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1. Introduction  

Heavy vehicles, such as tractor-semitrailers, play an important role in transportation 
systems. They present more complex dynamical behavior than passenger cars, due to their 
high centers of gravity, which can vary depending on the load conditions, and are highly 
susceptible to rollover during cornering. Heavy vehicle rollover on highways occurs as a 
result of cornering with excessively high speed, cornering on a small radius curve or sudden 
lane change. However, if rollover threat is predicted using an appropriate algorithm, then 
the accident can be prevented by the driver's corrective maneuvers. For situations where 
rollover warning is ineffective, active rollover control is necessary. 
Most of the rollover warning algorithms use instantaneous rollover-threat index to identify 
the rollover threat. Since a rollover warning may be issued at 75 % of the rollover threshold 
acceleration, the time from warning to rollover is too short for the driver to respond 
effectively. However, if the rollover threat is predicted using the expected maneuvers, a 
warning can be issued sufficiently in advance of the event. This fact implies that warning 
systems based on predicted rollover threat can be more effective. 
Many control strategies have been designed to prevent rollover, most of them based on 
active speed control and active roll control. However, active roll control is ineffective for 
sharp turns, since it does not reduce the lateral acceleration, and requires hydraulic 
actuators which increase the cost considerably. On the other hand, the use of differential 
braking prevent jack-knifing and loss of direction generated by sudden braking during 
cornering. 
Different loading configurations produce different reaction forces on each wheel. This 
motivates the use of nonlinear robust controllers which have to be able to deal with 
parametric uncertainties, but most controllers are based on reduced models, in order to 
lessen the computational requirements. Many mathematical models for tractor semitrailers 
have been developed in order to derive active control algorithms. The Automotive Research 
Center of the University of Michigan developed the 33 degrees-of-freedom ArcSim model 
(UMTRI, 1997) to study the acceleration/braking and handling responses of an US Army 6-
axle tractor-semitrailer. In (Hyun & Langari, 2003), the vehicle model for single-unit heavy O
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vehicles and tractor-semitrailers was derived using Lagrange's equations and Newtonian 
mechanics; this model was validated by examining its steady-state response characteristics 
and comparing it with ArcSim obtaining similar results but with less computational 
complexity. Then, an algorithm to identify the rollover threshold, the measure of roll 
stability, in terms of vehicle lateral acceleration or roll angle is established. In this paper we 
used the model presented in (Hyun & Langari, 2003) for simulations. 
On the other hand, since the seminal paper (Narendra & Parthasarathy, 1990), there has 
been continually increasing interest in applying neural networks to identification and 
control of nonlinear systems. Lately, the use of recurrent neural networks is being 
developed, which allows more efficient modeling of the underlying dynamical systems 
(Poznyak et al. 1999). Three representative books (Poznyak et al. 2000), (Rovitahkis & 
Christodoulou, 2000) and (Suykens et al., 1996) have reviewed the application of recurrent 
neural networks for nonlinear system identification and control. In particular, (Suykens et 
al., 1996)  uses off-line learning, while (Rovitahkis & Christodoulou, 2000) analyzes adaptive 
identification and control by means of on-line learning, where stability of the closed-loop 
system is established based on the Lyapunov function method. In (Rovitahkis & 
Christodoulou, 2000), the trajectory tracking problem is reduced to a linear model following 
problem, with application to DC electric motors. In (Poznyak et al. 2000), analysis of 
Recurrent Neural Networks for identification, estimation and control are developed, with 
applications on chaos control, robotics and chemical processes.  
 

 

Fig. 1. Recurrent neural control scheme 

Control methods which are applicable to general nonlinear systems have been intensely 
developed since the early 1980's. Recently, the passivity approach has generated increasing 
interest for synthesizing control laws (Hill & Moylan, 1996). An important problem for these 
approaches is how to achieve robust nonlinear control in the presence of unmodelled 

dynamics and external disturbances. In this direction, there exists the so-called H∞ nonlinear 
control approach (Basar & Bernhard, 1995). One major difficulty with this approach, 
alongside its possible system structural instability, seems to be the requirement of solving 
some resulting partial differential equations. In order to alleviate this computational 
problem, the so-called inverse optimal control technique was recently developed, based on 
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the input-to-state stability concept (Krstic & Deng, 1999). In (Sanchez et al., 2002), a robust 
adaptive neural controller for nonlinear systems with uncertainties is considered, in order to 
guarantee stability and trajectory tracking; a direct control approach is considered, where a 
recurrent neural network is assumed to model the unknown system and a control law is 
designed using the Lyapunov methodology and the inverse optimal control approach 
(Krstic & Deng, 1999).  
In this article we use Recurrent Neural Networks for applications to rollover prevention on 
heavy vehicles where we consider the presence of uncertainties and unmodeled dynamics. 
An active control algorithm is developed to prevent rollover if corrective actions from the 
driver are not done after receiving alarm signals for rollover threats. The proposed adaptive 
control scheme, as shown in Fig. 1, is composed of a recurrent neural identifier and a 
controller, where the former is used to build an on-line model for the unknown plant, and 
the latter to force the unknown plant to track the reference trajectory. An update law for the 
high order recurrent neural network weights is proposed via the Lyapunov methodology. 
The control law is synthesized using the Lyapunov methodology and the inverse optimal 
control approach. The algorithm is tested, via simulations, for prevention of rollover of the 
tractor semitrailer model developed in (Hyun & Langari, 2003). Speed only control and 
Speed-Yaw rate control are applied in order to reduce the lateral acceleration and roll angle 
of the trailer. The list of symbols that appear in this chapter are presented in Table 1 and 
Table 2. 
 

A  Lipschitz matrix in the Recurrent Neural Network system 

y ta
 Lateral acceleration rollover threshold 

e  Tracking error 

( )pf ⋅
,

( )rf ⋅
 Vector field for the vehicle and reference dynamics 

T iF
 Normal tire forces for wheel i-th 

( )pg ⋅
 Input vector field for the vehicle dynamics 

k  Sigmoid slope parameter 

L  Number of high order connections 

,f rL L
 Front and rear segments of tractor wheelbase 

,f gL V L V
 

Lie derivatives of the Lyapunov function respect of ( )
p
f ⋅  and ( )

p
g ⋅   

( )l ⋅
 Positive semidefinite function for Hamilton-Jacobi-Bellman system 

( )R ⋅
 Positive definite function for cost function evaluation 

( )S ⋅
 Sigmoid function 

u  Applied input 

xv
 Longitudinal speed 

yv$
 Lateral acceleration 

Table 1. List of symbols 
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, gW W  Estimated weights matrices 

* *, gW W  Optimal weights matrices 

, gW W# #  Weight error matrices 

x  Plant state to be identified 

px  Unknown nonlinear state 

rx  Reference signal state 

, ,p p px y z  Longitudinal, lateral and vertical position for tractor sprung mass 

,N Nx y  Longitudinal and lateral reference coordinates 

rz  Vertical position of the tractor unsprung mass 

( ), ( )gz z⋅ ⋅  Sigmoid high order vectors 

( )α ⋅r  Applied input forces for reference tracking of the neural network 

β  Positive parameter for cost function 

, gΓ Γ  Learning rate matrices 

δ  Steer input 

ε  Relative pitch angle of the fifth wheel 

ζ  Sigmoid function parameter 

η  Relative yaw angle of the trailer 

θ  Tractor pitch 

λ  HORNN system parameter 

μ  Gain matrix for the control law 

ϖ  Vector of tractor states 

τ  Parameter for sigmoid function 

φ  Tractor roll angle 

tφ  Roll angle rollover threshold 

χ  Neural network state 

ψ  Tractor yaw angle 

dϕ  Reference yaw angle 

iω  Wheel i spin i =1,…,6 

Table 2. List of symbols 
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2. System model description 

In this paper, we consider as the simulation tool, the tractor-semitrailer model presented in 
(Hyun & Langari, 2003), which has 14 degrees of freedom:  
 

, ,N N rx y z
 

Longitudinal, lateral and vertical position with respect to a coordinate
system fixed to the ground 

ψ  Tractor yaw angle 

θ  Tractor pitch angle 

φ  Tractor roll angle 

ε  Relative pitch angle of the fifth wheel with respect to the tractor sprung

mass coordinates ( ), ,p p px y z  

η  Relative yaw angle of the trailer with respect to the tractor sprung mass

coordinates ( ), ,p p px y z  

iω  
Wheel i spin i=1,...,6 

This model is derived using Lagrange's equations as well as Newtonian mechanics. 
Nonlinear suspension and tire-force models are considered in the vehicle model. Fig. 2 and 
Fig. 3 display side, rear and yaw plane view of the trailer under consideration. 
 

 

Fig. 2. Side view of the tractor-semitrailer 
 

 

Fig. 3. Rear view and Yaw-plane view of the tractor-semitrailer. 
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3. Mathematical preliminaries 

3.1 Artificial neural networks 

Artificial neural networks have become an useful tool for control engineering thanks to their 

applicability on modelling, state estimation and control of complex dynamic systems. Using 

neural networks, control algorithms can be developed to be robust to uncertainties and 

modelling errors. 

Neural Networks consist of a number of interconnected processing elements or neurons. 

The way in which the neurons are interconnected determines its structure. For identification 

and control, the most used structures are: 

Feedforward networks. In feedforward networks, the neurons are grouped into layers. Signals 

flow from the input to the output via unidirectional connections. The network exhibits high 

degree of connectivity, contains one or more hidden layers of neurons and the activation 

function of each neuron is smooth, generally a sigmoid function. 

Recurrent networks. In a recurrent neural network, the outputs of the neuron are fed back to 

the same neuron or neurons in the preceding layers. Signals flow in forward and backward 

directions.  

3.2 Recurrent higher-order neural networks 

Artificial Recurrent Neural Networks are mostly based on the Hopfield model (Hopfield, 

1984). These networks are considered as good candidates for nonlinear systems applications 

which deal with uncertainties and are attractive due to their easy implementation, relatively 

simple structure, robustness and the capacity to adjust their parameters on line. 

In (Kosmatopoulos, et al. 1997), Recurrent Higher-Order Neural Networks (RHONN) are 

defined as 

 
( )

1

, 1,...,j

k

L
d k

i i i ik j
k j I

y i nχ α χ ω
= ∈

= − + =∑ ∏$  (1) 

where iχ  is the ith neuron state, L is the number of higher-order connections, { }1 2, ,..., LI I I is 

a collection of non-ordered subsets of{ }1,2,...,m n+ , 0ia > , ikw  are the adjustable weights 

of the neural network, ( )jd k  are nonnegative integers, and y is a vector defined by 

[ ] ( ) ( ) ( ) ( )1 1 1 1,..., , ,..., ,..., , ,...,
TT

n n n m n my y y y y S S S u S uχ χ+ += = ⎡ ⎤⎣ ⎦ , with [ ]1 2, ,...,
T

mu u u u=  being 

the input to the neural network, and ( )S •  a smooth sigmoid function formulated by 

1
( )

1 exp( )
S χ ζ

τχ
= +

+ −
.  For the sigmoid function, τ  is a positive constant and ζ  is a small 

positive real number. Hence, [ ]( ) , 1S χ ζ ζ∈ + . 

As can be seen, (1) allows the inclusion of higher-order terms. 

By defining a vector   

 ( ) ( ) ( )
1

(1) ( )

1, , ......, , ,....,j j

L

TT d d L

L j I j j I jz u z u z u y yε εχ χ χ ⎡ ⎤= ⎡ ⎤ = Π Π⎣ ⎦ ⎣ ⎦  

(1) can be rewritten as 
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 1

( , ) , 1,...,

( , ) ,

L

i i i ik k
k

i i i i

z u i n

z u

χ α χ ω χ

χ α χ ω χ
=

= − + =

= − +

∑$

$
 (2) 

where ,1 ,.....
T

i i i Lw w w= ⎡ ⎤⎣ ⎦ . 

In this paper, terms as [ ] ( ) ( )1 1 1,... , 1,...., ,..., , ,..,
TT

n n n m n ny y y y y S S u uχ χ+= + = ⎡ ⎤⎣ ⎦ are 

considered. This means that the same number of inputs and states is used. We also assume 
that the RHONN is affine in the control, so that (2) can be rewritten as 

 ( ) ,T
i i i i gi iz uχ α χ ω χ ω= − + +$  (3) 

Reformulating (3) in matrix form yields 

 ( )i gA Wz W uχ χ χ= + +$  (4) 

where , , , ( ) , ,  and , 0.n n L n n L n
gW W z x u A Iχ λ λ× ×∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ = − >  

4. Adaptive recurrent neural control for tractor-semitrailer 

4.1 Problem formulation 
 

The nonlinear system (tractor-semitrailer) model can be described as 

 ( ) ( )p p p px f x g x u= +$  (5) 

We propose to model the unknown nonlinear plant by the recurrent neural network 

 
* *( ) ( )

p per

p g

x

A W z x W u

χ ω

χ χ χ

= +

= + + − +

$ $
 (6) 

where , , , ( ) , , ,  n n L nxL nxm m
p g gA x x z x W W uλχ ∗ ∗= − ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ  and per pxω χ= −  

represents the modelling error, with * *, gW W  being the unknown values of the neural 

network weights which minimize the modelling error. 
We will design a robust controller which enforces asymptotic stability of the tracking error 
between the plant and the reference signal 

 ( , )r r r rx f x u=$  (7) 

namely,  

 p re x x= −  (8) 

Its time derivative is 

 * *( ) ( ) ( , )p g r r re A W z x W u f x uχ χ χ= + + − + −$  (9) 

Now, we proceed to add and subtract the terms ˆ ( ), , ,  and r r rWz x Ae Ax x Ae , so that 
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( )* * ˆ( ) ( , ) ( )

ˆ ( )

g r r r r r r p

r r r

e Ae W z W u f x u Ax Wz x x x

Ae Wz x Ax x A

χ

χ χ

= + Γ + + − + + + −

− − − − + +

$
 (10) 

where Ŵ  is the estimated value for the unknown weight matrix *W . 

Let us assume that there exists a function ˆ ˆ( , , )r gt W Wα  such that 

 ( )1ˆ ˆˆ( , ) ( ) ( , ) ( ) ( )r g r r r r r r pt W f x u Ax W z x x xWα −= − − Γ − −  (11) 

where ˆ
gW  is the estimated value for the unknown weight matrix *

gW . 

Then, adding and subtracting to (10) the term ˆ ˆ ˆ( , , )g r gW t W Wα  and simplifying we obtain 

 * * ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( ) ( )( )g g r g p r r re Ae W z W u W t W W A x x Wz x A I xχ α χ= + + − − − − + + −$  (12) 

Next, let us define 

 

( )

ˆ ˆ

ˆ ˆ

ˆ,

g g g

r

W W W

W W W

u u t Wα

∗

∗

= −

= −

= −#

 

so that (12)  is reduced to 

 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , , ) ( ) ( )

( )( )

ˆ ˆ( ) ( ( ) ( )) ( ) ( )( )

g g g r g p r r

r

r g g p r r

e Ae W W z W W u W t W W A x x Wz x

A I x

e Ae Wz W z z x W u W u A x x A I x

χ α

χ

χ χ χ

= + + + + − − − −

+ + −

= + + − + + − − + + −

# #$

# #$ #
 (13) 

Adding and subtracting to (13) the terms ( )pz x  and px , we obtain 

 
ˆ ˆ( ) ( ( ) ( ) ( ) ( ))

( ) ( )( )

p p r g g

p r p p r

e Ae Wz W z z x z x z x W u W u

A x x A I x x x

χ χ

χ

= + + − + − + +

− − + + − + −

# #$ #
 (14) 

Then, by defining 

 1 2u u u= +#  (15) 

with 

 ( )1
1

ˆ ˆ( ) ( ( ) ( )) ( )( )g p pu W W z z x A I xχ χ−= − − − + −  (16) 

equation (14)  reduces to 

 2
ˆ ˆ( ) ( ) ( ( ) ( ))p r g ge A I e Wz W z x z x W u W uχ= + + + − + +# #$  (17) 

Therefore, the tracking problem reduces to a stabilization problem for the error dynamics 
(17). To solve this problem, we next apply the inverse optimal control approach. 
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4.2 Tracking error stabilization 

Once (17) is obtained, we proceed to study its stabilization. Note that ˆ ˆ0, 0, 0ge W W= = =  is 

an equilibrium point for the system without disturbances. 
In order to perform the stability analysis for the system, the following Lyapunov function is 
formulated 

 
{ } { }

{ } { }

11
2

1 1

1

2 2 2

,..., , ,...,

T Tg

g g

n g g gn

V e tr W W tr W W

diag diagγ γ γ γ

−− ΓΓ
= + +

Γ = Γ =

# # # #$
 (18) 

Its time derivative, along the trajectories of (17), is 

 { } { }
2

1 1
2

ˆ ˆ( ) ( ) ( ( ) ( )) )

ˆ

T T T
p r g

T T
T

g g g g

V A I e e Wz e W z x z x e e W u

e W u tr W W tr W W

χ

− −

= + + + − + +

+ + Γ + Γ

#$

$ $# # # #
 (19) 

Replacing the learning laws 

 

{ }

{ }

( )

ˆ ( )

ˆ

T
T

ij i j

T
T

g g g g

gij ig i j

tr W W e Wz x

ez x

tr W W e W u

e u

ω γ

ω γ

= −Γ

= −

= −Γ

= −

$# # #

$

$# # #

$

 (20) 

in (19), we obtain 

 
2

2
ˆ ˆ( 1) ( , )T T

z r gV e e W e x e W uλ φ= − − + +$  (21) 

where 

 ( , ) ( ) ( ) ( ) ( )z r p r r re x z x z x z e x z xφ = − = + −  (22) 

Next, we consider the following inequality (Poznyak et al., 1999), 

 1T T T TX Y Y X X X Y Y−+ ≤ Λ + Λ  (23) 

which holds for all matrices ,  and  with 0n k n nX Y × × Τ∈ℜ Λ∈ℜ Λ = Λ > . 

Applying (23) to ˆ ( , ) with re W e x IφΤ Λ = , we obtain 

 
22 2

2

1 1 ˆ ˆ( 1) ( , )
2 2

T T
z r gV e e e W e x e W uλ φ= − − + + +$  (24) 

where Ŵ , is any matrix norm for Ŵ . 

Since ( , )z re xφ  is Lipschitz with respect to e , then, there exists a positive constant Lφ  such 

that 
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 ( , )z re x L eφφ Τ ≤  

Hence (24) can be rewritten as 

 
22 22

2

1 ˆ ˆ( 1) (1 ) )
2

T
gV e L W e e W uφλ= − − + + +$  (25) 

To this end, we define the following control law 

 

{ }

2
1 2

2

1 2

ˆ ˆ( ) (1 )

1
, ,..., , , 1,...,

2

g z

n i

u W L W e

diag i n

φμ

μ μ μ μ μ

−= − +

= > =
 (26) 

which renders 

 ( ) ( )22 2 * 21
2

1

( 1) 1

0

n

i i
i

V e L W W eφλ μ
=

≤ − − − + − −

≤

∑#$
 (27) 

We now apply the Barbalat's lemma (Khalil, 1996), (Khalil, 2002). Since 

0 , , 0 and ( ) 0 i gV e W W V t> ∀ ≠ ≤# # $ , V  is bounded. Hence, e  is bounded on [ ]0,T , the 

maximal interval of existence of the solution for any given initial state. V  is nonincreasing 

and bounded from below by zero, and converges as t →∞ . Integrating both sides of (27) we 

obtain 

 ( ).
2 2 * 2

10 0

1
lim ( ) lim ( 1) 1

2

t t n

i i
t t

i

V d e L W W e dφτ τ λ μ τ
→∞ →∞

=

⎛ ⎞ ⎛ ⎞⎛ ⎞− ≥ − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
∑∫ ∫ #  

which exists and is finite. Then, 

 ( ) ( )22 2 * 2

1

1
1 1 0  as  

2

n

i i
i

e L W W e tφλ μ
=

⎛ ⎞− + + − − → →∞⎜ ⎟
⎝ ⎠

∑#  

which implies that 0 ase t→ →∞ . 

From the learning laws (20), we have 

ˆ 0 as 

ˆ 0 as 

ij

g ij

w t

w t

→ →∞

→ →∞

i

i  

Therefore, 

( ) 0 as 

( ) 0 as g

W t t

W t t

→ →∞

→ →∞

$#
$#

 

then 

,

,

ˆ ˆlim lim

ˆ ˆlim lim

t t

g g g g
t t

W W W W

W W W W

∞ ∞→∞ →∞

∞ ∞→∞ →∞

→ →

→ →

# #

# #  
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where ˆ ˆ, , ,g gW W W W∞ ∞ ∞ ∞
# #  are constant values. 

Taking into account that * *, gW W  are constant matrices, ( ) ( )ˆ ˆ and gW t W t  are bounded 

when t →∞ . Since χ  and px  are assumed to be bounded on [ ]0,T , this implies that T = ∞ . 

This ensures asymptotic stability of the tracking error. 
Then, the control law to apply to the nonlinear system is defined by 

 1 2( )r ru x u uα= + +  (28) 

where 1 2( ), ,r rx u uα  are defined in equations  (11), (16), (26). This control law guarantees 

asymptotic stability of the error dynamics and therefore ensures the tracking of the reference 
signal. 

4.3 Optimization with respect to a cost function 

Once the control law (26) is obtained, we proceed to analyze its optimality with respect to a 
cost function which considers the tracking error and the magnitude of the applied input. 
Next, we prove that the control law (26), minimizes the cost function given by  (Sanchez et 
al., 2002) 

 ( )2 2

0

ˆ ˆ ˆ ˆ( ) lim 2 ( , , ) ( , , )
t

T
g g

t
J u V l e W W u R e W W u dtβ

→∞

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫#  (29) 

where the Lyapunov function solves the following Hamilton-Jacobi-Bellman family of 

partial derivative equations parametrized with 0β >  

 2 1ˆ ˆ ˆ ˆ( , , ) 2 ( , , ) 0T
g f g g gl e W W L V L VR e W W L Vβ β −+ − =  (30) 

    Note that 2 Vβ  in (30) is bounded when t →∞ , since by (25) and (26),  is decreasing and 

bounded from below by ( )0V . Therefore, ( )lim
t

V t
→∞

 exists and is finite.V  

    In (Krstic & Deng, 1998), ( )ˆ,l e W  is required to be positive definite and radially 

unbounded with respect to e . Here, from (30) we have 

 2 1ˆ ˆ ˆ ˆ( , , ) 2 ( , , ) T
g f g g gl e W W L V L VR e W W L Vβ β −= − +  (31) 

Substituting  (26) into (31) and then applying (23) to the second term on the right side of  

fL V , we have 

 ( ) ( )
22 2 2

1

ˆ ˆ ˆ( , , ) ( 1) 1 1
n

g i i
i

l e W W e L W eφλ μ
=

≥ − + + −∑  (32) 

Selecting 1λ >  and 1iμ > , we ensure that ˆ ˆ( , , )gl e W W satisfies the condition of being 

positive definite and radially unbounded. Hence, (29) is a suitable cost function. 
The integral term in (29) can be written as,   

 
1

2
2 2

ˆ ˆ ˆ( , ) ( , ) 2 ( ) 2 ( ) ( , ) ( )T T
f g gl e W u R e W u L V L V R e W L Vβ β

−
⎡ ⎤+ = − + ⎣ ⎦  (33) 
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The Lyapunov time derivative is defined as 

 f g uV L V L V= +$  (34) 

and substituting  in , we obtain 

 1ˆ ˆ( ( , , ) ( )f g g gV L V L V R e W W L V τβ −⎡ ⎤= + −⎣ ⎦
$  

Then, multiplying V  by 2β−  we have 

 
1

2 ˆ ˆ2 2 ( ) 2 ( ) ( , , ) ( )f g g gV L V L V R e W W L Vβ β β
−

Τ⎡ ⎤− = − + ⎣ ⎦
$  

Hence, 

 2 2
ˆ ˆ ˆ ˆ( , , ) ( , , ) 2T

g gl e W W u R e W W u Vβ+ = − $  (35) 

Replacing (35) in the cost function (29), we obtain 

 
{ }2

0

( ) lim 2 2 lim 2 ( ) 2 ( ) 2 (0)

2 (0)

t

t t
J u V Vdt V t V t V

V

β β β β β

β

→∞ →∞
= − = − +

=

∫ $
 (36) 

The cost function optimal value is given by ( )* 2 0J Vβ= . This is achieved by the control law 

(26). 

Selecting 1λ >  and 1iμ > , we ensure that ˆ ˆ( , , )gl e W W satisfies the condition of being 

positive definite and radially unbounded. Hence, (29) is a suitable cost function.  

4.4 Simulation results for rollover active control 
We now apply the developed approach on rollover active control for cornering situations, 
where the features of the road can be assumed to be known by means of a system such as 
GPS, in order to determine the steering input for the vehicle. A prediction model can be 
introduced in the control scheme in order to predict the rollover threat and to produce a 
warning signal. For the cases where the driver can not respond to warning signals, active 
rollover control is necessary in order to prevent rollover. We consider two control 
approaches. First we develop a speed control which would be activated before cornering 
using differential braking, which could be available for implementation purposes. For the 
second approach, we consider the case where the road could be slippery, thus the braking 
would not be the same on each wheel, so the braking process would produce undesirable 
roll, yawing and lateral acceleration response, which would reduce the rollover threshold 
(Hyun & Langari, 2003). The tractor roll motion is governed by its lateral acceleration, which 
is generated by longitudinal speed and vehicle steering angle. In order to have reference 
values for the desired yawing response, the roll threshold and lateral acceleration threshold, 
we consider the values given in (Hyun & Langari, 2003). 
The approach is based on building a recurrent neural network identifier which models the 
longitudinal speed xv  and yaw rate, which considers two inputs: longitudinal force TF  and 

yawing moment zT . The model is described by the following RHONN 
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 1 1 1* 11( ) g TW z W Fχ λχ χ= − + +$  (37) 

 2 2 2* 22( ) g zW z W Tχ λχ χ= − + +$  (38) 

or in matrix form 

 1
ˆ ( ) gWz W uχ λχ χ= − + +$  (39) 

where { }2 12
11 220, , ,g g gW W diag W Wλ ×> ∈ℜ =  and 

 

2 2
1 2 1 2 1 2

2 2 3 3
1 2 1 2

3 3 4 4 4 4
1 2 1 2 1 2

( ) tanh ,tanh ,tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh , tanh tanh

k k k k k k

k k k k

k k k k k k

z χ χ χ χ χ χ χ

χ χ χ χ

χ χ χ χ χ χ

⎡= ⎣

⎤⎦

 (40) 

where 1 1 1 2 2 2 and k kk kχ χ χ χ= = . 

As in (Hyun & Langari, 2003), the reference yaw response can be obtained as a function of 
the desired speed and the steer angle using the Ackermann angle (Gillespie, 1992) 

 x
d

f rL L

υψ δ=
+

$  (41)       

where δ  is the steer angle and ,f rL L  are the front and rear vehicle wheelbase segments. 

We consider for the tractor semitrailer model, the heavy payload condition model given in 
(Hyun & Langari, 2003), with the rollover threshold values given in function of the roll 
angle and lateral acceleration as 

 
22.6 /

2.87deg

yt

t

a m s

φ

=

=
 

 

Fig. 4. Steer input for cornering maneuver 

For the cornering situation given in Fig. 4, a speed reduction is desirable as given in Fig. 5. 
This speed reference is arbitrarily selected only for simulation purposes. 
For the speed control, we consider the simplified RHONN given by (39), and we select 
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{ } { }3

1 2

15, 10 , 1 10

0.085, 70

gdiag diag

k k

λ −= Γ = Γ = ×

= =
 

For the control law (26), we choose 

 30.5 10μ = ×  

 

 

Fig. 5.  Speed reference trajectory 

The results for the speed-only control in Fig. 6 and Fig. 7 show that the speed is decreased 

successfully, but the yaw response deviates from the desired one, and the trailer presents 

high values of the roll angle. In order to reduce these effects we now apply a speed-yaw rate 

control. 

 

 
 

Fig. 6. Vehicle speed and yaw rate for speed only control 
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Fig. 7. Trailer roll angle and lateral acceleration for speed-only control 

For the speed-yaw rate control, we consider the RHONN build from (37) and (38) the same 
cornering situation as in the previous application. 
The RHONN parameters are selected as  

 
{ } { }4 3

1 2

15, 10,2 10 , 1 10

0.085, 70

gdiag diag

k k

λ −= Γ = × Γ = ×

= =
 

 

 

Fig. 8. Vehicle speed and yaw rate for speed-yaw rate control 

For the control law, (26) we choose 

{ }3 40.5 10 ,5 10diagμ = × ×  
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The results for trajectory tracking are shown in Fig. 8 to Fig. 10, where the tracking error is 

decreased considerably. The value for the roll angle decreased compared to the speed-only 

control simulation. The lateral acceleration presents an improved response. The speed-yaw 

rate control scheme prevents the rollover threat by forcing the values for roll and lateral 

acceleration to be far from the rollover threshold parameters. 

 

 

Fig. 9. Trailer roll angle and lateral acceleration for speed-yaw rate control 

 

 

Fig. 10. Applied total braking torque and yawing moment for speed-yaw rate control 

5. Conclusions 

In this paper an adaptive recurrent neural network controller is developed in order to 

prevent rollover in heavy vehicles. The control scheme is composed of an Recurrent Neural 
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Network predictor which estimates the future behavior of the roll angle and lateral 

acceleration. A neural identifier builds an on-line model for the trailer-semitrailer model of 

14 degrees of freedom which is assumed to be unknown. A learning adaptation law is 

derived using the Lyapunov methodology. Asymptotic stability of the tracking error is 

ensured by means of the inverse optimal control approach. The proposed scheme is tested, 

via simulations, to prevent rollover of a tractor-semitrailer. Two different control strategies 

are applied: speed-only control and speed-yaw rate control. The neural controller for speed 

and yaw rate presented the best performance by reducing the roll angle and lateral 

acceleration of the trailer.  
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