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1. Introduction

1.1. Nanomedicine for cancer

Cancer is one of the leading causes of death worldwide, occupying the second place in
developing countries, and showing a growing incidence over time [1]. Current cancer therapy
strategies are based in surgery, radiotherapy and chemotherapy, being the chemotherapy the
one that shows the greater efficiency for cancer treatment, mainly in more advanced stages [2,
3]. Despite of this great response, anticancer agents are administrated at higher amounts in
order to provide a final suitable concentration to the target tissues or organs, and this procedure
is repeated in each cycle of chemotherapy [4]. Introduction of new agents to cancer therapy
has greatly improved patient survival but still there are several biological barriers that
antagonize drug delivery to target cells and tissues, namely unfavorable blood half-life and
physiologic behavior with high off-target effects and effective clearance from the human
organism [2, 5, 6]. Moreover, in cancer, there is a small subset of cancer cells-cancer stem cells
(CSC)-that, like normal stem cells, can self-renew, give rise to heterogeneous populations of
daughter cells, and proliferate extensively [7, 8]. Standard chemotherapy is directed against
rapidly dividing cells, the bulk of non-stem cells of a tumor, and thus CSC often appear
relatively refractory to those agents [7-9]. The development of side effects in normal tissues
(e.g. nephrotoxicity, neurotoxicity, cardiotoxicity, etc) and multidrug resistance (MDR)
mechanisms by cancer cells leads to a reduction in drug concentration at target location, a poor
accumulation in the tumor with consequent reduction of efficacy that may associate to patient
relapse [9-13]. To overcome these issues and still improve the efficiency of chemotherapeutic
agents there is a demand for less toxic and more target specific therapies towards cancer cells,
i.e. novel drugs, drug delivery systems (DDSs) and also gene delivery systems [3, 4, 14-17].
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Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular
scale involving the design, production, characterization and application of different nanoscale
materials in several key areas providing novel technological advances mainly in the field of
medicine (so called Nanomedicine) [6, 18-20]. The development and optimization of drug
delivery approaches based in nanoparticles concerns the early detection of cancer cells and/or
specific tumor biomarkers, and the enhancement of the efficacy of the treatments applied [21].
The most important biomedical applications of nanoscale materials can be organized as shown
in Figure 1.
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Figure 1. Biomedical application of nanotherapeutics (adapted from [6]).

These nanotherapeutics’ potential in cancer relies on i) passive targeting due to the enhance
of the permeability and retention (EPR) effect promoted by angiogenic vessels with defective
vasculature and improper lymphatic flow surrounding the tumor [18] that can be reinforced
by ii) specific targeting based on multifunctional nanomaterials that bypass the biological
barriers and reach cancer cells [4]. Nanotechnology for drug vectorization provides for new
and more specific drug targeting and delivery platforms that can reduce toxicity and other
side effects and also maintain or improve the therapeutic index [9, 22, 23]. In fact, the devel‐
opment of targeting delivery systems is the ultimate goal in cancer therapy, which has been
taking the lead in what concerns overcoming the MDR problem [9, 13, 24, 25].

Here, we will discuss recent applications on AuNPs as platforms for anticancer therapy,
emphasizing strategies for targeted delivery for gene silencing focusing on the optimal
pathways to test these therapeutics in vitro and in vivo. Also, an overview of the toxicological
aspects of these materials will be provided.
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2. Nanoparticles as delivery systems

Nanoparticles have been developed as effective target specific strategies for cancer treatment,
acting as nanocarriers and also as active agents [4, 6, 5, 26]. Over the last decades, different
types of nanoparticles have been developed based on various components, including carbon,
silica oxides, metal oxides, nanocrystals, lipids, polymers, dendrimers, and quantum dots,
together with increasing variety of newly developed materials [4, 27-34]. These nanomaterials
are capable to provide a high degree of biocompatibility before and after conjugation to
biomolecules for specific function so as to translate into nanomedicines and clinical practice.
Nanomaterials provide for a favorable blood half-life and physiologic behavior with minimal
off-target effects, effective clearance from the human organism, and minimal or no toxicity to
healthy tissues in living organisms [35, 36].

In fact, the protection from adsorption to plasma proteins and/or degradation by circulating
nucleases allows for an increased availability of effector molecule at site of interest. This is
further enhanced by the considerable decrease to clearance from the organism that conjugation
to nanoparticles confers. The modulation of pharmacokinetic and pharmacodynamics
parameter constitutes a key factor when modifying the mode of administration (and vehicle
and route of administration associated) that is usually neglected when compared to the ability
of therapeutic nanoconjugates to offer the possibility of enhanced targeting (active and/or
passive) and cell uptake. When considering nanoparticles for therapeutics one should also
evaluate the effect on cellular metabolism and fate that can be attained via optimal conjugation
with (bio)molecules of interest.

DDSs can improve the properties of free drugs by increase their in vivo stability and biodis‐
tribution, solubility and even by modulation of pharmacokinetics, promoting the transport
and even more important the release of higher doses of the drug in the target site in order to
be efficient [18, 22, 37, 38].

DDSs can be constructed by direct conjugation with the drugs and further surface modifica‐
tions can lead to a better delivery for such systems, promoting a targeted delivery to specific
types of cells and reaching cell compartments such as nucleus and mitochondria [15, 39]. As
far as drug delivery is concerned, the most important nanoparticle platforms are liposomes,
polymer conjugates, metallic nanoparticles (for example AuNPs), polymeric micelles, den‐
drimers, nanoshells, and protein and nucleic acid-based nanoparticles (for a more complete
review see [40-42].

Among a wide variety of nanosystems, only a few nanomedicines, such as Doxil® (Janssen
Biotech Inc., Horsham, PA, USA), DaunoXome® (Galen US Inc., Souderton, PA, USA),
Depocyt® (Pacira Pharmaceuticals Inc., San Diego, CA, USA), Genexol-PM® (Samyang
Biopharmaceuticals Corporation, Jongno-gu, Seoul, Korea), Abraxane® (Celgene Corporation,
Inc., Berkeley Heights, NJ, USA), Myocet® (Sopherion Therapeutics Inc., Princeton, NJ, USA)
and Oncaspar® (Enzon Pharmaceuticals Inc., Bridgewater, NJ, USA), are approved for use in
the treatment of cancer (for a review see [6]).
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The implementation of nanoparticles towards cancer treatment can be based in certain
characteristics as their size, surface properties and the possibility of a variety of specific ligands
in their surface [18]. The high surface properties and other physicochemical features of
nanoparticles can be modulated for the development of valuable systems that detect tumor
cells either qualitatively or quantitatively [10, 19].

Targeting the cancer cells occurs via two different strategies: passive targeting and active
targeting [4, 43, 44]. The passive targeting of tumor cells by nanoparticles depends upon an
EPR effect promoted by angiogenic vessels with defective vasculature and improper lymphatic
flow, reaching a higher accumulation in tumor cells compared to normal cells [15]. The
increased accumulation of a drug in the tumor interstitium achieved by nanoparticles can be
more than ten times higher compared to the drug alone [4]. This type of deliver is based in
nanoparticle’s half-time of circulation on the bloodstream, size and surface properties, and
even depends on the degree of angiogenesis [45]. Despite the increased drug accumulation
inside the tumor, this strategy rise some concerns about the targeting specificity of such
mechanism based in the controversial influence of the EPR effect on drug externalization,
which promotes a widespread distribution all over the tumor [4, 46]. The lack of specificity of
such targeting led to further innovation with the implementation of an active targeting, which
is achieved by the functionalization of nanoparticle’s surface with a plethora of functional
moieties such as antibodies and other biomolecules that recognized the specific surface
antigens or specific biomarker of tumor cells [4, 44]. The targets choice depends on its high
abundance in cell surface and its unique expression, and consequently the capacity of inter‐
nalization of the nanoconjugate [4, 47, 48]. Although it is considered that active targeting does
not have a direct association to the total nanoparticles accumulated within the tumor, it will
influence the uptake of nanoparticles via receptor-mediated internalization and improve the
efficiency of anti-tumor agents that have intracellular targets [49, 50]. Active targeting can be
the potential way of polymeric nanoparticles to deliver chemotherapeutic drugs to cancer cells
and is, therefore, one of the main vectors of DDS development at present involving tailoring
of nanoparticles to deliver the effective cargo without compromising the selective targeting.

3. Gold Nanoparticles (AuNPs)

Metallic nanostructures are more flexible particles compared to other nanomaterials owed to
the possibility of controlling the size, shape, structure, composition, assembly, encapsulation
and tunable optical properties [51, 52]. Between the metallic nanostructures possible applied,
AuNPs appears of great interest in the medical field, 3showing great efficiency towards cancer
therapy [51-54]. The continuous interest in AuNPs is based in their tunable optical properties
that can be controlled and modulated for the treatment and diagnosis of diseases [9, 54, 52].

3.1. Synthesis, functionalization, characterization and properties of AuNPs

The synthesis of nanoparticles follows some aspects relying in a high homogeneity of the
materials in physical properties that greatly influence the size, shape and surface characteris‐
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tics. The main process for nanoparticles development requires chemical administration of
capping agents that adsorb in the surface of nanoparticles ([55] and references therein). AuNPs
can be synthesized with different sizes through the reduction of gold with different agents
such molecules bearing a thiol group, an aliphatic chain and a charged end group, and that
can avoid particle aggregation [37]. Furthermore, this dense layer of stabilizing agent promotes
a general change in the surface charge of AuNPs allowing ligand exchange with several
molecules, promoting AuNPs functionalisation and then an increase in particle stability in
physiological environments [55, 56]. AuNPs deliver systems can be formulated based in their
capacity to bearing different functional groups, once it can be involved in covalent and non-
covalent bindings by a thiol-linker [37, 55]. In fact, robust AuNPs appear by the stabilization
with thiolates once the bond between Au and the thiol (S) is very strong [57]. This process
enhances the affinity of the AuNPs surface for several types of ligands such as polyethylene
glycol (PEG) molecules, nucleic acids (DNA and RNA), peptides, antibodies, and also small
drug molecules (Figure 2) [9, 13, 37, 47, 52, 56, 57].

Figure 2. Multifunctional NP-based systems for tumor targeting, delivery and imaging. These innovative NPs comprise
a targeting moiety, a silencing moiety and anticancer drug molecules for delivery to the target tissue. Depending on
the targeting mechanism, they can be on the surface or inside the NPs. Multifunctional systems can carry reporter mol‐
ecules tethered to the particle surface and employed as tracking and/or contrast agents.
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Most passive targeting AuNPs have a surface coated with PEG for biocompatibility and
“stealth” purposes [58]. Importantly, it should be noted that increased hydrophilicity on the
AuNPs surface can impede its uptake by cancer cells, thereby hampering efficient drug
delivery to tumors by passive targeting nanoparticles [58, 59].

As far as the targeting approach is concerned, one key issue relies on the choice of optimal
targeting ligands, possibly by balancing their stoichiometry in comparison with the antibio‐
fouling surface of AuNPs. More specifically, two important ligand properties, ie, affinity and
density, can have a key role in effective targeting of nanoparticles to the cell surface membrane.
Again, the ligand binding affinity is the result of the equilibrium between enthalpic advantages
(for ligand-receptor interaction) and entropic losses (stretching, flexibility, or compressibility
of the nanosystem). For example, greater ligand density does not necessarily lead to a higher
intracellular concentration, given the decrease in “stealth” surface characteristics. Moreover,
although the uptake of AuNPs usually increases with an increasing+/− charge ratio of nano‐
particles (in terms of zeta potential values), an excess positive charge can induce toxicity and
promote an immunologic reaction. Therefore, the optimal ligand density and charge on the
AuNPs surface should be investigated on a case-by-case basis. AuNPs can be incorporated
into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads
for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or
add additional imaging labels. This array of features has led to their application in biomedical
fields, but more recently in approaches where multifunctional gold nanoparticles are used for
multiple methods, such as concurrent diagnosis and therapy, so-called theranostics [53, 60-63].

AuNPs characterization is based on UV-Vis spectroscopy for the determination of the surface
plasmon resonance (SPR) of the metallic gold, Transmission Electron Microscopy (TEM) for
the determination of the average size of the particles, Scanning Electron Microscopy (SEM) for
the characterization of the morphological features and Atomic Absorption Spectrometry that
quantify the amount of gold [64]. AuNPs biodistribution can be monitored before the delivery
of its payload which allows the establishment of treatment plan [65].

The application of AuNPs for in vitro diagnosis, in vivo imaging, therapy and also as DDSs
relies in their chemical stability, high solubility in water, suitable morphology and limited
dispersiiity, high surface-to-volume ratio, non-toxicity in biologic systems and an easy
synthesis and functionalisation with a plethora of biomolecules (targeting and also silencing
moieties) and drugs (Figure 2) [19, 21, 55, 56, 66-68].

3.2. AuNPs in cancer therapy

3.2.1. Photothermal therapy

AuNPs formulations gain a major impact in cancer therapy in different contexts based in their
properties that gain particular interest given some cancer specificities. AuNPs presents tunable
optical properties that allow the absorption of light at near UV to near infrared, being the last
one a characteristic that allows nanoparticles to enter cells, constituting a major breakthrough
for its application in photothermal therapy or hyperthermia [57, 69]. This is thought due to the
fact that increasing temperature of the cells above 42ºC lead to a loss of cell viability [5]. Thus,
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nanoparticles heat up after irradiation of the body or local area with a magnetic field or another
source of energy and consequently induce an increase in cancer cells temperature until cell
death [5]. Several gold nanostructures are being referred as successful candidates as photo‐
thermal agents, such as the case described by Sirotkina and coworkers where AuNPs reach a
high concentration in the skin tumor tissue and lead to an apoptotic response [70]. AuNPs
compared to the simple irradiation method, the laser hyperthermia (a methodology though to
circumvent the side effects associated to the current cancer therapies), has an advantageous of
needing less irradiation energy to promote tumor ablation [57].

3.2.2. Radiotherapy

AuNPs have been review in radiotherapy experiments in order to overcome the problems
associated to the healthy tissue damage imposed by radiotherapy [5, 57]. This strategy is based
in the well-known accumulation of AuNPs in the tumor that will be acting as a decoy to focus
the radiation in the tumor and limit its action in normal tumor vicinity, being able to decrease
the initial quantity of radiation administrated [5, 71, 72]. A long term study using AuNPs and
irradiation in mices bearing implanted tumors in order to eliminate the possibility of tumor
regression, results in a reduction of the tumor size until not be detected and 86% long term
cure, i.e. for more than a year, which was much higher than the 20% survival for the imple‐
mentation of just radiotherapy [65].

3.2.3. Angiogenesis inhibition

The inhibition of angiogenesis, i.e. the formation process of new blood vessels, is also a potent
mechanism by which AuNPs can operate for cancer therapy [57, 73]. AuNPs have the ability to
prevent phosphorylation of the proteins involved in this process of angiogenesis, by their binding
to the cysteine residues in heparin-binding growth factors [73]. Complementary, the AuNPs
intravenously administrated can be irradiated which leads to endothelium damage and then a
break in the oxygen and nutrient supply to the tumors involved, another way of angiogenic
therapy [65]. Radiotherapy, once have a major impact in rapidly divided cells, presents reduced
activity towards the niche of central cells that become independent of blood supply and then
hypoxic and with reduced proliferation capacity, leading to a continuous survival of such cells,
which is the main cause of tumor relapse [65]. So the complete abolish of angiogenesis is a
potential strategy to eradicate these cancer cells and then eradicate cancer [65].

3.3. AuNPs as delivery systems

The well-known application of AuNPs in cancer therapy described above, lead to further
investigation of new potential therapeutic strategies and was verified that AuNPs can be used
in the design of delivery systems [74, 75]. The motivation for the implementation of AuNPs as
drug delivery platforms is built in their easy to synthesis, functionalisation and also great
biocompatibility, demonstrating that functionalisation with specific payloads have a great
potential to destroy cancer cells [15, 76]. As described above, AuNPs as a potential nanocarrier
have the possibility to carry different payloads, such as small drug molecules for drug delivery
or biomolecules like DNA, proteins and RNA (siRNAs), being recognized as an attractive gene
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delivery system (Figure 2) [37]. The conjugation of the two types of therapeutic functions in
nanoparticles, i.e. a cytotoxic drug and a specific cancer cell target moiety, act as a single
platform in a synergetic way to promote a higher affinity to cancer cells in order to signaling
them to the efficiently release of the anticancer agent, circumventing the biological and
biophysical barriers [23, 5, 77].

3.3.1. Specific targeting

Nanoconjugates for drug delivery can accommodate a myriad of anti-cancer molecules that
will be release and have its therapeutic effects in cancer cells, however healthy tissues can also
be affected and to avoid this problem a targeting strategy is an important feature for combined
therapy [78]. Taking advantage of tumor molecular markers as docking sites to concentrate
the therapeutic effect at tumors, it is possible to increase therapeutic efficacy while reducing
systemic exposure and off-target effects. Several of these tumor molecular markers are surface
proteins/receptors present in cancer cells and in tumor vasculature that are not expressed or
are expressed at much lower levels in normal cells, thereby distinguishing tumor masses from
the surrounding normal tissues [79]. For a selective and with great potential delivery systems
based in nanoparticles it is needed an efficient targeting to uniquely overexpressed receptors
in cancer cells [76]. The potency of such systems is achieved by the enhancement of cellular
accumulation of AuNPs by an active targeting to cancer cells compared to a free drug that
passively enters the cells, which simultaneously avoid the biological response and biophysical
barriers in vivo [5, 80]. In fact, nanoparticles need to continue in the bloodstream for enough
time and cannot be eliminated in order to target the tumor site in the body, and surface
modifications can be a useful property to avoid the mononuclear phagocytic system [4].

Based in this specificity, this platform can be a potential methodology for cancer therapy once
it can differentiate with high certainty between cancer cells and non-cancer cells, one major
concern related to the current cancer therapies [5, 81]. The increase of the surface area of AuNPs
associated with other features such as distance-and refractive index-spectroscopic properties
appears important for the construction of relevant biodetection molecules [55]. This capacity
of AuNPs can be exploited for the improving of the therapeutic capacity of such systems, once
the application of diagnostic and therapeutic strategies at the same time, Theranostics, can lead
to a greater release at a specific tumor site, the targeting moiety or the drug, and it can be
tracking in the whole body [82].

There are several types of tumor-targeting biomolecules such as peptides like RGD [47],
proteins (transferrin, epidermal growth factor (EGF)) and carbohydrates [5], oligonucleotides
such as aptamers [83], and monoclonal antibodies [85-87]. For example, the anti-epithelial
growth factor receptor (EGFR) monoclonal antibody has been used as an active targeting agent,
since EGFR and its ligands are commonly overexpressed in a variety of solid tumors [86-88].

Functionalization of AuNPs with specific ssDNA molecules (Au-nanoprobes) concerns a great
detection system for specific DNA targets, being a rapid, sensitive, specific and inexpensive
system [19]. For example, cancer cells overexpressing the folate receptors can be specifically
targeted by AuNPs functionalized with folate ligands, and then the chemotherapeutic agent
Doxorubicin (DOX) can be release into them and induce a higher toxicity compared to the one
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in healthy cells (do not express these receptors) and when compared to the DOX alone [89].
Additionally, the cell-surface specific markers that characterize the CSC pool constitute a way
for targeting those cells in the whole tumor [7, 8]. Therapeutic strategies need to be focused in
this specific CSC niche instead of the rapidly divided in order to prevent tumor regression [7, 8].

The targeting of tumor angiogenic vessels is also gaining increased attention, as it may improve
therapeutic efficiency in cases where tumor cells are less accessible [79]. In combination with
passive targeting strategies, active targeting may enhance receptor-mediated endocytosis of
the AuNP conjugates in target cells [80, 90]. The intracellular localization of effector molecules
can be further directed with the use of cell-penetrating peptides, which are short peptides that
facilitate the delivery of various cargoes to cells, or with nuclear localization sequences, which
direct cargos to the nucleus [91, 92]. Decorating AuNPs with proton sponge groups or using
photothermal heating can further assist escape from endosomal sequestration/degradation
[93]. Active targeting by AuNPs [94-96] has been shown to result in greater tumor accumula‐
tion than passive targeting, when AuNPs are administered systemically in vivo (6-13% versus
2-5%) [94, 95].

3.3.2. AuNPs for drug/cargo delivery

The construction of DDSs depends on size, charge and surface functionalities of the AuNPs,
once they dictate the uptake capacity of such nanovectorization systems as well as its intra‐
cellular fate [5, 75]. The possibility to functionalize AuNPs with a plethora of different cargos
allows the development of several distinct approaches for drug delivery [76]. Moreover, stable
nanovectorization systems in the blood-stream, drug release rate and clearance of the vector
are two other important properties for the use of nanoparticles as DDSs [5, 57]. The use of
vectorisation systems based in nanoparticles reveal the capacity to transpose the biological
barriers imposed, with the release of low molecular-weight molecules that rapidly diffuse into
the body, promoting a selective distribution towards cancer cells [5].

The active release of the drug into cells depends on the interaction between the drug and
AuNPs (covalent or non-covalent binding) and even on methods of release after reaching the
cells [76]. Non-covalent binding, such as the one used for hydrophobic drugs, does not need
further alterations to the drug in order to be released [97] while for covalent interactions,
establish for prodrugs, it implies the application of an internal or external mechanisms [98,
99]. The tunable optical properties of AuNPs surface is a prominent feature for the release of
a drug either by internal or external stimuli [5]. External stimuli can be administrated by a
photo-regulated release, which depends on the administration of light to photo-cleavage of
nanoparticles-drug interaction to activate the drug once free [100-102], like was demonstrated
with AuNPs functionalized with 5-fluorouracil [103]. You and collaborators [104] reported that
up to 60% of a doxorubicin payload could be loaded onto hollow gold nanospheres because
the drug molecules were adsorbed to both the inner and the outer surfaces of the hollow gold
nanospheres via electrostatic attraction. Owing to the strong SPR absorption of novel gold
nanostructures, drug release can be activated by NIR light [104, 105]. Glutathione can be a
good internal stimulus of release for covalent interactions, by exchange reactions between
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disulfide of AuNPs and the intracellular glutathione [75]. AuNPs loaded with doxorubicin
have been shown to be able to reverse cancer cells’ resistance to the drug [106].

AuNPs with a high surface area attractive to establish interactions to a plethora of platinum
drugs have been described [107]. Brown and coworkers designed a platinum-tethered AuNP
system bearing the active compound of oxalipatin as its platinum molecule, and tested its
platform in lung and colorectal cancer cell lines, demonstrating a more cytotoxic effect
compared to oxaliplatin alone and also a higher accumulation of the active compound in those
cancer cells reaching the nucleus for possible DNA interaction, what constitute a good delivery
system [107].

3.3.3. AuNPs for gene therapy

Gene therapy is though as a hopeful strategy in cancer therapy being considered as a powerful
treatment like chemotherapy and radiotherapy, however the implementation of such systems
is based in viral vectors that raise cytotoxic and immune response problems [57, 108]. When
conjugated to AuNPs, siRNAs have been shown to exhibit increased stability, cellular uptake
and efficacy in physiological conditions, retaining the ability to act through the RNAi pathway
[109, 110]. The first demonstration that DNA-AuNP conjugates could be easily internalized
into cells, without the need for transfection agents, and induced gene silencing by an antisense
mechanism was reported by Rosi and co-workers in 2006 [111]. AuNPs as gene-delivery
vectors emerged initially with cationic ligands that appears a good gene delivery system once
protects the DNA molecule from degradation by DNAse I [112]. Han and coworkers have
identified that cationic AuNPs can trigger DNA release into cells by glutathione intracellular
concentrations [113].These remarkable studies prompted others to use AuNPs as siRNA
delivery systems and contributed to the development of many strategies to improve intracel‐
lular siRNA delivery in vitro and in vivo. These strategies can be grouped into two major
categories that are currently used for tethering siRNAs to AuNPs, namely (1) the gold-thiol
bond and (2) electrostatic interactions. Both categories involve, in some way, the use of
poly(ethylene glycol (PEG) or other passivating agents for stabilization and to promote
endosomal escape of the AuNP conjugates into the cell cytoplasm [114].

The silencing of cancer-related molecules can be addressed by this delivery platform, being of
major concern the oncogenes that have specific involvement in cell survival and proliferation
[115]. siRNAs can be pointed as potential therapeutic molecules once its function relies in the
suppression of gene expression [78]. siRNA molecules present limitations when administrated
alone: do not cross the cell membrane, are rapidly degradable by endo-and exo-nucleases, have
low stability in the blood and induces systemic toxicity [116]. Nanoparticles functionalized
with siRNAs that have been tested for targeting reporter genes in in vitro cell cultures and
recently AuNPs functionalized with siRNAs were investigated for in vitro and in vivo targeting
genes [67, 116]. AuNPs can in fact be a good system for antisense and siRNA delivery since
they can protect these molecules from degradation [109]. Thus, in order to improve cytoplas‐
matic translocation of siRNAs and promoting a complete gene silencing, is of utmost important
the formulation of these nanoconjugates with siRNAs once its smaller size can potentiate and
improve the interactions between biomolecules in the surface or into a cell [4, 116].

Application of Nanotechnology in Drug Delivery136



In vivo studies using this system are still scarce, alerting us for the need to overcome remaining
barriers that prevent its translation into the clinics. Some recent studies are highlighted. Zhang
and co-workers have developed an anti-metastasis therapy consisting of gold nanorods
(AuNRs) conjugated electrostatically with siRNAs, which targeted the protease-activated
receptor 1 (PAR-1) [117]. These conjugates were then delivered to highly metastatic human
breast cancer cells. The authors observed efficient downregulation of PAR-1 mRNA and
protein levels and decreased metastatic ability of the cancer cells [117]. By allowing any short
nucleic acid to be hybridized to the cargo DNA covalently linked to the AuNP, the former can
be designed for a specific purpose, such as gene knockdown, redirection of alternative splicing,
and modulation of signal transduction pathways, Ryou and collaborators delivered shRNAs
targeting the Mcl-1L mRNA to a xenografted tumor in a mouse model, and showed a ~5%
reduction in protein expression which was sufficient to induce apoptosis of the xenograft
tumor cells [118]. These studies did not include a targeting strategy because they were
performed either in vitro or in vivo by directly injecting the conjugates into tumors. However,
for systemic delivery, an additional targeting moiety is generally required to improve treat‐
ment efficacy and reduce off-target effects. Lu and co-workers [93] used Au nanocages targeted
to folate receptors (overexpressed in many types of cancer) and carrying a siRNA against the
NFkBp65, which encodes a transcription factor highly involved in tumor formation and
progression. They injected these constructs intravenously into in nude mice bearing HeLa
cervical cancer xenografts and observed a significantly higher tumor uptake of the targeted
conjugates compared to the non-targeted ones. They additionally took advantage of the
photothermal properties of the Au nanocages to achieve a controlled cytoplasmic delivery of
siRNA upon NIR light irradiation and observed efficient NF-kappaB p65 downregulation only
when tumors were irradiated with NIR light [93].

AuNPs functionalized with c-myc siRNAs were studied in a cervix adenocarcinoma cell line
and demonstrate a great accumulation in the cytoplasm of the tumor cells and an evident
ability to silencing the c-myc oncogene [67]. They functionalized AuNPs with PEG, cell
penetration (TAT) and cell adhesion peptides (RGD, which binds to the integrin αVβ3 receptor
family) [119], and c-myc targeting-siRNAs [5]. They have also shown in a more recent study
that these same nanoconjugates are capable of targeting tumor cells in a lung cancer murine
model and of inducing significant downregulation of the c-myc oncogene, followed by tumor
growth inhibition and prolonged survival of lung tumor bearing mice [116].

Furthermore, miRNAs can appear with aberrant patterns of expression in tumors and then be
related to its development, progression and tumor differentiation [47]. miRNAs can act as
oncogenes or tumor suppressor genes accounting to its deregulation in cells, then it’s down-
regulation or up-regulation respectively, can be a major breakthrough for cancer therapy [120].
Conde and coworkers revealed a platform based in Au-nanobeacons to targeting and effi‐
ciently silencing miR-21, an oncogenic miRNA commonly up-regulated in almost all types of
cancers [47, 121].

This targeting approached can also become a potential strategy to overcome the problem of
multidrug resistance of cancer cells to the application of several drugs (Fernandes and Baptista,
2014). One of the major mechanisms of multidrug resistance in cancer is associated to ATP-
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binding cassette (ABC) membrane transporters, such as P-glycoprotein (P-gp), and others
efflux pumps such as BCRP, which imply these as potential targets of silencing for cancer
therapy [122, 123]. Cancer stem cells (CSCs) can also express these membrane proteins which
confer to this subpopulation resistance to the current chemotherapeutic agents [123, 124]. Thus,
the implication of a silencing strategy towards these cancer related genes evolve in order to
minimize cancer resistance barriers to the actual therapy and then obtain an efficient response
towards the chemotherapeutic agents applied [115, 125]. It was demonstrated by a system of
lipid-modified dextran nanoparticles bearing siRNAs towards ABCB1 gene (P-gp), that this
approach can efficiently deliver the siRNA molecule and reduces the expression of P-gp
although at the same order of greatness as the siRNA alone [126]. This reveals the necessity to
continuously develop nanoparticles systems that can target and silencing these genes and
proteins.

Another multidrug resistance mechanism is associated to the capacity of cancer cells to evade
apoptotic response, when resistance induced by efflux pumps is not seen [127]. Apoptosis is
the major cellular process induced by chemotherapeutic agents, so cancers bearing apoptosis
defects cannot be efficiently treated by those agents, then discovery of the molecular basis of
such system can formulate novel therapeutic approaches [127, 128]. For example, the anti-
apoptotic protein Bcl2 is considered a proto-oncogene, and nano-based vector delivery systems
has been establish with great efficacy towards this molecule [127, 129].

4. Toxicity of AuNPs

One major concern regarding AuNPs application in medical field relies in its toxicity in the
biological systems, i.e. the production of a general toxicity response not only in cancer cells
but also reaching healthy cells at the vicinity [78]. Taken into account the size, surface modi‐
fications and solubility in promoting biocompatibility of the nanovectorization systems, they
can be safer to apply in the medical field to the treatment of cancer [130]. In fact, nanoparticles
size is an important feature because it turns possible to circumvent the immune response and
renal clearance, which maintains the therapeutic capacity of such systems [5].

Toxicity of AuNPs is generally accepted to be dependent on particle size, shape, and surface
charge and chemistry [131-134]. However, it is thought that once AuNPs have a smaller size,
approximately the size of biomolecules, it can be taken like one and then evade cellular barriers,
with access to different tissues, and in the end can lead to the disruption of cell biological
processes [75, 135]. A control of the size dependent cytotoxicity of AuNPs, revealed that AuNPs
with a 1-2 nm size represents more toxicity towards four cancer cells lines compared to AuNPs
with 15 nm that do not display any toxicity (Pan et al., 2007). Additionally, the main organs
affected by AuNPs are the liver and the spleen (Sun et al., 2011). Also, very small particles (1.4
and 5 nm in diameter) seem to be capable to enter the nucleus, where they can interact with
DNA and cause molecular disturbance [136, 137]. Larger particles (16 nm and 33 nm) are
retained in endosomes and accumulate in the periphery of the nuclear region [138, 139]. At
least three different studies reported that cellular uptake of AuNPs reach maximum levels for
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a particle size of about 50 nm [140-142]. Also, surface functionalisation seem to be capable of
inducing higher level of apoptotic cell death, probably related to increased cell uptake when
compared to unmodified 40 nm AuNPs [141]. According to data from in vitro studies, AuNPs’
toxicity is believed to result mainly from the induction of oxidative stress [143-145]. Indeed,
up-regulation of stress related genes was found to result from cell exposure to AuNPs, which
also promoted the down-regulation of cell cycle related genes [145-147]. Nevertheless, most
of these studies paid little attention to genome damage, such as DNA strand breaks and nuclear
abnormalities, or characterization of protein markers for toxicity. An integrated toxicology
evaluation encompassing DNA damage, stress related enzymes and a proteome profiling
approach showed no significant cytotoxicity of PEGylated AuNPs and no up-regulation of
proteins related to oxidative damage [148]. Nevertheless, previous studies using metallic
nanoparticles showed acute toxicity, mainly by the introduction of damages to the DNA
molecule and also by oxidative damage [146, 149, 150].

AuNPs are however generally considered a system that do not cause acute or adverse toxicity,
and then are been taken as safer systems for therapeutic use [135]. AuNPs demonstrate to be
a safe system due to their easy of functionalization [151]. This ideal is based in the assumption
that gold nanoparticles do not lead to any effect in the cell, and instead, the function moiety
in its surface promote the cytotoxic effect expected [139]. In the other way, expression studies
revealed an overexpression of stress and inflammation related genes after AuNPs treatment,
being associated to the action of AuNPs in oxidative stress induction [75]. A decrease in cell
cycle genes expression was simultaneously observed, which symbolizes an irreversible
damage that leads to cell death by necrosis [75].

Nanoparticles surface composition is another relevant point when talking about toxicity of
nanoparticles systems [5]. The ligands and surface capping agents of AuNPs as the first line
of contact with the different actors in the cell pathways can promote toxicity that in the end
represents the overall toxicity associated to these nanoconjugates [5]

Also, both positive and negatively charged AuNPs were found to be similarly more cytotoxic
against human keratinocytes (HaCaT cells) when compared to neutral AuNPs, with LD50
values of roughly half of those determined for the latter [152]. Despite the disruption in cell
morphology and the dose-dependent toxicity observed for all three types of AuNPs, both
anionic and cationic AuNPs induce mitochondrial stress and apoptosis in opposition to the
necrotic cell death caused by neutral particles [152]. Another in vitro study comparing positive
and negatively charged AuNPs reported that cationic NPs were far more toxic to Cos-1 cells,
human red blood cells and E. coli than anionic NPs, possibly as a result of cell lysis, as shown
by a dye leakage technique [133]. However, Alkilany and co-workers clearly showed that
serum proteins become readily adsorbed to the surface of charged NPs, inducing an inversion
of surface charge in particles that were originally cationic [153]. This would reduce electrostatic
interaction between the original positive NPs and the negative cell membrane, the first step
towards cell lysis mediated toxicity of cationic NPs [133].

Regarding in vivo experiments, several studies have demonstrated that AuNPs of 50 nm and
larger were non-toxic to mice, conversely to what has been observed for AuNPs <40 nm [54,
55]. In fact, there are concordant data from different studies on the biodistribution and
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accumulation of AuNPs in mice showing that most of the intravenously injected nanoparticles
are retained in the liver, regardless of their size [156-158]. There is also an agreement in that
AuNPs have the ability to transpose the blood-brain barrier and thus reach the brain, with a
cut-off limit in diameter of around 20 nm [159], and that smaller particles have the most
widespread organ distribution [156-158]. Organ distribution seems to be ruled by a more or
less complex relationship with nanoparticle size. For instance, it is known that renal excretion
of AuNPs is maximized for a narrow size range of 6-8 nm, resulting in an accelerated clearance
rate [160]. Despite the valuable use of animal models, the effect of size on the toxicity of AuNPs
in humans is difficult to predict since the size of endothelial cells' fenestrae is highly variable
between individuals, thereby affecting nanoparticle clearance [75]. Therefore, more consistent
data on the toxicological profile of AuNPs in vivo is necessary. For a more complete review
on biodistribution, encompassing earlier studies and administration routes other than
intravenous injection, see Khlebtsov and Dykman [159]. Furthermore, core size, charge and
surface chemistry of AuNPs seems to correlate to toxicity on the development of zebrafish
embryos, with positive and negatively charged AuNPs causing mortality and malfunctions to
the embryos, respectively [161]. Adverse effects were also found in the model system Droso‐
phila melanogaster after exposure to citrate-capped AuNPs, which were shown to reduce
fertility in a dose-dependent manner and also the life span [144, 162].

Nonetheless, long-term studies in higher organisms are necessary to further characterise the
safety of AuNPs as therapeutic agents, so they can be safely administrated to humans without
concerns about late toxicity symptoms.

5. Conclusions & future

Cancer is a complex disease with a plethora of cell types and differentiation stages that trigger
standard molecular mechanisms towards recruitment of cells and nutrients to enhance
survival and proliferation. Cancer complexity is also dependent from the specific and multi‐
faceted umor microenvironment. All these different molecular pathways, mechanism and
markers can be used as potential targets for therapeutics. However, current therapeutics (drugs
and molecules) show serious cell toxicity that is not merely directed at the cancer cells but
instead promote off-target cellular disarray and cell death, usually reported ad undesirable
side effects and systemic toxicity.

Nanomedicine has been putting forward several therapeutic concepts that disrupt the way we
have been dealing with cancer therapy, i.e. nanoparticles as drug delivery agents, minimising
side effects and toxicity of the drugs. Furthermore, these nanoparticle platforms allow for
selective targeting of cancer cells or tumor vessels either by incorporating novel or standard
anticancer drugs and/or the delivery of therapeutic genetic modulators. These approaches,
often based on the robustness and chemical properties of AuNPs, have shown great promise
in preclinical models. Some recent advances in ligand-targeted NPs have begun to demonstrate
improvement in cancer therapy.
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What is more, many tumors become resistant to drugs, requiring that novel strategies involv‐
ing drug targeting vehicles that deliver high concentrations of combinatorial therapeutics to
the selected targets. For this to happen, it is crucial that these nanoconjugates are capable to
withstand the body’s clearance and reaction to non-self particulates. The robustness of AuNPs
as target delivery platforms will be achieved when reticuloendothelial system clearance is
avoid and occur an enhance of the endothelial penetration, once the first one can lead to a
longer time in circulation and the second leads to an increase of targeting and drug accumu‐
lation (Kumar et al., 2013).

The use of multiple nanoparticles that can be used together may overcome current limitations
of each individual nanoformulation alone. For example, AuNPs have proven to be outstanding
vectorisation systems for gene delivery and can be used to target molecular pathways,
including those involved in drug resistance and in survival of cancer cells. These NPs may be
used in combination with any other polymeric and/or metallic nanoparticles in therapeutic
approaches that include drug and thermal ablation, selective delivery via out of the boy
triggering (light source).

All of these applications of AuNPs in therapeutics still lack enough toxicology and pharma‐
cology studies and data that can support the effective translation into the clinics. However,
the efficacy in fighting cancer cells shows that the effort to push forward with the needed
regulatory requirements and compliance is worth pursuing since the enhanced properties
allow for outstanding improvements to biocompatibility, circulation and therapeutic response.
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