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1. Introduction 

The problem of pursuit and evasion is a classic problem that has intrigued mathematicians 
for many generations. Suppose a target or evader is moving along a given curve in the 
plane. A pursuer or chaser is moving such that its line of sight is always pointing towards 
the target. The classic problem is to determine the trajectory of the pursuer such that it 
eventually captures the target. There is extensive literature on this problem, see for example 
the recent book by Nahin (Nahin, 2007). A special case of the pursuit problem is the case 
where the curve of the target is a circle. This is a classic problem which was first treated by 
Hathaway (Hathaway, 1921), see also the book by Davis (Davis, 1962). In the classic 
problems, the line of sight is always pointing towards the target. This method of pursuit is 
also known as 'pure pursuit' or 'dog pursuit'  or 'courbe de chien' in French. Although there 
have been some modern works on extensions of the classic problem of pursuit, see for 
example (Marshall, 2005), here we completely abandon the 'pure pursuit' restriction and we 
treat the problem where the pursuer is required to capture or intercept the target in a given 
prescribed time or in minimum time. Also, in the classic problem, the velocities of the target 
and pursuer are assumed constant and there is no consideration of the physics of the 
motion, such as thrust forces, hydrodynamic or aerodynamic drag and other forces that 
might be acting on the target and pursuer. 
In an active-passive rendezvous problem between two vehicles, the passive or target vehicle 

moves passively along its trajectory. The active or chaser vehicle is controlled or guided 

such as to meet the passive vehicle at a later time, matching both the location and the 

velocity of the target vehicle. An interception problem is similar to the rendezvous problem, 

except that there is no need to match the final velocities of the two vehicles. On the other 

hand, in a cooperative rendezvous problem, the two vehicles are active and maneuver such 

as to meet at a later time, at the same location with the same velocity. The two vehicles start 

the motion from different initial locations and might have different initial velocities. 

An optimal control problem consists of finding the control histories, i.e., the controls as a 
function of time, and the state variables of the dynamical system such as to minimize a 
performance index. The differential equations of motion of the vehicles are treated as 
dynamical constraints. One possible approach to the solution of the rendezvous problem is 
to formulate it as an optimal control problem in which one is seeking the controls such as to 
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minimize the differences between the final locations and final velocities of the vehicles in 
some mathematical sense, for example in the least squares sense. Here we use a minimax 
formulation in order to define the objective function that contains the terminal constraints. 
The methods of approach for solving optimal control problems include the classical indirect 
methods and the more recent direct methods. The indirect methods are based on the 
calculus of variations and its extension to the maximum principle of Pontryagin, which is 
based on a Hamiltonian formulation. These methods use necessary first order conditions for 
an optimum, they introduce adjoint variables and require the solution of a two-point 
boundary value problem (TPBVP) for the state and adjoint variables. Usually, the state 
variables are subjected to initial conditions and the adjoint variables to terminal or final 
conditions. TPBVPs are much more difficult to solve than initial value problems (IVP). For 
this reason, direct methods of solution have been developed which avoid completely the 
Hamiltonian formulation. For example, a possible approach is to reformulate the optimal 
control problem as a nonlinear programming (NLP) problem by direct transcription of the 
dynamical equations at prescribed discrete points or collocation points.  
Direct Collocation Nonlinear Programming (DCNLP) is a numerical method that has been 
used to solve optimal control problems. This method uses a transcription of the continuous 
equations of motion into a finite number of nonlinear equality constraints, which are 
satisfied at fixed collocation points. This method was originally developed by Dickmanns 
and Well (Dickmanns, 1975) and used by Hargraves and Paris (Hargraves, 1987) to solve 
several atmospheric trajectory optimization problems. Another class of direct methods is 
based on biologically inspired methods of optimization. These include evolutionary 
methods such as genetic algorithms (Goldberg, 1989), particle swarm optimization methods 
and ant colony optimization algorithms. 
Genetic algorithms (GAs) provide a powerful alternative method for solving optimal control 

problems. They have been used to solve control problems (Crispin, 2006, 2007), orbital 

transfer and rendezvous problems (Crispin and Ricour, 2007). GAs use a stochastic search 

method and are robust when compared to gradient methods. They are based on a directed 

random search which can explore a large region of the design space without conducting an 

exhaustive search. This increases the probability of finding a global optimum solution to the 

problem. They can handle continuous or discontinuous variables since they use binary 

coding. They require only values of the objective function but no values of the derivatives. 

However, GAs do not guarantee convergence to the global optimum. If the algorithm 

converges too fast, the probability of exploring some regions of the design space will 

decrease. Methods have been developed for preventing the algorithm from converging to a 

local optimum. These include fitness scaling, increased probability of mutation, redefinition 

of the fitness function and other methods that can help maintain the diversity of the 

population during the genetic search. 

2. Interception and rendezvous as optimal control problems  

We study interception and rendezvous problems for vehicles moving in an incompressible 

viscous fluid such as water. The vehicle has a propulsion system that delivers a thrust of 

constant magnitude T and is controlled by varying the thrust direction, i.e., thrust vectoring. 

Since the fluid is viscous, a drag force acts on the vehicle, in the opposite direction of the 

velocity. The motion takes place in a horizontal plane, the (x, z) plane, either at the surface of 
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the water or at a constant depth. The target vehicle is moving along a circle of radius R. We 

describe the motion in a cartesian frame of reference (x, z) with its origin at the center of the 

circle, with x positive to the right and z positive upwards. 

Let the angle ǃ denote the orientation of the thrust vector T, which is also the angle of the 

velocity vector V. The angle ǃ(t), which depends on the time t, is measured positive counter-

clockwise from a reference horizontal line, the positive direction of the x axis. In the 

examples we are going to present, the motion of the chaser will start from a point located 

outside the circle and will be moving from right to left, see Figure 2. In this case, it is 

convenient to use the complementary angle  Ǆ(t)= Ǒ - ǃ(t) as the control.  

The interception problem is an optimal control problem, in which it is required to determine 

the control function or control history Ǆ(t) of the chaser vehicle, such that it will meet the 

target vehicle at a prescribed location at the terminal time tf . Since GAs deal with discrete 

variables, we discretize the values of Ǆ(t). The motion of the vehicle is governed by Newton's 

second law of motion and the kinematic relations between velocity and distance: 

   (1) 

  (2) 

  (3) 

where ǃ(t)= Ǒ - Ǆ(t) is the angle of velocity vector V, T is the thrust and D is the drag force 
acting on the body. 

  (4) 

Writing this equation for the components of the forces along the tangent to the vehicle's 
path, we get: 

  (5) 

Here V, T and D are the magnitudes of the velocity, thrust and drag vectors, respectively. 
We introduce the drag coefficient  

  (6) 

where ǒ is the fluid density, S is a typical cross-section area of the vehicle. The coefficient of 

drag depends on the Reynolds number Re = ǒ Vd/μ where d is a typical length dimension of 

the vehicle, e.g.,  

Substituting the drag from (6) and writing T = amg, where a is the thrust to weight ratio 

T/mg, equation (5) becomes: 

  (7) 

Introducing a characteristic length  time  and speed  as 
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  (8) 

the following non-dimensional variables, denoted by a bar, can be defined: 

 

  (9) 

Substituting in (7), we have: 

  (10) 

Similarly, the other equations of motion can be written in non-dimensional form as 

  (11) 

  (12) 

For each vehicle the initial conditions are: 

  (13) 

We now define a rendezvous problem between two vehicles. We denote the variables of the 

first vehicle by a subscript 1 and those of the second vehicle by a subscript 2. We will now 

drop the bar notation indicating non-dimensional variables. The two vehicles might have 

different thrust to weight ratios, which we denote by  and , respectively. The equations 

of motion for the system of two vehicles are: 

 

(14)

We consider the case where the second vehicle, which is the target vehicle, is constrained to 

move along a circular trajectory. In this case, the magnitude of the velocity vector  is 
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constant. The angular speed  the azimuth angle  and the required control angle 

 are given by: 

  (15) 

where R is the radius of the circle.  is measured at the center of the circle, positive 

counter-clockwise, from the positive x direction. The vehicles can start the motion from 
different locations and at different speeds. The initial conditions are given by: 

 

  (16) 

The rendezvous problem consists of finding the control function  such that the two 

vehicles arrive at a same terminal location on the circle and at the same speed in the given 
time. The terminal constraints are given by: 

  (17) 

In order to fulfill the terminal constraints using a genetic algorithm, we define the following 
objective function: 

 

  (18) 

where  and  are the x and z components of the velocity 

vectors of the two vehicles at the terminal time . We can also define an interception 

problem, of the target-chaser type, in which the target vehicle is passive and the chaser 
vehicle maneuvers such as to match the location of the target vehicle, but not its velocity. 
Consistent with the above terminal constraints, we  define the following objective function 
for the interception problem: 

 (19) 

We have also tried an objective function defined by the distance between the two terminal 
points of the two vehicles, but it was found that the mini-max objective function works 
better in satisfying the terminal constraints. We use standard numerical methods for 
integrating the differential equations. The time interval is divided into N time steps of 

duration . The discrete time is  We used a second-order Runge-Kutta 

method with fixed time step. We also tried a fourth-order Runge-Kutta method and a 
variable time step and found that the results were not sensitive to the method of integration. 
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The control function  is discretized to  according to the number of time 

steps N used for the numerical integration. Depending on the accuracy of the desired 
solution, we can choose the number of bits  for encoding the value of the control  at 

each time step i. The number of bits used for encoding  and the number of time steps N 

will have an influence on the computational time. Therefore  and N must be chosen 

carefully in order to obtain an accurate enough solution in a reasonable time. We use 
smoothing of the control function by fitting a third-order polynomial to the discrete values 
of . The values of the polynomial at the N discrete time points are  used as the current 

values of  and are used in the integration of the differential equations. 

An appropriate range for  is  We choose N=30 or 40 as a reasonable 

number of time steps. We now need to choose the parameters associated with the Genetic 

Algorithm. First, we select the lengths of the "genes" for encoding the discrete values of . 

A choice of  bits for  was made. A reasonable size for the population 

of solutions is typically in the range . For this problem, there is no need for a 

particularly large population, so we select . The probability of mutation is set to a 

value of 5 percent  

3. Chaser-target interception 

We present an example of a chaser-target interception problem between two vehicles. The 

motion takes place in the horizontal plane (x, z). The first vehicle is active (vehicle 1) and the 

second vehicle is the passive or target vehicle (vehicle 2) and moves at a constant speed  

along a circular trajectory. The target vehicle starts from a point on the circle and keeps 

moving along its circular trajectory. The chaser vehicle starts at a point outside the circle and 

the interception occurs at a point on the circle at the final time. The interception point is not 

known a priori. The parameters and initial conditions for this example are given below. 

  (20) 

The initial conditions are: 

 

   (21) 

Since this is an interception problem, we do not require matching between the final 
velocities. The objective function is defined by equation (19). The parameters of the genetic 
algorithm are summarized in Table 1. 
 

 

Table 1. Parameters for the interception problem with tf = 35 
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The results of this example are displayed in Figures (1-4). Figure 1 displays the control 

function of the chaser vehicle as a function of time for a terminal time of 35 units. 

 

 
 

Fig. 1. Control function for the chaser vehicle in a chaser-target interception on a circle with 
a terminal time of 35 units. 

 

 
 

Fig. 2. Trajectories for a chaser-target interception on a circle with a terminal time of 35 
units. 
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Fig. 3. Trajectories x(t) for a chaser-target interception on a circle with a terminal time of 35 
units. 
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Fig. 4. Trajectories z(t) for a chaser-target interception on a circle with a terminal time of 35 
units. 

The trajectories of the target and chaser vehicles are shown in Figure 2. The target starts the 
motion at the point (1,0) on the circle and the chaser starts at the point (4,0) outside the 
circle. The line with dots is the trajectory of the target. The line with circles is the trajectory 
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of the chaser. The continuous curve without dots marks the circle. Figures 3 and 4 show the 
trajectories of the target and the chaser vehicles in parametric form, with the time as a 
parameter. Figure 3 displays the x(t) coordinates of the two vehicles as a function of time 
and Figure 4 displays the z(t) coordinates for the two vehicles. The lines with dots are the 
target trajectories and the lines with circles are the chaser trajectories. It can be seen that the 
final boundary conditions are fulfilled, that is, the coordinates of the two vehicles are equal 
at the final time. 
In the above example, a non-dimensional terminal time of 35 units was used. We now look 

at the problem of finding the minimum time for interception for the same set of parameters 

and initial conditions as in the previous example. We decreased the final time to 30 units 

and then to 25 units and were able to obtain a solution, i.e., the terminal constraints are 

fulfilled for the shorter times. We then tried to decrease the final time to a value of 23 units 

but we could not obtain a solution that fulfills the terminal constraints. We then tried a 

slightly higher value of 24 units and were able to obtain a solution. We therefore conclude 

that the minimum time for interception in this case is very close to 24 units . Since we have 

shorter times, we decreased the number of discrete time points from N=40 to N=30. The 

results for this example are given in Figures (5-8). Figure 5 shows the control function of the 

chaser vehicle. Comparing with Figure 1, we can see that the control looks much different 

because of the shorter final time. Figure 6 shows that the interception occurs as a head-on 

collision, a phenomenon that occurs also in the classic problem of pursuit. From Figure 7, it 

can be seen that the horizontal distance between the chaser and the interception point is 

reduced linearly at maximum speed, because of the minimum final time. In this case, it can 

also be seen from Figures 7 and 8, that the final boundary conditions are fulfilled. 
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Fig. 5. Control function for the chaser vehicle in a chaser-target interception on a circle with 
a minimum terminal time of 24 units. 
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Fig. 6. Trajectories for a chaser-target interception on a circle with a minimum terminal time 
of 24 units. 
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Fig. 7. Trajectories x(t) for a chaser-target interception on a circle with a minimum terminal 
time of 24 units. 
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Fig. 8. Trajectories z(t) for a chaser-target interception on a circle with a minimum terminal 
time of 24 units. 

4. Rendezvous between two vehicles 

We treat a rendezvous problem between two vehicles where one vehicle is moving along a 
circular trajectory. The first vehicle starts from a point outside the circle. The second vehicle 
starts at a point on the circle. The final time is given and the rendezvous point can occur at 
any point on the circle.  The vehicles have the same thrust to weight ratio a. We present 
results with a final time of 25 units, which is close to the minimum time.  

  (22) 

The initial conditions are: 

  (23) 

The parameters for this test case are summarized in Table 2. The results are given in Figure 
9. The curves with dots show the trajectories of the target and the curves with circles show 
the trajectories of the chaser vehicle. The upper left part of the figure shows the trajectories 
in the plane (x, z). The chaser vehicle is maneuvering such as to approach the rendezvous 
point from behind, in order to match the velocity vector of the target vehicle. A similar effect 
can be seen in Figure 10, which displays results similar to Figure 9, but with the chaser 
vehicle starting from rest. It is interesting to note that in this case, the z coordinate of the 
chaser, follows the z coordinate of the target, as can be seen in the bottom right of Figure 10. 
 

 

Table 2. Parameters for the rendezvous problem 
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Fig. 9. Rendezvous between two vehicles on the circle when the outer vehicle starts at an 
initial speed. Top left: Trajectories of the two vehicles. Top right: Control thrust angle of the 
vehicle starting outside the circle. Bottom left: Horizontal coordinates as a function of time. 
Bottom right: vertical coordinates as a function of time. 

 

Fig. 10. Rendezvous between two vehicles on the circle when the outer vehicle starts from 
rest. Top left: Trajectories of the two vehicles. Top right: Control thrust angle of the vehicle 
starting outside the circle. Bottom left: Horizontal coordinates as a function of time. Bottom 
right: vertical coordinates as a function of time. 

www.intechopen.com



Interception and Rendezvous Between Autonomous Vehicles 

 

385 

5. Conclusion 

The interception and rendezvous problems between two autonomous vehicles moving in an 
underwater environment has been treated using an optimal control formulation with 
terminal constraints. The vehicles have a constant thrust propulsion system and use the 
direction of the thrust vector for steering and control. We use a genetic algorithm to 
determine directly the control history of the vehicle by evolving populations of possible 
solutions of initial value problems. In order to fulfill the final boundary conditions as 
terminal constraints, a mini-max objective function has been defined. An interception 
problem, where one vehicle moves along a circular trajectory at constant speed and the 
second vehicle acts as a chaser, maneuvering such as to capture the target in a prescribed 
time has been solved. The problem of minimum time to interception has also been treated. 
The rendezvous problem where the target vehicle moves along a circle and the chaser 
vehicle starts from a point outside the circle either from rest or with an initial velocity has 
also been solved for a terminal time close to the minimum time for rendezvous. This method 
can be extended to include multiple autonomous vehicles. Another direction for future 
research is to include additional realistic effects besides thrust and drag. For example, 
additional effects can be included to better describe the dynamics of the vehicles, such as 
finite size, rigid body dynamics, inertia and added mass effects. 
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