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1. Introduction

The Southwest Atlantic (SW Atlantic), corresponding to FAO Statistical Area 41, includes a

total continental shelf area of approximately 1.96 million km2 of which a large portion lies off

the Argentine coast (the Patagonian Shelf) and extends beyond Exclusive Economic Zones

(EEZs) in the region [1-3]. This area is therefore integrated in the Southeast South American

Shelf Large Marine Ecosystem (SSASLME) [4,5]. Currently, this region is the only worldwide

significant area for high seas (HS) fisheries not covered by any Regional Fisheries Management

Organisation (RFMO) [3].

The Patagonian Shelf (PS) hosts some of the most important fisheries in the world, targeting

cephalopods (Illex argentinus [Castellanos, 1960] and Doryteuthis gahi [D’Orbigny, 1835]), and

hakes (Merluccius hubbsi [Marini, 1933] Merluccius australis [Hutton, 1872]) [3,6-14]. Most of the

exploited demersal stocks on the HS are straddling stocks, including Argentine shortfin squid

(I. argentinus), Argentine hake (M. hubbsi) and southern blue whiting (Micromesistius australis

[Norman, 1937]) [15].

Several authors [2,3,16-23] have studied the potential disturbance of the seabed by bottom otter

trawls and the possible negative effects on the structure of benthic communities. In recent

years, several resolutions of the United Nations General Assembly [24-28] on sustainable

fisheries made a call to States and RFMOs to identify vulnerable marine ecosystems (VMEs)



and determine whether bottom fishing activities would cause a significant adverse impact on

such ecosystems.

Sensitive species such as deep-water corals and deep-water sponges are found throughout the

world oceans. Thus, the importance of habitat-structuring organisms is not restricted to

shallow water, but also to shelf-break, hydrothermal vents, seamounts, and even the once

considered constant and uniform deep-sea basins. Deep-water corals are vulnerable organisms

occurring in the upper bathyal zones throughout the world and threatened by human

activities, particularly fishing and oil exploration [29-31]. Fishing has a significant adverse

impact (SAI) on deep-water coral communities in all oceans [32-35], particularly in the

Northeast and Northwest Atlantic [36-40], Northeast Pacific [41,42], and Southwest Pacific

[43-46]. In the SW Atlantic, the HS are one of the areas where deep-sea science has, to date, not

been very active.

Protection of VMEs is a significant element of the management framework for bottom fisheries

in high seas areas of the world ocean and its identification for selecting suitable protection

areas is a challenge that conventional fisheries science cannot alone solve satisfactorily. Instead,

it requires a multidisciplinary approach [21,22,47]. From the point of view of management of

bottom fisheries and the governance of high seas areas, the situation in the PS poses an added

problem as there is no any RFMO in force [2]. In its 2014 report [48], the Global Ocean

Commission (GOC) recognises that continued scientific research is necessary to assess the

cumulative impacts of human activities on the high seas so that informed decisions can be

made about reversing the degradation of the global ocean.

Submarine canyons are unique habitats in terms of complexity, instability, material processing,

and hydrodynamics. They may support diverse assemblages of larger epibenthos [49]. Inside

canyons, abundance and diversity of the macrofauna depend, to some extent, on the physical

disturbance regime and on the rate and quantity of organic matter deposited. In the study area,

canyons and submarine mounts were shown to be hot spots of benthic biodiversity of species

and ecosystems.

Benthos refers to the community of organisms which live on, in, or near the seabed, also known

as the benthic zone. Megabenthos or macrobenthos comprises the more visible, benthic

organisms exceeding 1 mm in size and large enough to be determined on photographs [50,51].

Megabenthos is a key issue of environmental studies, as it represents a major fraction of the

deep-sea benthic biomass and plays a key role in deep-sea ecosystems [52]. Tracey et al. (2007)

in [53] reported linear and radial annual growth rates of 20 mm and 0.2 mm, respectively, for

some genera of the ISIDIDAE Family (Lamouroux, 1812), which is presumably evidence of the

high vulnerability of these taxa to direct or indirect mechanical impact produced by the

sediment removal, re-suspension, etc. caused by bottom fishing activities.

Some of these organisms form complex 3D structures protruding from the seabed, allowing

for the settlement of sessile species needing consolidated substrata to settle and develop

(sponges, other cnidarians), and providing shelter and food for a wide range of vagile fauna

(crustaceans, echinoderms, molluscs, and some fish).
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2. Materials and methods

In accordance with the aforementioned UNGA resolutions [24-28] and the FAO deepwater

guidelines [54], the Spanish Institute of Oceanography (Instituto Español de Oceanografía

[IEO]) conducted from October 2007 to April 2010 a series of 13 multidisciplinary research

cruises on the HS of the SW Atlantic, to identify VMEs and to assess the potential interactions

with fishing activities. This paper presents the results of the five first cruises, consistently with

UNGA resolutions (paragraphs 80 and 83 to 87 of resolution 61/105 (2007) and paragraphs 117

and 119 to 127 of resolution 64/72 (2010) in [27,28], which support making publicly available

information on interactions between bottom fisheries and VMEs in the HS.

The use of spatial management tools to preserve the marine biodiversity of species inhabiting

the HS has been broadly discussed in recent years [55]. To make such spatial management

possible, our immediate objectives are: assessing specific biodiversity (mainly describing new

species to science); describing the different habitats, ecosystems and deep-sea geomorpholog‐
ical features identified; and analysing their interactions and relationships to protect the full

range of potentially different habitats.

The explored area during the five cruises conducted between October 2007 and April 2008

(Table 1) was located on the southern part of the HS of the SW Atlantic, to the east of the

Argentinian EEZ 200 miles limit and between 44° 40’S and 47° 51’S up to the 1500 m depth

contour (Figure 1). The rest of the study area (up to 42°S) was surveyed during the eight

following cruises (October 2008-April 2010), but the analysis of the information concerning

VMEs collected during those last cruises, is still ongoing.

Cruise name Start End Total days

Patagonia 11/07 28/10/2007 20/11/2007 24

Patagonia 12/07 24/11/2007 21/12/2007 28

Patagonia 01/08 08/01/2008 30/01/2008 23

Patagonia 02/08 30/01/2008 11/03/2008 41

Atlantis 2008 12/03/2008 15/04/2008 40

Table 1. Cruises carried out by R/V “Miguel Oliver”.

In the right image of Figure 1 a non coloured area in the shelf can be roughly appreciated

around 45°30’S and between 60°00’W-60°40’W, for which it was not possible to collect

multibeam bathymetry data (no data) due to bad sea state conditions. The exploration of this

area was carried out during one of the cruises conducted in 2009. Nevertheless, this type of

data is not relevant for the present study, for which several trawl and CTD stations allowed

the collection of pertinent information. The blue lines in the left image of Figure 1 correspond‐
ing to the 600, 1000 and 1500 m depth contours.
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Key concepts for definition of VMEs were applied according to the FAO International

Guidelines for the Management of Deep-Sea Fisheries in the High Seas [54]. These guidelines

classify marine ecosystems as vulnerable based on several criteria: (1) uniqueness or rarity; (2)

functional significance of the habitat; (3) fragility; (4) life-history traits of component species

that make recovery difficult; and (5) structural complexity.

Figure 1. Study area and positioning of the stations carried out during the research cruises onboard the R/V “Miguel

Oliver”.

For an adequate identification of VMEs, the two approaches in operation since 2008 by the

NAFO Scientific Committee and the NAFO Working Group on Ecosystem Approach to
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Fisheries Management (WGEAFM) were applied in this study [56,57]: (1) the examination of

cumulative catch data by ranking the biomass of VME taxa in each trawl from lowest to highest

and then plotting the increase in cumulative biomass with each additional trawl; and (2) the

use of Geographical Information System (GIS) to map the density of vulnerable species and

groups’ by-catch [58].

The study area included part of the outer shelf and upper and middle slope of the PS and was

divided into thirteen depth strata in order to obtain a higher resolution in the description of

vulnerable organisms. The research cruises involved five scientific disciplines: cartography,

geology, benthos, fisheries, and hydrography.

This study used data from three main sources: i) Information from the five research cruises

(geological, echosounder and oceanographic data; benthos and fish samples; fishery catch data

[cpue]); ii) Data from commercial fishing activity collected by onboard scientific observers from

1989 to 2007 (fishery footprint); and iii) Commercial information on historical landings and

effort data (provided by the Spanish fishing sector), as well as catch data for the main com‐
mercial species during the period 2000-2007 (logbooks filled in by captains of the fishing

vessels, and provided by the Spanish General Secretariat for Fisheries [SGP]).

Geophysical and geological data were collected following internationally accepted standards

and protocols for habitat mapping [20,59]. Full sea floor coverage using swath bathymetry

provided a very high resolution of sea floor morphology. The backscatter data from multibeam

echosounder together with high resolution seismic reflection profiles made available valuable

data on the seabed sediments types. These data provided the geomorphological and acoustic

basis to design a ground-truth planning strategy allowing for precise habitat mapping.

Navigation during the surveys was via differential GPS Simrad GN33 using satellite correc‐
tions integrated into an inertial-aided Seapath 200 system. Swath-bathymetric data were

acquired using a hull-mounted Kongsberg-Simrad EM 302 multibeam echosounder (288

individual beams, angular coverage up to 150°) operating at a frequency of 30 kHz. To correct

the multibeam bathymetry, we carried out systematic casts of direct sound velocity profiles

on the water column with an Applied Microsystems SV Plus equipment. Data processing

included the removal of anomalies and the necessary sound velocity corrections using the

Kongsberg–Simrad swath bathymetric software package NEPTUNE. Valid data were gridded

at 50×50 m cell size resolution on a SUN workstation. The seismic parametric system Topas 18

produced very high resolution seismic profiles along all ship tracks. Sub-bottom penetration

varied, according to the lithology, between 150 and 250 m. Morphometrical data were obtained

using ArcGis (ESRI) and Fledermaus software (Interactive Visualization Systems [IVS]) to

provide final 3D images of the seafloor morphology.

Samples of benthic fauna analysed in this study were collected with the Lofoten bottom trawl

gear itself. Benthic fauna samples were sorted on board and preserved (70% ethanol or 4%

buffered formaldehyde-seawater solution) for further identification analysis. Even if the

bottom-trawl by-catch collected information did not allow for a detailed habitat mapping of

VMEs, it provided a valuable indication of VME presence/absence that can be used to propose

conservation measures, such as candidate areas for bottom fishery closures [23].
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Sediment samples were collected using net collectors attached to the Lofoten fishing gear

(Atlantis 2008 cruise) and with an USNEL type box-corer (BC) (maximum breakthrough of 60

cm; effective sampling area of 0.25 m2 [50×50 cm]). A few samples were taken using a Bouma

type box-corer (effective sampling area of 0.0175 m2 [10×17.5 cm]). Both gears are designed to

take undisturbed samples from the top of the seabed, and are suitable for almost every type

of sediment. Sediment temperature and redox profiles (Eh) were immediately performed for

the box-corer sample after each station. In the laboratory, the granulometrical analysis of the

sediment was carried out by dry sorting the coarse fraction (>62 µm) and the sedimentation

of the fine fraction (<62 µm). The organic matter content was assessed after calcinating (at

500°C for 24 h) and drying the sediment sample.

The hydrographical conditions in the studied area during the Atlantis 2008 cruise were

characterised by means of a Seabird-25 CTD probe (SBE-25), equipped with oximeter, fluor‐
ometer and PAR detector. The survey schedule was optimized by systematically deploying

the CTD at fishing stations below 500 m, but not always at greater depths. At each cast, the

CTD was deployed to 5 m depth and stabilised for approximately 3 min. Once stable, the CTD

was brought back to the surface and started profiling at a constant speed of 1 m⋅s-1. The SBE-25

worked in auto-contained mode at a frequency of 8 scans⋅s-1 and the downloaded data were

converted into physical units and pre-processed by using the SeaBird software (SeaSave/SBE

DataProcesing-win32) with standard calibration values. Quality control and post-processing

was performed with MATLAB.

Atlantis 2008 stratified bottom trawl survey enabled the assessing of the biomass and bathy‐
metric distribution of the main commercial and most abundant fishery stocks by means of the

swept area method. The survey used a stratified random design with strata boundaries

definedby latitude and depth ranges, depth strata 1-7 located south of parallel 45°S and depth

strata 8-13 sited north of the referred parallel (Table 2). Scheduled fishing stations (hauls of 30

min) were performed using a Lofoten bottom trawl net fitted with a rockhopper mix train with

bobbins and rubber separators, suitable for deep-water fishing over irregular bottoms. Mean

trawl speed was of 3.2 knots and trawl direction followed the bathymetric profile in the upper

slope, but was variable in the outer shelf and middle slope.

Data recorded by scientific onboard observers from 1989 to 2007 between latitude 42°S and

48°S were used for mapping only the Spanish fishery footprint, since fishing data of other fleets

were unavailable to us. The IEO observers’ program placed one observer per selected vessel

to cover 12% to 15% of the whole fleet. Table 3 summarize the activities (number of hauls

year-1) of the IEO observers on the HS of the SW Atlantic, were Divisions 42 and 46 correspond

to the areas roughly around parallels 42°S and 46°S.

Data used for each fishing haul corresponded to the middle tow position, since it offers more

relevant information than the initial or final positions. All middle tow positions were imported

into ArcGIS 9.3 mapping software to plot all trawl tows as straight lines between the reported

start and end positions. They were then exported to a grid of 5’×10’ min blocks, and any block

including at least two tows was retained for mapping the bottom trawl footprint.
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Year Division 46 Division 42 Total

1989 756 734 1490

1990 411 222 633

1991 152 28 180

1992 561 9 570

1993 515 0 515

1994 469 0 469

1995 186 0 186

1996 310 21 331

1997 811 35 846

1998 709 0 709

1999 384 4 388

2000 590 44 634

2001 673 111 784

2002 452 142 594

2003 191 0 191

2004 472 0 472

2005 561 1 562

2006 477 0 477

2007 333 0 333

Total 9013 1351 10,364

Table 3. Number of hauls/year and division recorded by scientific observers.

Strata
Depth range

(m)

Surface

(mn2)

No. of grids

(~5 mn2)

No. of scheduled

hauls

No. of hauls made

Valid Null

1 <200 1148 219 12 12

2 201-300 272 51 3 4

3 301-400 381 71 4 3

4 401-500 518 119 7 7

5 501-700 1513 318 18 18

6 701-1000 1952 349 20 20 3

7 1001-1500 2007 435 24 2 5

8 <200 1394 254 14 15

9 201-300 111 24 2 2

10 301-400 121 21 2 2

11 401-500 78 26 2 2

12 501-1000 933 170 10 12

13 1001-1500 2507 515 29 26 5

Total 12933 2571 147 125 13

Table 2. Scheme of hauls by depth stratum, and main characteristics (ATLANTIS 2008 cruise).
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Proper identification of the areas where VMEs are present followed the methodology used by

the NAFO in its Regulatory Area [60]. Threshold catches, defined as catch levels of significant

concentrations of invertebrates to be considered as possible VME areas, were assessed by

analysing the cumulative biomass frequencies. Cumulative catch curve method was chosen to

calculate the threshold catch. The cumulative frequency was plotted for all capture sets where

taxa, considered as vulnerable by the International Guidelines for the Management of Fisheries

[54] and by the Convention for the Protection of the marine Environment of the North-East

Atlantic (OSPAR), were identified. The threshold selection for each taxon was made on the

basis of minimum/maximum catch, density and morphological characteristics. Once a location

of significant concentrations of vulnerable organisms was defined (key location), a 2 nm radius

buffer zone around it was drawn to provide a safe margin of error on site.

The Random Forest algorithm for classification (RF) was used to predict the potential distri‐
bution of vulnerable benthic species by rating environmental conditions on the basis of

previous observations.

RF is a non-parametric statistical method for data analysis that makes no distributional

assumptions about the predictor or response variables [61], showing high prediction accuracy

classifying rocky benthic communities [62] and beating other methods commonly used for

ecological prediction [61,63]; The algorithm calculate the suitability of a given habitat for a

given species based on known affinities with habitat characteristics, stored as raster maps, and

called independent ecogeographical variables (EGV). According to HSI values, a map of

species’ expected distribution is produced, a value ranging from 0 to 1 showing the probability

that the habitat of a given location is suitable for the species occurrence [64]. Thus, for a

particular location, high HSI values mean high chances of the species' occurrence. To perform

this mapping, presence/absence data from different vulnerable benthic organisms found in the

study area were used as dependent variables of the different EGV.

Gathering accurate sampling presence/absence data is a critical part of the study, since the

absence of a species in a given location can be due to several reasons: the species is present but

is not observed, the species is absent even though the habitat is suitable, or the species is absent

because of the unsuitability of the habitat. Only the last reason is considered as a “true absence”

[65,66]. As presence data were aggregated into one single group named “vulnerable organ‐
isms”, the resulting HSI predicted the potential habitat of any of the considered vulnerable

organisms in the HS of the SW Atlantic under study.

The RF method offers the possibility to calculate an accurate unbiased estimator, using Out-

Of-Bag (OOB) observations as an internal validation data set [67], computed from the resulting

confusion matrix [68]. Accuracy is the proportion of the total number of predictions that were

correct and this accuracy indicator is offered to the user as a measure of the model’s predictive

performance. It is determined using the equation:

ACC
OOB

=
TS + TU

N

Where TS is the number of truly suitable locations, i.e. suitable locations correctly classified

by the model; TU is the number of truly unsuitable locations, in other words unsuitable

locations that have been correctly classified; and N is the total number of observations.
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Data was analyzed using the R statistical software [69] and the “Random Forest” package [70]

and predictions were exported to a shapefile format using the “maptools” package [71]. GIS

visualization of results was performed using the ESRI ArcMap 10.0 software.

Selected environmental variables involved in the study included depth, slope, sea bottom

temperature, substrate characteristics and topographic position (Table 4). The topographic

position was sorted into six categories: shelf (1), outcrop areas on the shelf (2), high slope (3),

low slope (4), abyssal flats (5), and canyons (6).

Variable Type of variable Range (min- max)

Hydrography Sea bottom temperature Continuous 1.70ºC – 6.14ºC

Topography
Bathymetry Continuous 110.1m – 1848.6m

Slope Continuous 0º – 14.792º

Substrate characteristics

Q50 Continuous 2 – 3.59

Coarse sand fraction Continuous 0.17% – 11.2%

Fine sand fraction Continuous 57.2% – 97.28%

Mud fraction Continuous 2.17% – 41.31%

Topographic position Seabed morphology Discrete 1 – 6

Table 4. Summary of the environmental variables used for the Habitat Suitability Index (HSI) modelling of vulnerable

organisms.

CTD stations’ sea bottom temperature data were interpolated for the whole area using the local

polynomial interpolation function (LPI) implemented in the ArcGIS 10.0 software. Slope was

derived from the bathymetry high resolution data, and after studying the semivariogram,

substrate characteristics were interpolated from granulometrical measures for the whole area

using a universal kriging interpolator (Unpublished).

All the explanatory data were extracted for the presence/absence data locations, subsequently

exported and analysed with the R statistical software using the BIOMOD package [72]. Several

presence/absence models were performed: Generalized Additive Models [73,74], Multivariate

Adaptative Regression Splines [74,75], Generalized Boosting Models [74,76] and Random

Forest model (RF) [67,74].

3. Results

3.1. Geomorphology

Geomorphological and geophysical data from the five research cruises revealed that the outer

shelf was mantled by 15 m high sand ridges, and was 60 to 67 m deeper than the maximum

120 m lowering of sea-level during the last glacially induced regression. This difference in
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depth indicates that the PS had experienced subsidence in the Holocene. These ridges are relict

and were probably constructed during the post-glacial transgression by the north flowing

Falkland (Malvinas) Current, since they are resting on shell layers of <35,000 to 11,000 years

old [77].

The upper continental slope descends from the shelf break, located at depths from 200 to 750

m, and is scarred by iceberg plough marks whose orientation and morphology suggest that

icebergs carried northwards by the Falkland (Malvinas) Current were probably responsible

for this erosion during the last glaciations [78].

Scattered over the study area (south of 45˚S) we found pockmarks, carbonate mounds formed
by deep-water corals, northwards furrows, areas of smooth topography and sediment waves

indicating that deposition on this part of the middle slope is controlled by bottom currents [79].

Seven submarine canyons were identified on the middle slope surveyed (Figure 2). Canyons

1 to 6 were cut by turbidity currents, whereas canyon 0 resulted from the combined effect of

turbidity currents and coalescence of pockmarks (formed by the expulsion of thermogenic

gas). These gas and fluid seepages contributed to the formation of canyons and to the partial

detachment of blocks from the canyon walls. Thus, the thermogenic gas responsible for the

formation of the identified pockmarks on the middle slope could be deep-seated, probably

related to the Falkland Rift Basin, north of the Falkland (Malvinas) Islands [80,81].

Figure 2. Colour shaded 3D bathymetric map of a segment of the Patagonian Argentinian margin compiled from mul‐
tibeam backscatter data. Arabic numbers identify submarine canyons discussed in text. CS=Continental shelf; US=Up‐
per continental slope; MS=Middle continental slope; P=Pockmark; PL=Iceberg plough marks.

The association of gas seepage with deep-water corals has been reported by [82] in pockmarks

off Brazil. If such association also occurs on the Patagonian margin, those communities may

be quite widespread in our study area.

3.2. Benthic communities

Bathelia candida (Moseley, 1881) was found to be one of the main reef builder species in the

study area, providing habitat for diverse associated fauna of sponges, crustaceans, echino‐
derms, molluscs, and other cnidarians. The benthic megafauna caught during the cruises
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included invertebrates as well as Phyla Chordata and Hemichordata. Phyla Cnidaria and

Porifera were dominant in terms of biomass (46% and 30%, respectively [Figure 3A]). The high

abundance of Cnidaria is remarkable, since 33.7% of the biomass of this phylum corresponded

to the Class Octocorallia, including significant groups such as gorgonians (sea fans), alcyona‐
ceans (leather corals) and pennatulaceans (sea pens). In addition, the VMEs dominated by

suspensivore and/or filter feeding organisms are habitats with high biodiversity and many

resources.

Figure 3. Biomass per Phyla in total strata (A) and by stratum < 200 (B), 201-300 (C), 301-400 (D), 401-1000 (E),

1001-1500 m depth (F).

A large part of the benthic samples contained erect sponges, octocorals, colonial scleractini‐
ans, calcified antipatharians, and hydrozoans (Family STYLASTERIDAE), all of them slow-

growing organisms considered as vulnerable by the UN and the OSPAR standards (see Table

7).
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Bathymetric strata differences clearly arise by comparing the composition of the sampled

benthic megafauna (Figures 3B-F):

Strata 1 and 8 (<200 m) showed a low catch of benthos (17,209 and 41,202 g. respectively), both

in number and diversity. We observed a strong dominance of pectinid molluscs of the Genus

Zygochlamys (Ihering, 1907) (60.39% of the biomass [Figure 3B]), mainly Z. patagonica (King &

Broderip, 1832), followed by those of the Genus Chlamys (Röding, 1798). Vulnerable organisms

were practically unrepresented in these shallower strata, probably due to the bottom trawling

activities for years by bottom trawlers from international fleets.

Strata 2 and 9 (201-300 m) recorded the lowest catch in terms of biomass (2121 and 1576 g,

respectively). In these strata, detritivorous and opportunistic species were predominant, and

the presence of vulnerable organisms was negligible again. Compared to strata 1 and 8, we

observed an increase of the benthic cnidarians’ biomass values, dominated by gorgonians from

Family PRIMNOIDAE (Milne Edwards, 1857) (Octocorallia; Gorgonacea) (80.32% in biomass,

[Figure 3C]).

Strata 3 and 10 (301-400 m) were hardly sampled due to the reduced number of valid hauls (3

in stratum 3 and 2 in stratum 10). The low benthic biomass and the negligible presence of

vulnerable organisms (Figure 3D) could be attributed to bottom fishing activities, as above‐
mentioned for strata 1 and 8.

Strata 4, 11, 5, 6, and 12 of intermediate depths (401-1000 m, [Figure 3E]) recorded high biomass

and numbers of octocorals, sponges, colonial scleractinians (Bathelia candida), and large

hydrocorals. Octocorals included colonies of various genera belonging to families PRIMNOI‐
DAE and ISIDIDAE. As aforementioned, the increase and proliferation of these species create

complex 3D structures providing the ideal habitat for a wide range of organisms. In those

strata, the large amount of filter feeders and suspensivore sessile organisms is an indication

of the presence of unaltered, complex and structured ecosystems. In the future, ROV and other

submersible camera systems could confirm these assumptions.

Strata 7 and 13 (1001-1500 m, [Figure 3F]) were the most difficult ones for trawling. Numerous

tows failed to produce valid results. In these strata, the highest proportion of animals was of

benthopelagic crustaceans, usually making diel migrations, even though they were normally

present on the seafloor. Benthic cnidarians were dominated by octocorals of the Order

PENNATULACEA (Verrill, 1865), with a wide bathymetric distribution, adapted to live on

soft substrates.

3.3. Sediments

Sediment data obtained during Patagonia 1207, Patagonia 0108, and Atlantis 2008 cruises

showed that fine sands were generally predominant throughout the study area, with low

contents of organic matter and sediment sorting varying from poor to moderately good. In

more detail, the bathymetric sedimentary classification would be as follows:

Depths <200 m: fine sand (mean diameter=210 µm) with low organic matter content (mean

value=1.14 %), moderately sorted.

Depths from 201 to 400 m: fine sand (mean diameter ranging from 150 to 189 µm) with low

organic matter content (mean value=1.06%), moderately well sorted.
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Depths from 401 to 700 m: very fine sand (mean diameter from 110 to 120 µm) recording the

highest organic matter content (mean value ranging from 2.23% to 2.35%) and also the highest

percentage (up to 44.50%) of silt and clay (<62 µm). Sorting was poor to moderate.

Depths from 701 to 1500 m: fine sand sediments similar to those of the shallowest stratum

(mean diameter 160 to 190 µm), with low organic matter contents (mean value ranging from

1.43% to 1.68%). Moderately sorted.

Depths >1501 m: the deepest stratum, located in the bottom of submarine channels and

canyons, was characterised by the presence of heterogeneous sediments mainly composed of

fine sand (mean diameter=200 µm), with low organic content (mean value=1.68%) and poor

sorting. This stratum showed the highest percentage (up to 39.5%) of coarse particles (>500

µm).

3.4. Fishery footprint

The statistical analysis of the bottom trawl footprint plot generated with the georeferenced

fishery data obtained by the IEO scientific observers (between 1989 and 2007, 9013 fishing

operations) showed that most of the commercial hauls of the Spanish fishing fleet in the study

area (99.85%) took place at depths below 300 m (Figure 4).

Figure 4. Location of commercial hauls and fishery footprint (5’×10’) of the Spanish bottom trawl fleet on the HS of the

SW Atlantic (1989-2007).

A First Approach to Assess the Impact of Bottom Trawling Over Vulnerable Marine Ecosystems on the High Seas… 13

http://dx.doi.org/ 10.5772/59268

283



4. Multivariate analysis

4.1. Model selection

Predictive accuracy of the models was evaluated through multiple cross-validation proce‐
dures, splitting the original data three times into two random subsets for calibration (80% data)

and evaluation (20% data). The mean area under the receiver operating characteristic (ROC)

curve (AUC) obtained from the three repetitions served to assess the predictive performance

index of the model. AUC ranks from 0.5 to 1, null accuracy or perfect accuracy of the model,

respectively [83]. Table 5 shows the best predictive performance score of the RF model, which

was subsequently chosen for vulnerable species modelling.

Model Mean cross validation score

RF 0.876

GBM 0.825

MARS 0.804

GAM 0.778

Table 5. Validation of the predictive performance of the four candidate presence/absence models tested (RF: Random

Forest; GBM: Generalized Boosting Model; MARS: Multivariate Adaptative Regression Splines; GAM: Generalized

Additive Model).

4.2. Variable influence

The Mean Decrease Gini method, implemented in the BIOMOD package, was used to measure

the importance of the dependent variable. This exploration tool shows graphically the total

decrease in node impurities from splitting on the variable, averaged over all trees. Thus, for

classification, the node impurity is measured by the Gini index [72]. The higher the value in

the X axis, the higher importance the indicated variable will have on the classification of the

dependent variable. Figure 5 show that the topographic position is the main variable affecting

the distribution of vulnerable organisms in the HS of the PS, followed by the slope and the sea

bottom temperature. Comparatively, the sea floor granulometry has a negligible effect on the

distribution of the vulnerable organisms.

In addition to this, it is possible to visualize how each environmental variable, independently

from any other, influences the response variable using partial dependence plots [73], which

graphically represents the relationships between each predictor variable and the predicted

occurrence probabilities of the vulnerable organisms obtained from the RF model. Figure 6

show that bathymetry has a positive effect between 500 and 1000 m depth. Regarding the

topographic position, the highest interactions with the presence of vulnerable organisms were

observed in canyons (6), followed by abyssal flats (5) and the slope (3 and 4). On the shelf, only

outcrop areas (2) were positively correlated with the dependent variable.
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Figure 6. Partial dependence plots showing quantitative influence from each environmental variable on the occurrence

of benthic vulnerable organisms predicted probability.

Figure 5. Mean Decrease Gini for each explanatory variable in the RF model. Higher values in the X axis indicate high‐
er influence of the environmental variable on the occurrence of benthic vulnerable organisms.
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4.3. HSI mapping

Table 6 shows the presence data of benthic vulnerable organisms from the 169 sampled

locations. Predicted values were plotted to produce a habitat suitability map showing survey

sampling stations with presence/absence data and the vulnerable organisms’ probability of

occurrence (Figure 7).

Organism Presence

Alcyonacea 15

Bathelia candida 23

Demospongiae 22

Gorgonacea 24

Hexactinellidae 14

Hydrozoa 41

Pennatulacea 7

Rhodalidae 9

Stylasteridae 25

Total VO 76

Table 6. Summary of the presence sampling data of vulnerable organisms (VO).

Figure 7. HSI map of benthic vulnerable organisms. Higher probability of occurrence is shown in darker tones. Survey

sampling stations are overlapped, showing presence (black dot) or absence (circle) of such organisms.
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5. Conclusions

Multibeam acoustic data showed that the upper slope and uppermost middle slope were

scarred by iceberg plough marks. The middle slope surveyed was entrenched by seven

submarine canyons [78]. Pockmarks and other seismic and morphologic evidence of gas/fluids

seepage were pervasive throughout the entire survey area and more intense in the southern

middle part [80]. Water coral communities associated with those pockmarks could be quite

extensive in the study area.

The highest benthic biodiversity was found between 800 and 1500 m depth. Biodiversity was

higher along the continental margin (per an equal number of individuals, and in terms of

abundance) than biodiversity found along the continental shelf. Our results have confirmed

the existence of close ecological relationships between Patagonian deep-sea fauna and

Antarctic fauna of shallow waters. Benthic megafauna collected included invertebrates,

chordates, and hemichordates. There was a clear dominance in biomass and diversity of the

Phyla Porifera and Cnidaria. Most species of these groups are considered as vulnerable

according to UN and OSPAR criteria: sponges, octocorals, colony scleractinians, anthipatari‐
ans, calcified hydrozoans (Family STYLASTERIDAE), and erect bryozoans (Table 7).

Shallow waters (<400 m) are the strata having sustained most of the fishing pressure for almost

50 years. Below 400 m we recorded the lowest biomass, abundance and diversity values, most

likely due to this fishing pressure. In these strata we noted the presence of sparse organisms

with erected growth, a high dominance of pectinid mollusks (Zygochlamys patagonica), and

minor presence of species considered as indicators of VMEs.

Intermediate depths (401-1000 m) showed an important increase in number and biomass of

vulnerable organisms, with outstanding numbers, densities and biomasses of octocorals,

sponges, colony scleractinians (Bathelia candida) and big hydrocorals (Errina spp., Cheiloporidion

pulvinatum [Cairns, 1983], Sporadopora sp., and Stylaster densicaulis [Moseley, 1879]). Also

remarkable was the presence of sponges of the Family CLADORHIZIDAE (Dendy, 1922), a

group of a great zoological importance because they are carnivorous and have developed a

trophic adaptation to live in the ocean’s depths.

In deeper strata (1001-1500 m) we found more anomuran crustaceans of the Family LITHO‐
DIDAE (Samouelle, 1819) (mainly Paralomis formosa [Henderson, 1888]). Amongst benthic

cnidarians, the pennatulid octocorals (Order PENNATULACEA) were the most abundant.

The model accuracy is acceptable (0.876). Although the modelling’ accuracy values were

higher when considering each organism, this was an expected fact due to the different

environmental preferences of the studied organisms. However, HSI mapping is a useful

conservation management tool enabling an initial observation of how environmental condi‐
tions control the spatial distribution of vulnerable organisms in the study area. The research

will proceed further when data from all 13 survey cruises undertaken in the area are analysed.

The main environmental conditions affecting presence of vulnerable organisms seems to be

connected to the topographic position, slope and bathymetry. Sea bed granulometry appeared
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Porifera Grant, 1836 Chondrocladia sp.

Class Hexactinellida Schmidt, 1870 Euchelipluma sp.

Rossella antarctica Carter, 1872 Mycale (Oxymycale) acerata Kirkpatrick, 1907

Class Demospongiae Sollas, 1885 Mycale (Carmia) gaussiana Hentschel, 1914

Tetilla leptoderma Sollas, 1886 Isodictya kerguelenensis Ridley & Dendy, 1886

Cynachyra sp Latrunculia sp.

Geodia sp. Axinellidae indet.

Polymastia sp. Haliclona (Haliclona) sp.

Radiella sp. Haliclona (Gellius) sp.

Tentorium sp. Dictyoceratida indet.

Stylocordyla cf. stipitata Cnidaria Hatschek, 1888

Timea sp. Class Hydrozoa Owen, 1843

Lithistidindet. Errina sp.

Iophon sp. Stylaster cf. densicaulis

Clathria sp. Class Anthozoa Ehrenberg, 1831

Raspailia sp. Alcyonium sp.

Inflatella sp. Anthomastus sp.

Pyloderma latrunculioides Ridley & Dendy, 1886 Paragorgia sp.

Desmacidon, sp. Primnoella sp.

Hymedesmia (Hymedesmia) sp. Isididae indet.

Hymedesmia (Stylopus) sp. Anthoptilum sp.

Phorbas sp. Halipteris sp.

Myxilla (Myxilla) mollis Ridley & Dendy, 1886 Epizoanthus sp.

Myxilla (Burtonanchora) lissostyla Burton, 1938 Actinostola crassicornis Hertwig, 1882

Tedania (Tedaniopsis) charcoti Topsent, 1907 Bathelia candida Moseley, 1881

Tedania (Tedaniopsis) oxeata Topsent, 1916 Caryophyllia sp.

Tedania (Tedaniopsis) massa Ridley & Dendy, 1886 Desmophyllum sp.

Tedania (Trachytedania) sp. Flabellum sp.

Asbestopluma sp.

Table 7. Cold-water corals and deep-water sponges concentrations: list of most common species collected in the

campaigns of the Atlantis Project in 2007 and 2008.
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to have a negligible effect on the presence of vulnerable organisms, contradicting published

research results on this subject in other geographical areas, where substrate characteristics

determine to a large extent the presence or absence of a particular benthic species [84-86].

Our study only calculated the general trends of the granulometrical parameters, while

bathymetry, slope and topographic position were variables derived from high resolution data,

strongly correlated with the response variable. Therefore, local conditions are the main factors

ruling the potentiality of a habitat to host benthic vulnerable organisms in the HS of the PS.

The use of the Random Forest model offers both higher classification accuracy and determi‐
nation of variable importance, and more stability where small perturbations of the data exist

[76]. RF is a predictive classification and algorithm that does not make any distributional

assumptions about the predictor or the response variables. It also handles situations in which

the number of predictor variables exceeds the number of observations, offering a powerful

non parametrical alternative for ecological modelling [64].

The vulnerable species groups, communities and habitats described here are mainly distrib‐
uted beyond the 500 m depth contour. The presence of organisms considered as vulnerable is

almost negligible in the fishing area. This fact is almost certainly due to bottom trawling

operations of international fleets taking place in the study area for nearly 50 years. Also, the

fishing grounds are far away from the geographical location of the main geomorphological

features such as canyons, trenches, gas and fluid seepages observed in the middle slope, and

identified as potential sites for VMEs.

The fishery footprint plot shows that the historical activity of the Spanish bottom trawler fleet

has been located in the shallowest depth strata, at depths not generally exceeding 300 m. On

this basis we think that the adverse impacts of current bottom fishing activities on VMEs are

negligible or small. However, the displacement of the fishing fleet to target deep sea species

at greater depths (were the existence of VMEs has been observed) could have a negative impact

on those ecosystems. With this in mind and following the FAO deep-water guidelines, the

potential threat of such a fishing strategy should be assessed.

Apart from Spanish fishing fleet, other bottom trawling fleets from different nations (former

Soviet Union, Poland, GDR, Bulgaria, etc) have been operating intensively in the SW Atlantic

(including our study area) from mid 60’s until mid 80’s, both over the continental shelf and

slope [87-92]. Even if no data were made available to us for assessing the eventual negative

impact of these fleets on VMEs, some experiences in other geographical areas such as the North

Atlantic, Southwest and East Pacific, seamounts off Tasmania, and waters off New Zealand

[31,45,92], have shown that high fishing pressure exerted by a large number of bottom trawlers

over a long period of time could relevantly affect these VMEs. We therefore think that probably

the almost 50 years of intensive bottom trawling in this SW Atlantic area by the abovemen‐
tioned fleets could have contributed to the low presence of VMEs in the study area at depths

lower than 500 m.
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