution approach and considering the whole ring as a single group,
another group contribution method was proposed by Lazzus [35] using a set of 400 ILs. The
group contribution to the melting point was calculated for 31 groups for the cation and 32
groups for the anion, and covered a broad range of ILs. The average relative absolute deviation
reported was less than 8% for the 200 ILs used for the group parameters calculation and less
than 6% for the other 200 ILs used in the prediction stage.

The most comprehensive melting temperature database was collected by Gharagheizi et al.
[36] in order to amplify a GC model with a broad range of applicability. The melting temper-
ature of 799 ILs including 1,3-dialkylimidazolium, 1-alkyl imidazolium, amino acids, ammo-
nium, double imidazolium, guanidinium, isoquinolinium, morpholinium, oxazolidinium,
phosphonium, piperazinium, piperidinium, pyridazinium, pyridinium, pyrrolidinium,
pyrroline, quinary alkyl imidazolium, sulfonium, tetra-alkyl imidazolium, tetrazolium,
thiazolium, tri-alkyl imidazolium, triazolium and uronium was collected and the group
contribution for 80 groups (31 anions and 49 cations) were calculated. Some of these groups
were not structural groups, because they were defined as the “sum of all the carbons belonging
to any aromatic and heteroaromatic structure” (group 6) or the “total number of Ns, Os and
Fs in the molecule, excluding N with a formal positive charge, higher oxidation states and
pyrrolyl forms of N” (group 13), among others [36, p. 3]. The absolute average relative
deviation was 5.82%.

Recently, Valderrama [37] reviewed some of the models proposed for the estimation of melting
point [34, 36, 38] and concluded that the experimental determination of melting temperature
should be standardized in order to guarantee reproducibility, and further emphasized that
even if the data were accurate, none of the present methods serve as a clear solution to the
problem of predicting the melting temperatures of ILs.
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4.3. Glass transition estimation

Glass transition can be defined as the transition of an amorphous material from a hard and
relatively brittle state into a molten or rubber-like state. This transition is accompanied by
changes in some properties such as heat capacity and thermal expansibility. Even though many
ILs present only glass transition, few models have been developed for their estimation
compared to melting temperature. The QSPR and GC methods available in the literature are
summarized below.

4.3.1. QSPR methods

Some QSPR-based models for predicting the Tg of ILs have been reported in the literature.
Many of them were developed for predicting the glass transition temperature of one family of
ILs such as ammonium [39] or 1,3- dialkylimidazolium [40, 41]. In these cases, the Tg is
calculated as the sum of the contribution of the anion and the cation, and their corresponding
descriptors are included in T, , and T, terms:

T,=intercept + T, .+ T, )

The model developed for ammonium-based ILs [39] contains 12 descriptors (six for the cation
and six for the anion) obtained from the experimental data of 73 ILs (22 different anions and
49 different cations) and the reported R? value is 0.9657.

A database of 109 1,3- dialkylimidazolium ILs was selected by Mousavisafavi et al. [40, 41] to
develop two models applying both a linear and a nonlinear approach for the selection of the
molecular descriptors; similar results were obtained in both cases. The best value of R* was
0.91, achieved using the nonlinear approach.

A more general equation was developed by Mirkhani et al. [42] and included 139 ILs (37
different anions and 86 different cations including alkylimidazolium, amino acids guanidini-
um, isoquinolinium, morpholinium, oxazolidinium, phosphonium, piperidinium, pyrrolidi-
nium and triazolium) in the database. They proposed an equation with 11 descriptors (R? =
0.8897), three descriptors for the anion and eight descriptors for the cation. The highest and
lowest prediction errors, 8.29% and 1.67%, belonged to 1-alkyl imidazolium and oxazolidini-
um, respectively.

Similar to the estimation of Tm, Yan et al. [43] implemented a QSPR model based on topological
indices (TIs) for Tg calculation. A total of 139 ILs including 63 imidazolium, 17 pyridinium, 48
ammonium, seven sulfonium and four triazolium were taken from the literature to develop
the model. The resulting expression contained seven TIs for the cation, 16 TIs for the anion and
two TIs for their interaction; the overall value for R? (0.898) was very close to the value obtained
using other descriptors [42].
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4.3.2. Group contribution methods

To date, three GC models have been proposed for Tg estimation. One of them is only suitable
for 1,3-dialkylimidazolium ionic liquids [44], while the other two [45,46] are appropriated for
many types of ILs. In all cases, the IL ring (imidazolium, pyridinium pyrrolidinium, etc.) is
considered as a group. The general equation can be written as:

N, N,
Tg=TgO+§NaiTgai+§N T (4)

ci gei

where N,; and N, are the occurrence of the i group in the cation and in the anion, T

oo and Ty
are the contributions of the group i and T, is the intercept.

From a data set of 496 ionic liquids (71 anions and 247 cations), Gharagheizi et al. [45] calculated
the group contribution parameters for 19 anions and 31 cations. Similar to the method
proposed for estimating Tm [36], some of the considered groups were not structural groups.
The average absolute relative deviation obtained for the complete data set was 3.65%. Con-
currently, Lazzus [46] published another GC model using 150 ILs and proposed the group
interaction parameters for 26 cation and 36 anion groups. The average absolute relative
deviation reported for the total set was 4.91%. None of these papers provide any indication of
the criteria applied to the selection of the groups.

4.4. Heat capacity estimation

Knowledge concerning the heat capacity of ILs is important because of its relationship with
other thermodynamic properties i.e., entropy, enthalpy and Gibbs free energy, and also due
to the application of ILs in industrial processes or as heat transfer fluids. A brief summary of
the ¢, estimation methods is presented below.

The relationship between c, and molar volume has been stated by several authors and some
expressions for the calculation of c, at 25°C have been developed [47, 48]. Including the
temperature as a variable, Paulechka et al. [49] proposed another equation that allows to
calculate the c, values at other temperatures.

The only method based on QSPR found in the literature was proposed by Sattari et al. [50]. A
database containing the ¢, values of 82 ILs including 39 different cations and 24 anions was
used to find the most accurate model with an acceptable number of descriptors. In the final
13-parameter equation, a binary combination of two descriptors instead of a single descriptor
was included in equation 1. On the basis of the R? values for the training set and the test set
(0.990, 0.996), the authors suggest that binary multiplication of the descriptors can be a
successful approach.

The first GC method for the estimation of ¢, of ILs was developed by Gardas and Coutinho [48]
using a second-order group additivity approach. The database was composed of 19 ILs that
permitted the calculation of the group contribution parameters for four cations and six anions.
According to the authors, these group parameters made it possible to calculate the c, of at least



Thermal Behaviour of Pure lonic Liquids
http://dx.doi.org/10.5772/59271

200 ILs and in almost all cases, the deviations in predicted heat capacities were inferior to the
experimental uncertainties. The group contribution parameters were subsequently extended
to amino acid-based ILs by Gardas et al. [51].

Ge et al. [13] adapted the Joback [52, 53] GC method for the prediction of the ideal gas heat
capacities of molecular compounds to the estimation of ¢, of ILs. From the ideal gas heat
capacities and using an estimation method [54] to calculate the critical properties and the
acentric factor, the ¢, can be calculated. The original parameters [52], along with the parameters
calculated for three new groups (B, P, -SO-), were used to predict the Cp of 53 ILs, leading to a
relative absolute deviation of 2.9%.

A different approach to the estimation of c, using a GC method was proposed by Valderrama
et al. [55] and combines the group contribution method with mass connectivity indices, which
considers the type of connection between groups and the mass of these groups. In order to
build a more general method, the database employed for determining the value of the
contribution of the groups included 32 ILs of five families (imidazolium, pyridinium, pyrro-
lidinium, phosphonium and alkyl-ammonium) and 126 organic compounds. The average
absolute deviation values were 2.8% in the correlation of the 32 ILs and the 126 organic
compounds, and 2.1% in the ¢, prediction of nine ILs.

The temperature dependency of c, for several ions was calculated using a quadratic equation
by Miiller and Albert [56]:

Cp,,y=A+BT +CT? (5)

Cp= 2 xCpi+ 3 x,Cp; (6)

i=cations j=anions

where A, B and C are the parameters of the anion or cation and x; and X; are the molar contri-
butions of the cation or anion on all cations or anions, respectively. The parameters were
calculated for 39 cations and 32 anions from a database of 84 ILs. The average absolute
deviation was 1.4% and 4.4% for the training set and the test set, respectively.

In addition to the model previously mentioned [50], Sattari et al. [57] presented another model
for calculating c, using a set of parameters such as the number of atoms, of non-h-atoms and
of five-membered rings. Four of these 14 parameters were the same as those selected in the
QSPR-based model. The average absolute deviation for the 82 ILs included in the database
was 1.68%.

For the purpose of deriving an easy-to-use correlation based on very simple molecular
parameters, Farahani et al. [58] proposed a correlation equation that only depends on the atom
counts in both anion and cation, the number of hydrogen in anions and the number of methyl
groups in the cation. In this case, the absolute average relative deviation reported by the
authors was 2.48%.
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5. Conclusions

Although the use of DSC for the thermal analysis and the experimental determination of the
heat capacities of pure ionic liquids is a widely-used technique, there are several factors that
have an influence on their correct determination. For this reason, in this chapter, not only was
a work methodology proposed for the determination of both phase transition temperatures
and heat capacities, but the possible aspects affecting their experimental determination have
also been explained.

Attempting to standardize the work methodology is necessary for obtaining high quality and
precision-based experimental data, as well as for carrying out comparisons between the results
presented by different authors, which will allow for reliable conclusions.

Due to the different results observed in the thermal analysis of the pure ILs characterized thus
far, finding a relationship between the structure of the IL and its thermal behaviour is com-
plicated. For this reason, in this chapter, the thermal behaviour of pure ILs was divided into
three types, depending on the phase transitions presented by each IL:

i The first type of behaviour is formed by ionic liquids characterized by presenting
only the formation of amorphous glass.

ii. The second type of behaviour is characterized by presenting a freezing transition,
forming crystals upon cooling and a melting transition upon heating.

iii. The third type of behaviour in the ILs that does not show a tendency to crystallize
upon cooling; however, upon heating, they exhibit cold crystallization.

It is important to state that ionic liquids usually present polymorphic-like behaviour, increas-
ing the difficulty of interpreting the DSC thermograms. Additionally, the phase transitions are
strongly dependent on the scanning rate and on the cooling method used to obtain the solid
phase (quenching or slow cooling).

The relatively extensive database on the heat capacities of pure ILs allows for drawing some
conclusions about the influence of the structure of the ionic liquid on heat capacity values. The
¢, values are clearly affected by the nature of the anion, the general trend being that the higher
the molar mass or number of atoms of the anion, the higher the heat capacity. In the case of
the influence of the structure of the cation, although it has been less studied than the influence
of the anion, it can be concluded that pyridinium and pyrrolidinium-based ionic liquids
present higher heat capacities than their analogous imidazolium-based ILs. As for the influence
of the alkyl-side chain length of the cation, the addition of a -CH,- group leads to an incre-
mental increase in the c, of approximately 30-35 J/K mol and this influence is more remarkable
at higher temperatures.

Finally, regarding the estimation of the melting and glass transition temperatures, and liquid
heat capacities, although several methods for estimating the thermal properties of ILs can be
found in the literature, most of them are based on the use of quantitative structure-property
relationship (QSPR) or on group contribution (GC) methods; all of them present several
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limitations, which can be attributed to two aspects: all experimental data have not been
correctly determined and/or our knowledge of the factors that influence thermal properties is
incomplete. A bigger effort should be made from both experimental and academic perspectives

to improve the estimation of these properties.

Nomenclature of ionic liquids

EMimNTf, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
EMMimNT{, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide
PMimNTf, 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
BMimNTf, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
BMimBF, 1-butyl-3-methylimidazolium tetrafluoroborate

BMimTFO 1-butyl-3-methylimidazolium triflate

BMimDCA 1-butyl-3-methylimidazolium dicyanamide

BMimPF, 1-butyl-3-methylimidazolium hexafluorophosphate

BMimCl 1-butyl-3-methylimidazolium chloride

BMimBr 1-butyl-3-methylimidazolium bromide

BMim methide 1-butyl-3-methylimidazolium methide

BMMimBEF, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate

BMMimPF 1-butyl-2,3-dimethylimidazolium hexafluorophosphate
C,CNMimDCA 1-butyronitrile-3-methylimidazolium dicyanamide
C,CNMMimPF 1-butyronitrile-2,3-dimethylimidazolium hexafluorophosphate
HMimNTf, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
HMimDCA 1-hexyl-3-methylimidazolium dicyanamide

HMimTFO 1-hexyl-3-methylimidazolium triflate

EMpyESO, 1-ethyl-3-methylpyridinium ethylsulfate

BpyBr 1-butylpyridinium bromide

PMpyNTf, 1-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide
BMpyNTf, 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide
BMpyBr 1-butyl-3-methylpyridinium bromide

BMpyTFO 1-butyl-3-methylpyridinium triflate

BMpyBE, 1-butyl-3-methylpyridinium tetrafluoroborate

HMpyNTf, 1-hexylpyridinium bis(trifluoromethylsulfonyl)imide

BMpyrNTf, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide
C,CNTMANT{, butyronitrile-trimmethylammonium bis(trifluoromethylsulfonyl)imide
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