We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter 1

Evolutionary Algorithms for Wireless Communications
— A Review of the State-of-the art

Sotirios K. Goudos

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59147

1. Introduction

Several evolutionary algorithms (EAs) have emerged in the past decade that mimic biological
entities behavior and evolution. Darwin’s theory of evolution is the major inspiration source
for EAs. The foundation of Darwin’s theory of evolution is natural selection. The study of
evolutionary algorithms began in the 1960s. Several researchers independently developed
three mainstream evolutionary algorithms, namely, genetic algorithms [1, 2], evolutionary
programming [3], and evolution strategies [4]. EAs are widely used for the solution of single
and multi-objective optimization problems. Swarm Intelligence (SI) algorithms are also a
special type of EAs. SI can be defined as the collective behavior of decentralized and self-
organized swarms. SI algorithms among others include Particle Swarm Optimization (PSO)
[5], Ant Colony Optimization [6], and Artificial Bee Colony (ABC) [7].

PSO is an evolutionary algorithm that mimics the swarm behavior of bird flocking and fish
schooling [5]. The most common PSO algorithms include the classical Inertia Weight PSO
(IWPSO) and Constriction Factor PSO (CFPSO) [8]. PSO is an easy to implement algorithm
with computational efficiency. The PSO algorithm is inherently used only for real-valued
problems. An option to expand PSO for discrete valued problems also exists. Among others
PSO algorithms include, the barebones (BB) and the exploiting barebones (BBExp). BBPSO has
been successfully applied to the cell to switch assignment problem [9].

Artificial Bee Colony (ABC) [7] is a recently proposed SI algorithm, which has been applied to
several real world engineering problems. The ABC algorithm models and simulates the honey
bee behavior in food foraging. In the ABC algorithm, a potential solution to the optimization
problem is represented by the position of a food source while the food source corresponds to
the quality (objective function fitness) of the associated solution. The ABC algorithm has been
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2 Contemporary Issues in Wireless Communications

successfully applied to several problems in wireless communications [10]. ABC variants that
improve the original algorithm have also been proposed [11].

Ant Colony Optimization (ACO) is a population-based metaheuristic introduced by Marco
Dorigo [12]. This algorithm was inspired by the behaviour of real ants. The algorithm is based
on the fact that ant colonies can find the shortest path between their nest and a food source
just by depositing and reacting to pheromones while they are exploring their environment.
ACO is suitable for solving combinatorial optimization problems, which are common in
wireless communications.

Differential evolution (DE) [13, 14] is a population-based stochastic global optimization
algorithm, which has been used in several real world engineering problems. Several DE
variants or strategies exist. One of the DE advantages is that very few control parameters have
to be adjusted in each algorithm run. However, the control parameters involved in DE are
highly dependent on the optimization problem. Moreover, the selection of the appropriate
strategy for trial vector generation requires additional computational time using a trial-and-
error search procedure. Therefore, it is not always an easy task to fine-tune the control
parameters and strategy. Since finding the suitable control parameter values and strategy in
such a way is often very time-consuming, there has been an increasing interest among
researchers in designing new adaptive and self-adaptive DE variants. Self adaptive DE (SaDE),
is a DE algorithm that self-adapts both control parameters and strategy based on learning
experiences from previous generations is presented in [15-17]. SaDE has been applied to
microwave filter design, [18], and to antenna arrays synthesis [19].

The purpose of this chapter is to briefly describe the above algorithms and present their
application to wireless communications optimization problems found in the literature. This
chapter also presents results from different cases using PSO, ABC, ACO and DE. These include
the cell to switch assignment problem in cellular networks using PSO algorithms, peak to
average power ratio (PAPR) reduction of OFDM signals with the partial transmit sequences
(PTS) approach using ABC and ACO algorithms [7, 11], and dual-band microwave filter design
for wireless communications using SADE.

This chapter is subdivided into four sections. Section 2 presents the different evolutionary
algorithms. Section 3 reviews the related work in wireless communications problems from the
literature. Section 4 describes the design cases and presents the numerical results. Finally
section 5 contains the discussion about the advantages of using a EA-based approach and the
conclusions.

2. Methods

A population (or swarm) in PSO, ABC, ACO and DE consists of NP vectors (or particles)
3_CG,1'/ i=1,2, .. , NP, where G is the generation number. The population is initialized ran-
domly from a uniform distribution. Each D-dimensional vector represents a possible solution,
which is expressed as:
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Xgi= (xclll.,xclzl.,...xclﬁ, ..... , xG,Di) (1)
The population is initialized as follows:
Xy i =rand, (leu - x],,L) +x,, j=12,..,D (2)

where x;; and x; ; are D-dimensional vectors of the lower and upper bounds respectively

and rand o1) is a uniformly distributed random number within [0,1). The stopping criterion

for PSO, ABC and DE is usually the generation number or the number of objective-function
evaluations.

2.1. Particle Swarm Optimization (PSO)

In PSO, the particles move in the search space, where each particle position is updated by two
optimum values. The first one is the best solution (fitness) that has been achieved so far. This
value is called pbest. The other one is the global best value obtained so far by any particle in
the swarm. This best value is called gbest. After finding the pbest and gbest, the velocity update
rule is an important factor in a PSO algorithm. The most commonly used algorithm defines
that the velocity of each particle for every problem dimension is updated with the following
equation:

UG i = WhG ;T Crandy o o (pbest = Xg ) + ¢ randy o 1 (gbests = X6 ) 3)

where u,, . is the i particle velocity in the n™ dimension, G+1 denotes the current iteration
and G the previous, XG i 18 the particle position in the nth dimension, m”dl(o,ly mndz(o 1) are

uniformly distributed random numbers in (0,1), w is a parameter known as the inertia weight,
and ¢; and ¢, are the learning factors.

The parameter w (inertia weight) is a constant between 0 and 1. This parameter represents the
particle’s fly without any external influence. The higher the value of w, or the closer it is to
one, the more the particle stays unaffected from pbest and gbest. The inertia weight controls
the impact of the previous velocity: a large inertia weight favors exploration, while a small
inertia weight favors exploitation. The parameter c; represents the influence of the particle
memory on its best position, while the parameter c, represents the influence of the swarm best
position. Therefore, in the Inertia Weight PSO (IWPSO) algorithm the parameters to be

determined are: the swarm size (or population size), usually 100 or less, the cognitive learning
factor c; and the social learning factor c, (usually both are set to equal to 2.0), the inertia weight

w, and the maximum number of iterations. It is common practice to linearly decrease the inertia
weight starting from 0.9 or 0.95 to 0.4.

3



4 Contemporary Issues in Wireless Communications

Clerc [8] suggested the use of a different velocity update rule, which introduced a parameter
K called constriction factor. The role of the constriction factor is to ensure convergence when
all the particles have stopped their movement. The velocity update rule is then given by:

Uit ni = K[”G,m‘ +crandy o gy (pbest ;= Xg ;) +e,randy o 4 (gbest g i~ xc,m)] 4)

K:‘Z—w—\/coz—w‘ ©)

where @ =c,; + ¢, and ¢>4.This PSO algorithm variant is known as Constriction Factor PSO
(CEPSO).

2.2. Barebones PSO

Kennedy [20] proposed a new PSO approach, the BB PSO, where the standard PSO velocity
equation is replaced with samples from a normal distribution. In this method, the position
update rule for the ith particle in the n™ dimension becomes

] (6)

N( , ) denotes the normal distribution. The method allows particles with pbest significant
different from gbest to make large step sizes towards it. When pbest is close to gbest, step size
decreases and limits exploration in favor of exploitation.

Xeeimi =

,|pbest — gbest

G+1,ni G+1,ni

(pbeStcﬂ,m + ngStG+1,ni
2

In [20], a variation of BB PSO, the BBExp PSO, was also proposed. In this method, approxi-
mately half of the time velocity is based on samples from a normal distribution; for the rest of
the time, velocity is derived from the particle's personal best position. The position update
rule, (6), is modified into

’ pbeStG+1,m - ngStGu,m‘

xG+1,m' -

N( prStG+l,ni + gbeStG+l,rzi

], u(0,1)>05

otherwise

)
pbest

G+1,ni”

where U(, ) denotes the uniform distribution. In BBExp PSO, position updates equal pbest, for
half of the time resulting in the improved exploitation of pbest, compared to the BB PSO. One
may notice

that the barebones PSO algorithms do not require parameter tuning. More details can be found
in [20, 21].
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2.3. Artificial bee colony optimization

The ABC algorithm models and simulates the honey bee behavior in food foraging. In ABC
algorithm, a potential solution to the optimization problem is represented by the position of a
food source while the nectar amount of a food source corresponds to the quality (objective
function fitness) of the associated solution. In order to find the best solution the algorithm
defines three classes of bees: employed bees, onlooker bees and scout bees. The employed bee
searches for the food sources, the onlooker bee makes a decision to choose the food sources by
sharing the information of employed bee, and the scout bee is used to determine a new food
source if a food source is abandoned by the employed bee and onlooker bee. For each food
source exists only one employed bee (i.e. the number of the employed bees is equal to the
number of solutions). The employed bees search for new neighbor food source near of their
hive. A new position of the x ;= (xill, wr X s X, D) solution, where D is the problem dimension,

is generated using
u‘r/ - xw + (pw (xur - xkr/) (8)

where k €{1, 2, .., SN}, k#i, jell, 2, .., D} are randomly chosen indices, where SN is the
number of food sources, and @i is a uniformly distributed random number within [-1,1]. ABC

uses a greedy selection operator, which for minimization problems is defined by

7, iff(T) < F(T
¥’={u’ ifF(10) < f(X) o)

Z ,  otherwise

where x;" is the new position of the food source.

An onlooker bee chooses a food source depending on the probability value associated with
that food source, p;, given by

fit,
p’ = SN

2 fit,

m=1

(10)

where fit; is the fitness value of the ith solution which is proportional to the nectar amount of

the food source in the ith position. When a food source (solution) cannot be improved anymore
then the scout bee helps the colony to randomly generate create new solutions

X = mndjw/u (x//u - xm)+ X, j=12,.,D (11)
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6 Contemporary Issues in Wireless Communications

where x; ; and x; ; are the lower and upper bounds of the jth dimension respectively and

rand 1) is a uniformly distributed random number within (0,1).

2.4. Ant colony optimization

Ant colony optimization (ACO) [6, 12, 22] is a meta-heuristic inspired by the ants’ foraging
behavior. At the core of this behavior is the indirect communication between the ants by means
of chemical pheromone trails, which enables them to find short paths between their nest and
food sources. Ants can sense pheromone. When they decide path to follow a path, they tend
to choose the ones with strong pheromone intensities way back to the nest or to the food source.
Therefore, shorter paths would accumulate more pheromone than longer ones. This feature of
real ant colonies is exploited in ACO algorithms in order to solve combinatorial optimization
problems considered to be NP-Hard.

2.5. Differential Evolution (DE)

The initial population evolves in each generation with the use of three operators: mutation,
crossover and selection. Depending on the form of these operators several DE variants or
strategies exist in the literature [14, 23]. The choice of the best DE strategy depends on problem
type [24]. In SaDE the following four strategies are used for trial vector generation. These
include DE/rand/1bin, DE/rand-to-best/2/bin, DE/rand/2/bin, and DE/current-to-rand/1 [25]. In
these strategies a mutant vector v, ; for each target vector x ; is computed by:

DE / rand | 1/ bin

v =x +Fx -%x ) r#r=#r
(o , e, TX ) MELE

<
Il
=
+
N
~
=
[
=
+
~
-
=
|
=
-
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=

X —-X ), r#Er #Er #£vr
o o L EL T

12)
U, =%, vFE X )+E(x =% ) nEnErener
DE / current —to — rand [ 1/ bin

v =x +K(x -x )+F(x -x ), r#r#r
G e er | T, WTRTH

where 7y, 1y, 75, 1,, 15 are randomly chosen indices from the population, which are different
from index i, F is a mutation control parameter, K a coefficient responsible for the level of
recombination that occurs between X ; and X . After mutation, the crossover operator is
applied to generate a trial vector u 4 ;=(Ug.11ir UG 2ir UG jir s UG41,Di) whose coordi-

nates are given by:

G+1,ji

v, if rand/m,” < CR orj=rn(i)
G+1,ji = (13)

x_ ., ifrand >CR andj# rn(i)
G+1,ji j1o,1)
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where j=1, 2, ...... , D, rand To1) is a number from a uniform random distribution from the
jLo,

interval [0,1), rn(i) a randomly chosen index from (1, 2, ...... , D), and CR the crossover constant
from the interval [0,1]. DE uses a greedy selection operator, which for minimization problems
is defined by:

— _ {ﬁcu,f’ iff(ﬁcn,i) < f(J_CG,i) (14)

X .=
G+1, =
+1,i X

c;»  otherwise

where f(ug,;;), f(xg,) are the fitness values of the trial and the old vector respectively.
Therefore, the newly found trial vector s, ; replaces the old vector x ; ; only when it produces

a lower objective-function value than the old one. Otherwise, the old vector remains in the
next generation. The stopping criterion for the DE is usually the generation number or the
number of objective-function evaluations.

2.6. Self-Adaptive DE (SADE)

In the SaDE algorithm both the trial vector generation strategies and the control parameters
are self-adapted according to previous learning experiences. SaDE maintains a strategy
candidate pool, consisting of the four strategies given in (2). Each strategy is assigned a certain
probability. The sum of all probabilities is equal to one. These probabilities are initialized with
a value of 0.25 and gradually adapted during evolution. The probability of applying the m-
th strategy is p,, m=1, 2, ...... , M, where M is the total number of strategies. At generation G,

the number of successful trial vectors generated by the m-th strategy is denoted as ns,, ;, while
the number of trial vectors that fail to replace the old vectors in the next generationisnf, ..

An additional parameter called the learning period (LP) is introduced in [17]. This corresponds
to the number of the previous generations that store the success and fail statistics. After LP
generations, the probabilities of selecting different strategies are updated according to:

| Sm,G
pm,G M
zsm,G
m=1
where
-1 (15)
2 M,
_ g=G-LP
Sm,G TGl G-1 te
Z nsm,g+ z nfm,g
g=G-LP g=G-LP

where S, ; is the success rate of the trial vectors generated by the m-th strategy within the

previous LP generation and ¢ is a constant set equal to 0.01 to avoid possible null success rates.

7



8 Contemporary Issues in Wireless Communications

Therefore, according to (5) strategies with high success rates have higher probability to be
applied at the current generation.

The control parameters are self-adapted in the following way. The mutation control parameter
F is approximated by a normal distribution with mean value 0.5 and standard deviation 0.3,
that is N (0.5, 0.3). The parameter K is a random number in the interval [0, 1] generated by a
uniform distribution. The crossover rate control parameter CR used by the m-th strategy is also
approximated by a normal distribution with mean value CR,, and standard deviation 0.1, that

is N(CR,, 0.1). The initial value of CR,, is 0.5 for all strategies. The values of crossover rates

that have successfully generated trial vectors in the previous LP generations are stored in a
crossover rate memory for each strategy CR, memory that is an array of size LP. At each gener-

ation, the median value stored in memory for the m-th strategy CR, median js calculated and the
CR values generated are given by a normal distribution with mean value CR, median and

standard deviation 0.1. That way the crossover values are evolved at each generation to follow
the successful values found. The authors in [17] suggest a value between 20 and 60 for the
parameter LP. The sensitivity analysis performed in [17] for the LP parameter showed it had
no significant impact on SaDE performance. More details about the SaDE algorithm can be
found in [17].

3. Related work

This section presents a brief literature review of applications of evolutionary algorithms and
their variants to wireless communications problems.

Genetic algorithms (GAs) are among the widely used optimization techniques for address-
ing design problems in wireless communications. In [26] a Smith prediction filter is
proposed for power control design of direct-sequence code-division multiple-access cellular
mobile radio systems. A fixed-order robust Hee loop filter is developed using a genetic
algorithm to minimize the worst-case variance of the received SINR from the minimax
perspective. The authors in [27] present an antenna selection method for multiple-input
multiple-output wireless systems based on a GA that seeks the best subset of antenna
elements. The problem of receive antenna selection and symbol detection for multiple-
input, multiple-output (MIMO) systems is solved in [28] by applying a genetic algorithm
(GA) variant. The paper in [29] addresses the problem of joint transmit/receive antenna
selection for MIMO systems using a real-valued genetic algorithm (RVGA). The optimiza-
tion objective is to improve the channel capacity of multiple-input/multiple-output (MIMO)
systems. The study in [30] presents a pattern discovery algorithm for multi-streams mining
in wireless sensor networks. This algorithm adapts genetic operators with Elitism Strat-
egy.The paper in [31] studies joint multiuser linear precoding design in the forward link
of fixed multibeam satellite systems. The authors use a generic optimization framework for
linear precoding design to handle any objective functions of data rate with general linear
and nonlinear power constraints. In [32] an energy-efficient genetic algorithm mechanism
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is presented to resolve quality of service (QoS) multicast routing problem: The proposed
genetic algorithm depends on bounded end-to-end delay and minimum energy cost of the
multicast tree.

Sl algorithms are among the most commonly used algorithms for solving problems in wireless
communications. PSO and several PSO variants have been used in the literature to solve
different problems. In [33] optimal power scheduling for distributed detection in a Gaussian
sensor network is addressed for both independent and correlated observations. A PSO based
technique is developed to find the optimal power allocation for arbitrary correlations. The
authors in [34] apply PSO to solve the constrained nonlinear optimisation problem for the
minimum bit error rate (MBER) multiuser transmitter (MUT). The proposed PSO aided
symbol-specific MBER-MUT and average MBER-MUT schemes provide improved perform-
ance in comparison to the conventional minimum mean-square error MUT scheme. Several
issues in Wireless Sensor Networks (WSNs) can be formulated as multidimensional optimi-
zation problems, and addressed using bio-inspired algorithms. In [35] the authors present a
brief survey of how PSO is used to address these issues. The authors in [36] propose a new
approach to estimate the location of a sensor in a wireless sensor network based on a new PSO
algorithm with a log-barrier approach. The paper in [37] presents a predistorter based on a
cluster-based implementation particle swarm optimization technique with embedded model-
size estimation capability and validates the proposed technique on a Doherty power amplifier

prototype.

The ABC algorithm and its variants have been successfully applied to several optimization
problems in wireless communications. Among others these include issues in WSN [38-41],
WiMax network planning [42] and channel assignment [43].

The ACO algorithm has also been applied to several combinatorial problems in wireless
systems which include problems in mobile ad hoc networks [44-46], problems in WSN
[47-51], cognitive radio [52], resource allocation in multiuser OFDM systems [53] and MIMO
problems [54, 55].

DE variants have also been applied to variety of optimization problems like multi-user
detection in multi-carrier CDMA [56], WSNs issues [57, 58], urban area path loss prediction
[59], spectrum sharing [60], optimization of interleave-division multiple-access communica-
tion systems [61]. Other papers use anumber of different optimization algorithms and compare
results. For example in [62] spectrum allocation methods for cognitive radio based on GA,
quantum genetic algorithm (QGA), and PSO, are proposed.

4. Results and discussions

In this section we present numerical results from different optimization problems in wireless
communications using different algorithms.
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4.1. Cell to switch assignment in cellular networks using barebones PSO

Cell assignment is an important issue in the area of resource management in cellular networks.
The problem is an NP-hard one and requires efficient search techniques for its solution in real-
time. We briefly present an example case of solving this problem using the barebones PSO
[9]. The effective assignment of cells to switches in order to minimize the cost of network
deployment is a challenging issue in cellular networking.

The cell-to-switch assignment (CSA) problem consists of optimally assigning cells to network
switches while respecting certain constraints such as the call volume of each cell and the
switches capacity [63]. The objective of the optimization is the reduction of implementation
and operational costs. Usually, the cost function considers the cost of linking cells to switches
(cabling cost) and the cost of handoff between different cells (handoff cost). The problem is an
NP-hard one with exponential complexity and cannot be solved analytically in real size
networks. Other evolutionary techniques like tabu search [64], ACO [65] and GAs [66] have
been used in the literature for solving this problem. The problem formulation is given below.

We consider n unique and distinct cells in a given service area and m switches with known
location and traffic parameters. The objective is the optimum assignment of cells to switches
in order to minimize the total cost that comprises the handoff and cabling costs.

In single-homing CSA, each cell belongs to one cluster and it is assigned to one switch at a
time. In this case, the objective function to be minimized is [63]:

22wty t 2 (1-yy) k=L 6)
i=1 j= i=1 =1
]#l

where ¢, is the cabling cost per time unit between cell i and switch k, x; is a parameter that
takes the value one when cell i is assigned to switch k (otherwise, x;=0) and #; is the cost per
time unit for the handoffs that occur between cells i and j. The first term in (16) gives the total
cabling cost and the second one is the total handoff cost per time unit among cells. Therefore,
y; is defined as

Y= inkxjk’ Lj=1,..,n (17)

where y; is one when cells i and j are connected to the same switch, otherwise it is zero. The
product x;x; in (17) defines the variable

z i,j=1,..,nand k=1,..,m (18)

ik~ XX jk

that is zero unless cells i and j are connected to switch k. In this case, it is one.
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Cell assignment is subject to further constraints. The call handling capacity of each switch
should not be violated at any time, i.e.

Y ax <M, i=1..n (19)
k=1

where A; is the number of calls that cell i handles per unit time and M, is the call handling

capacity of switch k. Also, each cell is assigned only to one switch, i.e.

ink =1, i=1,...n (20)

m
k=1

The optimization problem defined by (16) and subject to (17)-(20), can be converted [63] to an
integer programming one by replacing (18) with the
0<z, <x,,x,
A i,j=1,..,nand k=1,.. m (21)

Zijk

> x, + Xy — 1,
We compare BB and BBExp PSO with ACO [65] and binary PSO (BPSO) [67]. We run 100
independent trials for each algorithm. The statistical results are presented and compared In
the proposed barebones PSO variants, the only parameter we set was the swarm size. In the
examples presented here, this was set to 5 particles. The ACO parameters were the same as in
[65]. For the BPSO, we set the learning factors ¢, and ¢, equal to two. Systems with varied
number of cells and switches that range from 15 to 200 and from 2 to 7, respectively, were
considered.

The percentage of successfully obtained solutions as a function of the number of cells and
switches indicates the solution accuracy of the algorithms. Figure 1 shows the results of the
application of BB PSO, BBExp PSO, BPSO and ACO in a single-homing system for swarm size
equal to 5 particles. In the first case, BB PSO outperforms the other methods in systems with
small complexity but as the complexity increases (1/m=150/6 and 200/7) BBExp gives the best
results. As it was expected, solution accuracy decreases with system complexity. In general,
BB PSO outperforms the other methods for small n and m. However, its performance degrades
with system complexity; in this case, BBExp gives better results. In any case, at least one of BB
and BBExp PSO is better than BPSO and ACO. We have also evaluated the different algorithms
in terms of the computational time required for the derivation of the previous results. Figure
2 shows small differences in results between the four algorithms. In all cases, barebones PSO
algorithms are slightly faster. BBExp outperforms BB as system complexity increases. The
computational cost of the methods grows exponentially with n/m and increases with the swarm
size. More details about this problem can be found in [9].

11
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4.2. A PTS technique based on ACO and ABC for PAPR reduction of OFDM signals

A major drawback of OFDM signals is the high value of peak to average power ratio (PAPR).

Partial transmit sequences (PTS) [68], is a popular PAPR reduction method with good PAPR

reduction performance. However, PTS requires an exhaustive search in order to find the

optimal phase factors. Thus, the search complexity is high. Several methods have been

published in the literature for PAPR reduction using PTS with low search complexity [10, 69,

70]. The problem description is given below.
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In an OFDM system, the high-rate data steam is split into N low-rate data streams that are
simultaneously transmitted using N subcarriers. The discrete-time signal of such a system is

given by

1 N2 j2ank
s,=—=25e ™ k=0,1,..,LN-1 (22)
=0

IN i

where L is the oversampling factor, S=[S,, Sy, ..., Sy_;]" is the input signal block. Each symbol
is modulated by either phase-shift keying (PSK) or quadrature amplitude modulation (QAM).

The PAPR of the signal in (22) is defined as the ratio of the maximum to average power and

is expressed in dB as

2

max |Sk
PAPR(s) = 10log, 25— (23)

el

where E[.] is the expected value operation.

In the PTS approach the S input data OFDM block is partitioned into M disjointed subblocks
represented by the vector S, m=1, 2, ..., M —1 and oversampled by inserting (L -1)N zeros.

Then the PTS process is expressed as

$=>8 (24)

m=1

Next, the subblocks are converted to time domain using LN point inverse fast fourier transform

(IFFT). The representation of the OFDM block in time domain is expressed by

M

s = IFFT{f s} - ﬁ:IFFT 18,}=2s, (25)

m=1 m=1

The PTS objective is to produce a weighted combination of the M subblocks using
b=[b,, by, ..., by, ]’ complex phase factors to minimize PAPR. The transmitted signal in time

domain after this combination is given by

s'(b) = mesm (26)

13
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In order to reduce the search complexity the phase factor possible values are limited to a finite
set. The set of allowable phase factors is

Az{e v |n=0,1,...,W—1} (27)

where Wis the number of allowed phase factors. Therefore in case of M subblocks and W phase

factors the total number of possible combinations is WM In order to reduce the search
complexity we usually set fixed one phase factor.

The optimization goal of the PTS scheme is to find the optimum phase combination for
minimum PAPR. Thus, the objective function can be expressed as

Minimize
max |s'(b)|2
F(b) — 1010g10 0<k<LN-1 : (28)
E[|s'(b)| ]
subject to

M 27l
beie™t wh —l=0,1,.,W- 2
e{e } were¢me{w| 0,1,..W 1} (29)

We have evaluated objective function above using evolutionary algorithms and methods
found in the literature. We have used two main measurement criteria namely the comple-
mentary cumulative distribution function (CCDF) and the computational complexity. In all
our simulations, 10E5 random OFDM blocks are generated. The transmitted signal is over-
sampled by a factor L=4. We consider 16-QAM modulation with N=256 sub-carriers which are
divided into M=16 random subblocks. The phase factors for W=2 are selected. We consider the
first phase factor to be fixed so the total number of unknown phase factors is M-1.

The control parameters in all simulations are given below. In the PSO algorithm ¢, and c, are

set equal to 2.05 while the inertia weight is linearly decreased starting from 0.9 to 0.4. For ACO
the initial pheromone value 7, is set to 1.0e-6, the pheromonone update constant Q is set to 20,

the exploration constant ¢, is set to 1, the global pheromone decay rate p, is 0.9, the local
pheromone decay rate p, is 0.5, the pheromone sensitivity « is 1, and the visibility sensitivity
is p is 5.

Figure 3 presents the comparison between the CCDF by different PTS reduction techniques.
For Pr(PAPR >PAPR,)=107 the PAPR of the original OFDM transmitted signal is 10.84dB. For

all evolutionary algorithms, the population size NP is set to 30 and the maximum number of
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Figure 3. PARP reduction performance comparison of the BBO-PTS algorithms with other PTS schemes for NP=30,
G=30.

generations G is set to 30. Thus, the computational complexity of this case is NP x G=900. The

computational complexity of the exhaustive search is W ™ =32768 while the PAPR for this
case is 5.86dB. The PAPR by the iterative flipping algorithm for PTS (IPTS) [69] is 7.55dB with
search complexity (M-1)W=30. The PAPR by the gradient descent method (GD) [71] with

search complexity C,; ;W "I =C32?3=1260 is 6.96dB. The PAPR by ABC [10], PSO [72], and
ACO[6],is7.01dB, 7.13dB, and 6.52dB, respectively. Table 1 holds the comparison of the search

complexity among the different methods for CCDF =10, NP=30, and G=30. It is obvious that
ACO presents the better performance among the other methods with the same search com-
plexity.

Method Computational Complexity PAPR (dB)
Original 0 10.84
Exhaustive WM1=32768 5.86

IPTS (M-1)W=30 7.55

GD Cy W 'T=C32?3=1260 6.96

PSO NP xG=900 7.13

ABC NP xG=900 7.01

ACO NP xG=900 6.52

Table 1. Comparison of computational complexity for CCDF=1e-3 among different PTS Schemes

4.3. Dual-band microwave filter design using SADE

Microwave filters are among the important components of a modern wireless communication
system. Several papers exist in the literature that address the filter design problem [73]. Open

15
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Loop Ring Resonator (OLRR) filters, which consist of two uniform microstrip lines and pairs
of open loops between them, are widely used as the building block in several multiband
bandpass filter design cases [74]. In [74], two pairs of folded OLRRs operating at two passbands
are proposed to produce dual-band response.

A dual band OLRR filter is shown in Figure 4. The frequency response of such a filter depends
on the filter dimensions and spacings between microstrip lines [74, 75]. The design parameters
for this case are the ones shown in Figure 4, (W, W,, L, L, L5 L, L5 S;, S, S5 G), all

expressed in mm.

Such a filter design problem can be defined by the minimization of | S;;| in the passband

frequency range. This design problem is therefore defined by the minimization of the objective
function:

F(x)=20log {max|5u(§,f)

,fes (30)

where X is the vector of filter geometry parameters and S, is the set of distinct frequencies in

the desired passband frequency ranges.

The filter is designed for operation in two WiMax (IEEE 802.16) frequency bands. These are
the 3.5GHz and the 5.8GHz frequency bands. For this case, we set Sp={3.55, 3.6, 5.75, 5.8}.

Figure 5 shows the simulated frequency response of this design. The simulated current
distribution for the 3.6GHz and 5.8GHz frequencies is presented in Figure 6, where the
resonating ring in each case is clearly seen. In the first passband between 3.508 and 3.809 GHz,
the filter has a return loss less than 10dB and insertion loss greater than 0.5dB. In the second
passband between 5.744 and 6.121 GHz the results also show a return loss less than 10dB and
insertion loss greater than 0.5dB. The rejection band (between 4.236 and 5.367 GHz) has an
insertion loss less than 20dB. In the first passband the return loss is less than 29dB at both 3.533
GHz and 3.759 GHz. In the second passband the return loss is less than 22dB at 5.794GHz and
less than 28dB at 6.07GHz.
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Figure 4. Dual-band filter geometry
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Figure 5. Simulated frequency response of the dual-band filter.

Figure 6. Current distribution simulations for dual-band filter at (a) 3.5GHz and (b) 5.8GHz

5. Conclusion

A brief survey of different evolutionary algorithms and their application to different problems
in wireless communications has been presented. It must be pointed out that several evolu-
tionary algorithms exist in the literature. GAs and SI algorithms are among those most
commonly used. In order to select, the best algorithm for every problem one has to consider
the problem characteristics. Another key issue is the selection of the algorithm control
parameters, which is also in most cases problem-dependent. One may also use at first the
control parameters for these algorithms that commonly perform well regardless of the
characteristics of the problem to be solved. The example of the CSA problem in cellular
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networks showed the better performance of BB and BBExp compared to BPSO and ACO in
terms of successfully obtained solutions and execution time. In the PTS optimization problem
ACO outperformed ABC and PSO.

The selection of the SADE technique for microwave filter design has lead to a successful filter
design which exhibits low loss in the passbands and high isolation between the passbands.
The DE algorithms are also robust optimizers. In classical DE algorithms, the selection of the
appropriate strategy for trial vector generation and control parameters requires additional
computational time using a trial-and-error search procedure. Therefore, it is not always an
easy task to fine-tune the control parameters and strategy given also that commonly the
appropriate control parameters and strategy selection are problem dependent. The SaDE
advantage though, is the fact that no additional time for solving a given problem is required.
SaDE requires only the adjustment of two parameters: the population size and the number of
iterations.

The practical examples subject to several constraints presented in this chapter show the
applicability and the efficiency of using such algorithms.
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