
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

Bio-inspired Algorithms for TSP and
Generalized TSP

Zhifeng Hao, Han Huang and Ruichu Cai
South China University of Technology

China

1. Introduction

The Traveling Salesman Problem (TSP) is to find a Hamiltonian tour of minimal length on a

fully connected graph. The TSP is a NP-Complete, and there is no polynomial algorithm to

find the optimal result. Many bio-inspired algorithms has been proposed to address this

problem. Generally, generic algorithm (GA), ant colony optimization (ACO) and particle

swarm optimization (PSO) are three typical bio-inspired algorithm for TSP. In this section

we will give a brief introduction to the above three bio-inspired algorithms and their

application to the TSP.

1.1 GAs for TSP

GAs were introduced by Holland in the 1970s [1]. These algorithms are adaptive search

techniques based on the mechanisms of natural selection and the survival of the fittest

concept of biological evolution. By simulating biological evolution, GAs can solve searching

problem domains effectively and easily apply to many of the current engineering problems.

GAs have been widely used in many applications of TSP and its extensions throughout the

literature [2-4].

A particularly nice introduction to GAs is given in Goldberg’s book [5]. The main idea

behind GAs is to start with randomly generating initial solutions and implements the

“survival of the fittest” strategy to increasing better solutions through generations. A

traditional GA process includes initial population generation, fitness evaluation,

chromosome selection, applying genetic operators for reproduction, and suspension

condition.

In designing a GA, how to encode a search solution is a primary and key issue [6]. Many

optimization operators for TSP were proposed by Goldberg [5]. A commonly used encoding

strategy is transposition expression [7]. In the transposition expression strategy, each city of

the TSP is encoded as a gene of the chromosome with the constraint that each city appears

once and only once in the chromosome. Transposition expression is the most nature

expression for TSP which based on the order of tour. While such method may leads to

infeasible tour after traditional crossover operator [7]. This is a common occurrence for TSP.

Although feasibility can be maintained in many ways named ‘repair algorithms’, such

algorithms can consume a considerable amount of time and can inhibit convergence. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Travelling Salesman Problem, Book edited by: Federico Greco, ISBN 978-953-7619-10-7, pp. 202, September 2008,
I-Tech, Vienna, Austria

www.intechopen.com

 Travelling Salesman Problem

36

3 2 1 5 4 6 8 7

Figure 1. Transposition expression encoding method for TSP

Another typical encoding method is Random Keys encoding [8] which is introduced by
Bean. In Random Keys encoding a random numbers encode the structure of the solution.
Such representation ensures that feasible tours are maintained during the application of
genetic operators.
 In the GA, the crossover and mutation are two of most important method for the success of
the algorithm. A crossover operator generates new individuals through recombining the
current population hopefully to retain good features from the parents. Numbers of different
crossovers have been proposed in the literatures to solve the TSP using a GA. The partially
mapped crossover [5,11-12], linear order crossover [13] and order based crossover
[5,8,11,12,14] are the commonly used crossover strategy in the TSP context. Expect the
commonly used crossover strategy, many different crossover strategy are proposed for the
TSP problem, for example: sub-tour crossover[15,16], edge recombination [17-20], distance
preserving crossover [21-22], generic crossover [23], NGA [24], EAX [25-26], GSX [27-28],
heuristic based crossover [29-35].
A mutation operator is used to enhance the diversity and provide a chance to escape from
local optima. Many mutation operators were proposed such as inverse, insert, displace,
swap, hybrid mutation [34], and heuristic mutation. The former five are realized by small
alterations of genes. Heuristic mutation was proposed by Cheng and Gen [37-38], which
adopts a neighborhood strategy to improve the solution.
At present, the genetic algorithm to solve the TSP has been to promote large-scale TSP, as
well as a multiple TSP (MTSP) and generalized TSP. A lot of progress was made recently.
Arthur E. Carter and Cliff T. Ragsdale propose a new GA chromosome and related
operators for the MTSP [39]. H. D. Nguyen, et al described a hybrid GA based on a parallel
implementation of a multi population steady-state GA involving local search heuristics [40].
Samanlioglu et.al proposes a methodology uses a “target-vector approach” in which the
evaluation function is a weighted Tchebycheff metric with an ideal point for a symmetric
multi-objective traveling salesman problem [41-43].

1.2 Ant colony optimization (ACO) for TSP

Ant Colony Optimization (ACO), first proposed by M. Dorigo et al. [44-46], is a population-
based, general-purpose heuristic approach to combinational optimization problems. The
earliest ACO algorithm [44-45], Ant System (AS), was applied to the TSP (mainly because
the TSP is “a shortest path problem to which the ant colony metaphor is easily adapted and
that it is a didactic problem” [4]. After that, most improved ACO algorithms also used the
TSP as a test problem and the result is promising.
As the name suggests, ACO took inspiration from the foraging behavior of real ant colonies.
Ants deposit pheromone on the ground they cover while working, forming a pheromone
trail. Other ants tend to follow the pheromone trail. Consider an ant colony exploring the
paths between their nest to a food source. At the beginning, the ants choose paths randomly
in equal rate since there’s no pheromone on the paths help them make the decision. Suppose
that every ant walk in the same speed, shorter paths accumulate pheromone faster than
longer paths because ants on those paths return earlier. A moment later, the difference in the

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

37

amount of pheromone on the paths becomes sufficient large so that the ants’ decision are
influenced and more ants select the shorter paths. Experiments show that this behavior can
lead the ant colony to the shortest path.

Figure 2. an ant colony exploits the paths between S and T. (A) The two paths are selected
with the same probability at first. (B) Ant 2 choosing the lower path returns to S earlier.
Thus pheromone on the lower path rises faster. (C) Most ants walk on the lower path after a
minute.

Typical ant algorithms stimulate the above foraging behavior of ant colonies using a set of
agents (artificial ants) and an indirect communication mechanism employing (artificial)
pheromone. A simple framework may look like this:

Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node.
 Loop /* at this level each loop is called a step */
 Each ant applies a stochastic state transition rule to incrementally build a solution
 Until all ants have built a complete solution
 A pheromone updating rule is applied
Until End condition

The stochastic state transition rule and the pheromone updating rule are two factor to the
success of the ACO. And many strategies have been proposed for these two operators. The
Ant Colony System (ACS) [48-50] and MAX-MIN Ant System (MMAS) [51] are among the
most successful algorithms [52]. Recent researches focus most on extending the applications
of ACO algorithms to more challenge problems. There’re also some studies on the
convergence theory of ACO algorithms too [47, 53-58].

1.3 PSO for TSP
The particle swarm optimization (PSO) was originally presented by Kennedy and Eberhart
in 1995 [59]. It is an algorithm based stochastic optimization technique which inspired by
social behavior among individuals. In the PSO system, individuals (we call them particles)
move around a multidimensional search space. Each particle represents a potential solution
of the problem, and can remember the best position (so1ution) it has reached. All the
particles can share their information about the search space, so there is a global best
solution.

In each iteration, every particle adjusts its velocity iv and position ix according to the

following formulas:

1 1 , 2 2 ,() ()i i i pbest i i gbest i

i i i

v v c r x x c r x x

x x v

= + ∗ ∗ − + ∗ ∗ −

= +
 (1)

www.intechopen.com

 Travelling Salesman Problem

38

Where w is inertia weight, 1c and 2c are acceleration coefficients, 1r and 2r are two

independent random values between 0 and 1. xi,pbest is the best solution this particle has
reached; xi,gbest is the global best solution of all the particles until now.
Due to the continuous characters of the position of particles in PSO, the standard encoding
scheme of PSO can not be directly adopted for TSP. Much work was published to avoid
such problem. Clerc adopted discrete particle swarm optimization (DPSO)[60] to make PSO
suitable for solving TSP. Bo Liu, et al. proposes a PSO-based MA [61](PSOMA) for TSP,
which combined evolutionary searching mechanism of PSO and adaptive local search.
Yong-Qin Tao, et al. proposed a GRPSAC algorithm [62] combined ACO with PSO
organically and adds gene regulation operator at the same time, which make solution of TSP
problem more efficiency. Other recently work such as heuristic information method based
on improved fuzzy discrete PSO [63] and chaotic PSO algorithm [64] were proved to be
effective for TSP.

2. Ant colony optimization (ACO) for TSP

2.1 The method of ant colony optimization solving TSP

Among the bio-inspired algorithms, the ant colony optimization (ACO) is a popular
approach for TSP since it’s proposed by M.Dorigo in early nineties [65-66]. Ant colony
optimization (ACO) takes inspiration from the foraging behavior of some ant species. These
ants deposit pheromone on the ground in order to mark some favorable path that should be
followed by other ants of the colony. Ant colony optimization exploits a similar mechanism
for solving optimization problems.
In TSP, a set of cities is given and the distance between each of them is known. The goal is to
find a Hamiltonian tour of minimal length on a fully connected graph. This goal is very
similar with the ants to find the shortest path between the nest and the food source. In ant
colony optimization, the problem is tackled by simulating a number of artificial ants moving
on a graph that encodes the problem itself. A variable called pheromone is associated with
each edge and can be read and modified by ants. The artificial ants explore the pheromone
to find the most favorable path which is the shortest Hamiltonian Tour in TSP.
Ant colony optimization is an iterative algorithm. In an iterative step, each ant of the colony
builds a solution by walking from vertex to vertex on the graph with the constraint of not
visiting any vertex that has been visited before. The solution construction and the
pheromone updating are two main steps for the ACO. In the solution construction step, an
ant selects the next vertex to be visited according to a stochastic mechanism that is biased by
the pheromone. After the solution construction step, the pheromone is updated on the basis
of the quality of the solutions.
Under the above framework, many different version of the algorithm are proposed.
According to the M.Dorigo’s work [46,67], the Ant System (AS), MAX−MIN Ant System
(MMAS) and Ant Colony System (ACS) are three of most popular ant algorithms.
Following, we will give a short brief of those three algorithms on TSP.

2.1.1 Ant System (AS)
Ant System is the first ACO algorithm proposed in the literature [44,65-66]. Its main
characteristic is that, at each iteration, the pheromone values are updated by all the m ants
that have built a solution in the iteration itself. The pheromone ij, associated with the edge
joining cities i and j, is updated as follows:

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

39

1

(1)
ij

m
k

ij ij

k

τ ρ τ τ
=

← − ⋅ + Δ∑ ᧤1᧥

where ρ is the evaporation rate, m is the number of ants, and
ij

kτΔ is the quantity of

pheromone laid on edge (i, j) by ant k:

/ (,) ,

0 ,ij

kk
Q L if ant k used edge i j in its tour

otherwise
τ

⎧
Δ = ⎨

⎩
 ᧤2᧥

where Q is a constant, and kL is the length of the tour constructed by ant k.

In the construction of a solution, ants select the following city to be visited through a
stochastic mechanism. When ant k is in city i and has so far constructed the partial solution
Sp, the probability of going to city j is given by:

()

[()] []
()

[()] []()

0

gs gs

k
gr gr

gs
r J gk

k

t
if s J g

tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑ ᧤3᧥

where ()kJ g is the set of cities not visited yet by ant k when at city g. The parameters α

and β control the relative importance of the pheromone versus the heuristic information ηij,

which is given by
1

ij

ijd
η = , where ijd is the distance between cities i and j.

2.1.2 MAX −MIN Ant System (MMAS)
The MAX −MIN Ant System [51] is an improvement over the original Ant System. In the
MMAS, only the best ant updates the pheromone trails and the value of the pheromone is
bound. The pheromone update is implemented as follows:

max max

min min

 (1) ,

 (1) ,

(1) ;

ij

ij

ij

best

ij

best

ij ij

best

ij

if

if

otherwise

τ ρ τ τ τ

τ τ ρ τ τ τ

ρ τ τ

⎧ − ⋅ + Δ >
⎪
⎪= − ⋅ + Δ <⎨
⎪

− ⋅ + Δ⎪⎩

 (4)

where maxτ and minτ min are respectively the upper and lower bounds imposed on the

pheromone and
ij

bestτΔ is:

1 (,)

0 ;ij

bestbest
L if i j belongs to thebest tour

otherwise
τ

⎧
Δ = ⎨

⎩
 (5)

www.intechopen.com

 Travelling Salesman Problem

40

where bestL is the length of the tour of the best ant.

For the maxτ and minτ , they are typically obtained empirically and tuned on the specific

problem considered [68]. And some guidelines have been provided for defining minτ and

maxτ on the basis of analytical considerations [51].

2.1.3 Ant Colony System (ACS)

The ACS was considered the most efficient algorithm on the TSP problem. The main
contribution of ACS [48, 50, 69] is introducing a novel local pheromone update in addition
to the global pheromone.
The local pheromone update is performed by all the ants after each construction step. Each
ant applies it only to the last edge traversed:

0(1)ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅ (6)

where (]0,1ϕ∈ is the pheromone decay coefficient, and 0τ is the initial value of the

pheromone.
Using the local update strategy, the pheromone concentration on the traversed edges is
decreased. So, the subsequent ants are encouraged to choose other edges and to produce
different solutions. This makes it less likely that several ants produce identical solutions
during one iteration.

2.2 An adaptive strategy for weight parameter
Many strategies for ACO have been studied, but little theoretical work has been done on

ACO’s parameters α and β, which control the relative weight of pheromone trail and

heuristic value. In this part, we will theoretical show the importance and functioning of α

and β. The theoretical analysis show that a fixed β may not enable ACO to use both heuristic

and pheromone information for solution when α = 1. An adaptive β strategy and a new

ACO called adaptive weight ant colony system (AWACS) with the adaptive β and α = 1 is

introduced. The numerical experiment results show that the AWACS is more effective and
steady than traditional ACS.

2.2.1 Theoretical analysis of the weight parameter

 Given , ()ka b J g∈ , if () ()k k

ga gbP t P t> , which means that city a may be chosen by the ant

k as the next city to city g with higher probability than city b, then α and β satisfies the

following formula: () () [()] [] [()] []k k

ga gb ga ga gb gbP t P t t tα β α βτ η τ η> ⇔ > .

 When () ()ga gbt tτ τ= or
ga gbη η= , for , 0α β∀ > , the formula above holds, so we have:

 () ()
ga gb ga gbk k

ga gb

ga gb ga gb

P t P t
η η τ τ
τ τ η η

> =⎧
> ⇔ ⎨ > =⎩

 (8)

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

41

However, when () (), () 0, () 0ga gb ga gbt t t tτ τ τ τ≠ > > and
ga gbη η≠ (() 0, () 0ga gbt tη η> >), one

has: () () [()] [] [()] [] log () log () (log log)k k

ga gb ga ga gb gb ga gb gb gaP t P t t t t tα β α β βτ η τ η τ τ η η
α

> ⇔ > ⇔ − > − .

And we have:

log () log ()

log log

log () log ()

log log

ga gb

gb ga

gb ga

ga gb

gb ga

gb ga

t t

t t

τ τβ η η
α η η

τ τβ η η
α η η

−⎧
< >⎪ −⎪

⎨ −⎪ > <⎪ −⎩

 (7)

Particularly, when α=1, which exists in ACO algorithms like ACS, a conclusion can be

drawn:

log () log ()

log log
() ()

log () log ()

log log

ga gb

gb ga

gb gak k

ga gb

ga gb

gb ga

gb ga

t t

P t P t
t t

τ τ
β η η

η η

τ τ
β η η

η η

−⎧
< >⎪ −⎪> ⇔ ⎨ −⎪ > <⎪ −⎩

 (8)

For the sake of convenience, some symbols about the pheromone trail are defined as

follows: max

()
() max { ()}

k

g gr
r J g

t tτ τ
∈

= is the highest pheromone trail among all the cities

feasible to be selected as next stop to city g . min

()
() min { ()}

k
g gr

r J g
t tτ τ

∈
= is the lowest one, and

1

()

() () ()

k

ave

g k gr

r J g

t J g tτ τ−

∈

= ∑ is the average pheromone trail, where ()kJ g is the

number of elements in the set ()kJ g . max 1

()
max { }

k

g gr
r J g

dη −

∈
= is the highest heuristic value of

elements in the set ()kJ g . min 1

()
min { }

k
g gr

r J g
dη −

∈
= stands for the lowest heuristic value, and

1 1 1

() ()

() ()

k k

ave

g k gr k gr

r J g r J g

J g J g dη η− − −

∈ ∈

= =∑ ∑ is the average heuristic value.

Let 1α = , two cases are discussed in the following:

཰ max min max
[()] [] [()] []

ave

g g g g
t t

α β α βτ η τ η> . It means that the ants will select the paths with

the maximum pheromone trail with a very high probability ACS. According to Formula (3),

one has

max

1max min

log () log ()
(,)

log log

ave

g g

g g

t t
M g t

τ τ
β

η η

−
< =

−
, because it is obvious that

max min

g gη η>

holds in TSPLIB problems.

ཱ
min max max

[()] [] [()] []
ave

g g g g
t t

α β α βτ η τ η> . It means that the ants will select the

 paths with the maximum heuristic value with a very high probability in ACS. It is

www.intechopen.com

 Travelling Salesman Problem

42

obvious that

min max

2max

log () log ()
(,)

log log

g g

ave

g g

t t
M g t

τ τ
β

η η

−
> =

−
 holds, when max ave

g gη η> and

min () 0g tτ > .

According to the analysis of case ཰ and ཱ, ACO may work as a non-heuristic searching

when
1 (,)M g tβ < , and as a greedy searching without using pheromone trail

when
2 (,)M g tβ > . Therefore, a fixed β may not enable ACO to find optimal solution by

using both heuristic and pheromone information. However, the process of ACO will not be
in the extreme as non-heuristic or greedy searching when

1 2(,) (,)M g t M g tβ≤ ≤ . So a new

adaptive parameter β is designed as follows:

max

max

log () log ()
1, (,)

log log

ave

g g

ave

g g

t t
g t

τ τ
α β

η η
−

= =
−

 (min () 0g tτ >) (9)

where
1 2(,) (,) (,)M g t g t M g tβ≤ ≤ can be proved.

Based on the adaptive parameter (,)g tβ strategy shown in Formula (4), a novel ACO

algorithm, which is called adaptive weight ant colony system (AWACS) can be described as
follows.

Initialize /* β is chosen in [0, 5] randomly, q0=0.6 */

Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node.
 Loop /* at this level each loop is called a step */
 Each ant applies a stochastic state transition rule to incrementally build a solution
 and a local pheromone updating rule
 Until all ants have built a complete solution
 A global pheromone updating rule is applied

 β(g,t) is updated (g = 1,…,n) following Formula (11)

Until End condition

The proof of its convergence (g = 1,…,n) is the same as the one in Ref. [54]. According to the

work of Ref. [54], it still holds that
min() 0g tτ > and max ()g tτ < +∞ (g = 1,…,n) when the

adaptive parameter β(g,t) strategy in Formula (4) is applied. Then, AWACS can be proved to

find the optimal solution with probability one following the conclusion given by T. Stützle
and M. Dorigo [54,69].

2.2.2 Numerical results and analyses

A comparison of the performance of ACS and AWACS is given in this section. In our

experiments, the parameters are set as follows: m = 10, α = ρ= 0.1, 1

0 ()nnnLτ −= . q0 is set

q0 =0.9 in ACS, and q0 =0.6 in AWACS , respectively. The initial value of β in AWACS is a

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

43

random figure changing in the interval [1,5]. The initial feasible solutions of TSP are generated in

the way from Ref [49]. What’s more, no local search strategy is used in experiment.
The experiments are conducted on two set of TSP problems. In the first set of 10 TSP, the
distances between cities are measured by integers and in the left 10 TSP, and the distances
are measured by real values. The datasets can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/ iwr/comopt/soft/TSPLIB95/TSPLIB.html. The detail of the experiment
result is given at table 1, table 2 and table 3.

Instance Optimal
Best

(ACS)
Best

(AWACS)
Average

(ACS)
Average

(AWACS)
Tavg(s)
(ACS)

Tavg (s)
(AWACS)

Best β

(ACS)

st70 654 657 657 675.9 675.5 16.9 27.4 4

rat99 unknown 1188 1188 1211.7 1199.4 53.2 59.7 3

pr107 unknown 44539 44398 44906.3 44783.9 39.5 55.4 4

pr124 unknown 59205 59067 59819.9 59646.6 59.2 42.3 4

eil101 612 614 613 634.6 631.4 22.4 76.3 5

rd100 7858 7909 7861 8100.4 8066.2 59.5 54.1 3

eil51 415 415 415 423.9 423.7 6.7 7.8 3

lin105 14345 14376 14354 14509.3 14465.6 73.7 50.8 4, 5

kroD100 21249 21486 21265 21893 21628.2 25.8 60 5

kroC100 20703 20703 20703 21165.3 20914.9 29.5 67.7 4

Table 1. Comparison I of the results obtained by ACS and AWACS

Instance Optimal
Best

(ACS)
Best

(AWACS)
Average

(ACS)
Average

(AWACS)
Tavg(s)
(ACS)

Tavg (s)
(AWACS)

Best β

(ACS)

kroA100 21282 21285.44 21285.44 21345.78 21286.33 51.3 51.8 2, 3

kroE100 22068 22078.66 22068.75 22206.62 22117.16 56.3 64.5 5

berlin52 7542 7544.36 7544.36 7544.36 7544.36 8.7 9.8 5

kroB150 26130 26127.35 26127.71 26332.75 26214.10 177.8 164.8 5

ch150 6528 6530.90 6530.90 6594.94 6559.66 373.6 118.1 2

kroB100 22141 22139.07 22139.07 22335.72 22177.47 55.5 68.6 4

kroA150 26524 26618.33 26524.86 26809.08 26685.73 204.5 242.9 5

u159 42080 42075.67 42075.67 42472.04 42168.54 356.7 80.2 1

pr76 108159 108159.4 108159.4 108610.6 108581.7 50.5 42.8 1

pr136 96772 96870.89 96785.86 97854.16 97236.61 344.3 158.9 14,5

Table 2. Comparison II of the results obtained by ACS and AWACS

www.intechopen.com

 Travelling Salesman Problem

44

Instance
\Standard deviation

AWACS
ACS

1β =

ACS

2β =

ACS

3β =

ACS

4β =

ACS

5β =

kroA100 8.49 460.04 338.84 183.55 625.81 447.03

kroE100 123.82 327.01 467.75 529.73 330.12 366.49

berlin52 0.00 376.98 376.19 357.76 548.34 0.00

kroB150 221.98 447.98 652.57 821.48 664.54 486.91

ch150 54.50 114.76 153.71 109.36 171.66 54.81

kroB100 132.37 554.43 579.73 1091.25 558.86 233.01

kroA150 384.39 522.81 942.11 974.79 640.34 432.72

u159 623.16 726.99 3531.45 2458.43 1509.09 1661.63

pr76 1158.43 1180.56 5058.92 2088.68 1677.73 1411.15

pr136 1300.78 2386.53 5303.40 4572.69 3304.40 2173.27

Table 3. Comparison of standard deviations of the tour lengths obtained by AWACS and
ACS

As shown in the above tables, there might be something like precision and time cost in the
result of our experiments different from those in the former research because of the different
program tools, systems and computing machines. Another possible reason is that the
distances between cities in the first 10 instances are measured by integer numbers. But ACS
and AWACS are running in the same setting, so the result remains helpful to compare the
performance of these two algorithms.

From Table 1-2, it could be seen that AWACS performs better than ACS with the fixed β.

The shortest lengths and the average lengths obtained by AWACS are shorter than those
found by ACS in all of the TSP instances. As Table 3 shows, it can be concluded that the
standard deviations of the tour lengths obtained by AWACS are smaller than those of ACS

with the fixedβ. Therefore, we can conclude that AWACS is proved to be more effective and

steady than ACS.

ACS has to change the best integer value of parameterβ with respect to different instances in

the experiments. AWACS can avoid the difficulty about how to choose the experimental

value ofβ, because its adaptive strategy can be considered as a function trying to find the

best setting for each path search via meeting the request of Formula 4. Though, the time cost

tavg of AWACS is more than ACS in some case, it is less than the sum of time ACS costs with

β =1,2,3,4,5 in all of the instances. As a result, the adaptive setting can save much time in

choosing the experimentalβ. Item tavg of AWACS is not less than ACS in all of the instances

because it needs to compute the value of β n (number of cities) times in each iteration.

However, the adaptive function of AWACS is feasible to use because of its acceptable time

cost.

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

45

2.3 Bi-directional searching ant colony system

In 2.2, an adaptive strategy for the weight parameter is proposed by exploring the function
of the parameter in the stochastic mechanism. In this section, we will further explore the
stochastic mechanism and a bi-directional searching ant colony system is proposed.

2.3.1 Bi-directional searching strategy using adaptive weight parameter

In the proposed ACO algorithms, the state transition rule of the artificial ants is given as
follows:

(,)

(,)

()

[()] []
()

[()] []()

0

k

g t

gs gs

kg t
k

gr gr
gs

r J g

t
if s J g

tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑ (10)

The only difference between the (10) and (3) is the setting of the parameter (,)g tβ . In the

Bi-directional case, the parameter is set with one of the following two methods by
probability 0.5

0max min

maxlog () log ()
1). (,)

log log

g g

g g

avet t
g t

τ τ
β ε

η η
−

= −
−

min max

0max

log () log ()
2). (,)

log log

g g

g g

ave

t t
g t

τ τ
β ε

η η
−

= +
−

.

where max

()
() max{ ()}

k

g gi
i J g

t tτ τ
∈

= is the highest pheromone trail among all the cities feasible to

be selected as next stop to city g. min

()
() min { ()}

k
g gi

i J g
t tτ τ

∈
= is the lowest one, and

1

()

() () ()
k

ave

g k gi

i J g

t J g tτ τ−

∈

= ∑ is the average pheromone trail, where ()kJ g is the

number of elements in the set ()kJ g . max 1

()
max{ }

k

g gi
i J g

dη −

∈
= is the highest heuristic value of

elements in the set ()kJ g . min 1

()
min { }
k

g gi
i J g

dη −

∈
= stands for the lowest heuristic value,

1 1 1

() ()

() ()
k k

ave

g k gi k gi

i J g i J g

J g J g dη η− − −

∈ ∈

= =∑ ∑ is the average heuristic value, and ε0>0..

For the first method,

max max min (,) max (,)

max min (,) (,)

() ()

log () log () [()] [] [()] []
(,)

log log [()] [] [()] []
k k

ave g t ave g t

g g g g g g

g t g t

g g gr gr gr gr

r J g r J g

t t t t
g t

t t

α β α β

α β α β

τ τ τ η τ η
β

η η τ η τ η
∈ ∈

−
< ⇔ >

− ∑ ∑
.

It means that the ants will select the paths with the maximum pheromone trail by the higher
probability than most of the other feasible paths, even if they are paths with the highest
heuristic value.
For the second one,

min max min max (,) max (,)

max (,) (,)

() ()

log () log () [()] [] [()] []
(,)

log log [()] [] [()] []
k k

g t ave g t

g g g g g g

ave g t g t

g g gr gr gr gr

r J g r J g

t t t t
g t

t t

α β α β

α β α β

τ τ τ η τ η
β

η η τ η τ η
∈ ∈

−
> ⇔ >

− ∑ ∑

www.intechopen.com

 Travelling Salesman Problem

46

It means that the ants will select the paths with the maximum heuristic value by the higher
probability than most of the other feasible paths, even if they are paths with the highest
pheromone trail.
Combing the above two methods of the parameter setting, the new ACO algorithm BSACS
is designed as:

 Initialize

/*β is chosen between 0 and 5 randomly, q0=0.6 */

Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node
 Loop /* at this level each loop is called a step */
 Each ant applies a state transition rule to incrementally build a solution and
 a local pheromone updating rule is applied
 Until all ants have built a complete solution
 A global pheromone updating rule is applied

β(g,t)is updated by either of the two methods by probability 0.5 (g=1,…,n)

Until End_condition

2.3.2 Numerical results and analyses

In this section, several large TSP instances of TSPIB [70] are tested by BSACS and ACS to
show the efficiency of the BSACS. The parameters are set as follows: m = 10, a = ρ= 0.1,

1

0 ()nnnLτ −= , and α=1. q0=0.9 in ACS, ε0=0.001 and q0=0.6 in BSACS , respectively. All

the instances are computed by BSACS 10 times, and so does ACS with each

β(β =1,2,3,4,5). As shown in Table 4 and Table 5, Item (1) is the length of the best tour

obtained by ACS and BSACS. Item (6) is the length of optimal solution published in the
TSPLIB: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.

Item (2) is the relative error which can be computed by 1
100%(2) ((1) (3)) (3)−= ×− × . Item

(1) and (2) show that BSACS can obtain better solution than ACS in all of the instances. Item
(4) is the average length of the solutions found by both ACS and BSACS. Item (5) is the best

value of β which can make ACS perform the best according to Item (1) or Item (4).

The experiment result shows that BSACS can perform better than ACS in every

computation. What’s more, ACS has to change the selection of β in different instances and

cannot solve different large size TSP problems steadily with a fixed value of β. The reason is

that ACS is not able to effectively use the pheromone trail and heuristic value in searching

when β of the transition rule is fixed and unchanged in iterations. This disadvantage could

be avoided by using BSACS because the new rule of BSACS (Formula 1) functions based on
both pheromone trail and heuristic value adaptively. For the computational complexity, the

BSACS need more time than ACS, because β(g,t)(g=1,…, n) has to be updated at each

iteration. However, it doesn’t mean that the cost of BSACS is more than ACS in the
application, because the cost of ACS for the best parameter selection (Item (5) in Table 2) has
not been calculated here. Therefore, BSACS can save the time in choosing the experimental
value of the parameter. Generally, the BSACS improves the performance of ACS in solving
large size TSP problems.

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

47

Instance Algorithm (1)Best (2)%Error (3)Optimal

ACS 118773 0.423
bier127

BSACS 118372 0.076
118282

ACS 15888 0.68
d198

BSACS 15780 0.00
15780

ACS 128829 1.734
ts225

BSACS 126905 0.206
126643

ACS 51286 0.96
pcb442

BSACS 51271 0.93
50799

ACS 28147 1.67
att532

BSACS 27939 0.91
27686

ACS 38318 3.829
u574

BSACS 37662 2.052
36905

ACS 9015 2.37
rat783

BSACS 8819 0.14
8806

ACS 22977 3.27
fl1577

BSACS 22611 1.63
222490.

Table 4. Comparison of the best solution obtained by ACS and BSACS

Instance Algorithm
(4)

Average
(5)Best β of

ACS

(6) tavg

(second)

ACS 119185.3 2, 3 45.6
bier127

BSACS 118826.8 - 91.0

ACS 16054.8 2 97.8
d198

BSACS 15842.1 - 124.5

ACS 129102.5 4, 5 32.0
ts225

BSACS 127262.8 - 67.0

ACS 51690.2 2 281.6
pcb442

BSACS 51642.8 - 461.2

ACS 28532.0 2 401.5
att532

BSACS 28163.7 - 539.7

ACS 38657.8 1, 5 305.3
u574

BSACS 38291.9 - 504.3

ACS 9066.0 2 1185.4
rat783

BSACS 8985.8 - 1559.8

ACS 23163.5 2 3884.0
fl1577

BSACS 22680.3 - 6290.2

Table 5. Comparison of the average solution obtained by ACS and BSAC

2.4 An adaptive volatility rate of pheromone trail
The following presents a trial work of setting the parameters of ACO adaptively. First, a tuning
rule for ρ is designed based on the quality of the solution constructed by artificial ants. Then, we
introduce the adaptive ρ to form a new ACO algorithm, which is tested to compute several
benchmark instances of traveling sales-man problem and film-copy deliverer problem.

www.intechopen.com

 Travelling Salesman Problem

48

2.4.1 An adaptive volatility rate setting strategy

After constructing its tour, an artificial ant also modifies the amount of pheromone on the
visited edges by applying the pheromone updating rule. The rule is designed so that it tends
to give more pheromone to the edges which should be visited by ants. The classical
pheromone updating rule is as (1). And the optimal ρ was set ρ =0.1 experimentally [46, 49,
55], which means that 90 per cent of the original pheromone trail remains and its 10 per cent
is replaced by the increment.
In order to update the pheromone according to the quality of solutions found by ants, an
adaptive rule for volatility of the pheromone trail is designed as follows:

1 1 1/()m m m PL L Lρ − − −= + (11)

whereLm is the length of the solution Sm found by ant m, and Lp is the length of the solution

Sp built based on the pheromone matrix, shown as
()

arg max {[(,)}
mu J r

s r uτ
∈

= where s is the

city selected as the next one to city r for any (r,s)∈ Sp.
The motivation of the proposed rule is: better solutions should contribute more pheromone,
and the worse ones contribute less. And a new ACO algorithm with the adaptive rule
(shown as Equation 3) is introduced as follows:

Initialize

/*β is chosen between 0 and 5 randomly, q0=0.6 */

Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node
 Loop /* at this level each loop is called a step */
 Each ant applies a state transition rule to incrementally build a solution and
 a local pheromone updating rule is applied
 Each ant the calculate the ρi is based on its solution’s length
 Until all ants have built a complete solution
 ρbest is calculated based on the best solution Sbest.
 Carry out the pheromone updating rule with ρi (i=1,…,k) and ρbest.

Until End_condition

2.4.2 Numerical results

This section indicates the numerical results in the experiment that the proposed ACO
algorithm is used to solve TSP problems [69]. Several TSP instances are computed by ACS
[49], ACO [71] and the proposed ACO on a PC with an Intel Pentium 550MBHz Processor
and 256MB SDR Memory, and the results are shown in Table 1.
It should be noted that every instance is computed 20 times. The algorithms are both

programmed in Visual C++6.0 for Windows System. They would not stop until a better

solution could be found in 500 iterations, which is considered as a virtual convergence of the

algorithms. Table 6 shows that the proposed ACO algorithm (PACO) performs better than

ACS [49] and ACO [71]. The shortest lengths and the average lengths obtained by PACO are

shorter than those found by ACS and ACO in all of the TSP instances. Furthermore, it can be

concluded that the standard deviations of the tour lengths obtained by PACO are smaller

than those of another algorithms. Therefore, we can conclude that PACO is proved to be

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

49

more effective and steady than ACS [49] and ACO [71]. Computation time cost of PACO is

not less than ACS and ACO in all of the instances because it needs to compute the value of

volatility rate k+1 times per iteration. Although all optimal tours of TSP problems cannot be

found by the tested algorithms, all of the errors for PACO are much less than that for

another two ACO approaches. The algorithms may make improvement in solving TSP when

reinforcing heuristic strategies like local search like ACS-3opt [49] and MMAS+rs [51] are

used.

Problem Algorithm best ave time(s)
standard
deviation

ACS 21958 22088.8 65 1142.77

ACO 21863 22082.5 94.6 1265.30 kroA100

PACO 21682 22076.2 117.2 549.85

ACS 130577 133195 430.6 7038.30

ACO 130568 132984 439.3 7652.80 ts225

PACO 130507 131560 419.4 1434.98

ACS 84534 86913.8 378.4 4065.25

ACO 83659 87215.6 523.8 5206.70 pr226

PACO 81967 83462.2 762.2 3103.41

ACS 14883 15125.4 88.8 475.37

ACO 14795 15038.4 106.6 526.43 lin105

PACO 14736 14888 112.2 211.34

ACS 23014 23353.8 56.2 685.79

ACO 22691 23468.1 102.9 702.46 kroB100

PACO 22289 22728 169.6 668.26

ACS 21594 21942.6 54.8 509.77

ACO 21236 21909.8 78.1 814.53 kroC100

PACO 20775 21598.4 114.8 414.62

ACS 48554 49224.4 849.2 1785.21

ACO 48282 49196.7 902.7 2459.16 lin318

PACO 47885 49172.8 866.8 1108.34

Table 6. Comparison of the ACS [49], ACO [51] and the proposed ACO (PACO) in TSP
instances

3. Genetic algorithm for generalized TSP

3.1 Generalized TSP (GTSP)

The generalized traveling salesman problem (GTSP) is a kind of combinatorial optimization

problem, which has been introduced by Henry-Labordere [72] and Saksena [73] in the

context of computer record balancing and of visit sequencing through welfare agencies since

1960s. The GTSP can be described as the problem of seeking a special Hamiltonian cycle

with lowest cost in a complete weighted graph.

www.intechopen.com

 Travelling Salesman Problem

50

Let G=(V, E, M) be a complete weighted graph where { }1 2, , , (3),nV v v v n= >"

{ }| ,i j i jE e v v V= ∈ and { }| 0 0, , ()i j ij iiW w w and w i j N n= ≥ = ∀ ∈ are vertex set, edge

set, and cost set, respectively. The vertex set V is partitioned into m possibly intersecting

groups
1 2, , mV V V" with 1jV ≥ and

1

m

j jV V== ∪ . The GTSP is required to pass through all

of the groups, but not all of the vertices differing from that of TSP. For convenience, we also

call W as the cost matrix and take it as W=(wij)n×n. There are two different kinds of GTSP
under the abovementioned framework of the special Hamiltonian cycle [75-76]: (1) the cycle
passes exactly one vertex in each group (refer to Fig. 1) and (2) the cycle passes at least one
vertex in each group (refer to Fig. 2). The first kind of GTSP is also known as E-GTSP, where
E stands for equality [76]. In this paper we only discuss the GTSP for the first case and will
still call it as GTSP for convenience.

Figure 3. Exactly one vertex is visited in a GTSP cycle.

GTSP has extensive application fields. Laport et al. [75], Lien et al. [77], and Castelino et al.
[78] reported the applications of GTSP. Just as mentioned in Ref. [77], “for many real-world
problems that are inherently hierarchical, the GTSP offers a more accurate model than the
TSP.” Generally, GTSP provides a more ideal modeling tool for many real problems.
Furthermore, GTSP can include the grouped and isolated vertices at the same time
according to our present extension. Therefore, GTSP includes TSP theoretically (see Fig. 3)
and application fields of GTSP are wider than those of TSP.
Although since late 1960s GTSP has been proposed [72-74], the related reported works are
very limited compared with those on TSP [79–82] and the existing algorithms for GTSP are
mainly based on dynamic programming techniques [72-74,76,83-84]. However, because of
its NP-hard quality, only a few solutions of modest-size problems are supported by the
current hardware technology and most of them fail to obtain the results due to the huge
memory required in dynamic programming algorithms and the problem of lengthy
computational time.
The main methodology of the dynamic programming algorithms is to transform the GTSP
into TSP and then to solve the TSP using existing algorithms [76, 84–86]. The shortcomings
of these methods are that the transformation increases the problem dimension dramatically
and in some cases the dimension would expand up to more than three times of the original
[77, 87-89]. Therefore, although theoretically the GTSP could be solved using the

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

51

corresponding transformed TSP, the technological limitation ruins its practical feasibility.
Some studies have been performed to discuss and solve the problem [90–92]. This study, we
will show some bio-inspired method on the GTSP problem.

3.2 Genetic algorithm for generalized TSP

Genetic algorithm (GA) is one of the powerful tools to deal with NP-hard combinatorial
optimization problems and has been widely applied for finding the solution of TSP due to
its high efficiency and strong searching ability. However, theoretical and application studies
related to using GA methods to solve GTSP are very few. The [90] and [93] are two of most
interesting work on this problem. In [90], a hybrid GTSP solving algorithm is proposed
based on random-key GA and local search method, the main difficult of the method it is
hard to handle large scale problems. In [93], a generalized chromosome is used and a
generalized chromosome- based GA (GCGA) is proposed accordingly. The advantages of
the GCGA are that it does not require the transformation from GTSP to TSP and remove the
limitation of triangle inequality of the cost matrix, which enables the GCGA to be able to run
with high efficiency.

3.2.1 Generalized chromosome

The solution of GTSP is a special Hamiltonian cycle, which passes through all of the groups.
The encoding for solution of GTSP is designed similarly to the one proposed by Huang et al.
[94]. A hybrid encoding, which includes a head encoded with binary number and a body
encoded with integer number, is given for the solution as figure 1 shows.

Figure 4. Hybrid Encoding for Solution of GTSP

In the body, there are m integer elements representing m groups (ˆm m m= + � , m̂ supper

vertexes and m� scattering vertexes[93]. In the head, there are m̂ binary elements

representing vertexes in groups.

Let
ˆ1 1[,..., ,..., , ,..., ,...,]i m j me e e g g g be a GTSP solution, where

ie (encoded in binary

number) is the sequence number of the vertex in Group i, and
jg (encoded in integer

number) is the sequence number of the jth group in the cycle. The set of hybrid encoding can

be denoted by { }| , ,D x x h b h H b B= = ⊕ ∈ ∈ , and each solution for GTSP can be encoded as

x D∈ , where
1 ˆ

ˆ{ | ,..., ; , }i im
H h h e e e V i m= = ≤ ≤ represents the head and

1{ | ,..., }mB b b g g= =) represents the body.

3.2.2 The framework of the GCGA

The special designed operators are needed to conduct random search on the generalized
chromosome. The GCGA contains the following four operators: Initializing operator P,
Generalized crossover operator C, Generalized crossover operator C and Generalized

www.intechopen.com

 Travelling Salesman Problem

52

reversion operator R. We give a brief introduction to these five steps in this section. More
information about the GCGA can refer to [93].
1. Initializing operator P
Initializing operator P is used to generate an initial population. It is a two-element random
operator. Its two variables are H and B, and its result is a subset of D. Denoting P as a
population, then the initialization of P can be represented as PN=(H,B), where PN is an
operator to randomly generate an initial population with size N.
2. Generalized crossover operator C
To implement the crossover operation and generate new chromosomes, a generalized
crossover operator is defined as C:D×D→ D×D. It is a two-element random operator. Its
variables are the elements of D. The behavior of the operator is somewhat similar to the two-
point crossover in the standard GA. Let the two crossover points selected randomly be

1i and 2i (assume 1 2i i<), where
^ ~

1 (2)i random m m= + , and
^ ~

2 (2)i random m m= + . If

1
ˆi m> then the crossover takes place in the body parts. In this case, the effect of crossover

operator is equal to the conventional crossover in some extent, because the body parts of GC

are equivalent to two normal chromosomes. If 2
ˆi m≤ , then the crossover takes place in the

head parts. In this case, it is only needed to exchange the genes within the crossover

segments. If 1 2
ˆi m i≤ < , then the generalized crossover can be treated as the combination

of the above cases.
3. Generalized mutation operator M
To increase the diversity of the gene segments, the generalized mutation operator M is
designed based on the insertion mutation used in standard GA. Preliminary gene

^ ~

2 (2)i random m m= + is randomly selected, which is taken as the gene to be mutated. The

difference between GCGA and standard GA is that if ˆi m< then the preliminary gene lies
in the head part and its corresponding body part also need to be generated.
4. Generalized reversion operator R
To enhance the convergent speed of the GCGA, the generalized reversion operator is
designed which is similar to the conventional reversion operation. Operator R can be used

to select two reversion points 1i and 2i according to
1

ˆ()i random m m= + � , and

2
ˆ()i random m m= + � . If the solution generated after the reversion operator, then the

operator R is taken, otherwise the operator won’t taken.

3.3 Improved Evolutionary Algorithm (EA) for GTSP
3.3.1 The framework of EA for GTSP
In this section, an improved EA for the GTSP (EA-GTSP) has been proposed. In the EA-
GTSP, the generalized chromosome described in 3.2 is used to encode the problem. And the
following three operators are specially designed to improve the efficiency of the algorithm
on the GTSP: crossover operator, mutation operator and local optimization strategy.
a. Crossover
At Step 3, pairs of solutions may be selected to carry out the crossover operator by the

crossover probability Pc. Given two solutions
x x xS h b= ⊕ and

y y yS h b= ⊕ selected at

Step 3 (hx, hy∈H.bx,by∈B), the process of crossover can be shown as follows:

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

53

Two integer numbers 1 2,i i (1 2,i i ≤ m̂＋(m̂＋m�), 1 2i i<) are generated randomly to set

the crossing position. If 1 m̂i > , then, (,)b b b bx y x y′ ′⊗ → , which is the same operator as the

GCGA, 'x h b
x x

′= ⊕ , 'y h b
y y

′= ⊕ . If
2 m̂i ≤ , (,)h h h hx y x y′ ′⊗ → , ' 'x h b

x x
= ⊕ , ' 'y h b

y y
= ⊕ .

If
1 m̂i < and

2 m̂i ≥ , (,)h h h hx y x y′ ′⊗ → and (,)b b b bx y x y′ ′⊗ → , x h b
x x

′ ′ ′= ⊕ and

y h b
y y

′ ′ ′= ⊕ .

If the GTSP solution Sx costs less than Sy (2 m̂i ≤),

1 1 1 2 2 2

{ , ..., , . AND . , ..., . AND . , , ..., }
ˆ1 1 1

h e e e e e e e e
x x xi xi yi xi yi xi xm
′ = − +

1 1 1 2 2 2

{ , ..., , . OR . , ..., . OR . , , ..., }
ˆ1 1 1

h e e e e e e e e
y x xi xi yi xi yi xi xm
′ = − + ;

otherwise,

1 1 1 2 2 2

{ , ..., , . AND. , ..., . AND. , , ..., }
ˆ1 1 1

h e e e e e e e e
x y yi xi yi xi yi yi ym
′ = − +

1 1 1 2 2 2

{ , ..., , .OR . , ..., .OR . , , ..., }
ˆ1 1 1

h e e e e e e e e
y y yi xi yi xi yi yi ym
′ = − + .

If the GTSP solution Sx costs less than Sy (1 m̂i < and
2 m̂i ≥),

1 1 1

{ , ..., , . AND . , ..., . AND . }
ˆ ˆ1 1

h e e e e e e
x x xi xi yi xm ym
′ = −

1 1 1

{ , ..., , . OR . , ..., . OR . }
ˆ ˆ1 1

h e e e e e e
y x xi xi yi xm ym
′ = − ;

otherwise,

1 1 1

{ , ..., , . AND . , ..., . AND . }
ˆ ˆ1 1

h e e e e e e
x y yi xi yi xm ym
′ = −

1 1 1

{ , ..., , . OR . , ..., . OR . }
ˆ ˆ1 1

h e e e e e e
y y yi xi yi xm ym
′ = − .

b. Mutation
The mutation operator is added to help EA-GTSP converge to the global optimal solution.

Each solution is affected by the mutation operator by probability mP . There are two

procedures called head mutation and body mutation in the operator.

In the head mutation, given a head of a solution, the procedure of head mutation is:

Head mutation: h h
z z

′→ ,
3 3 3

{ ,..., , (), , ..., }
ˆ1 1 1

h e e rebuild e e e
z z zi zi zi zm
′ = − +

www.intechopen.com

 Travelling Salesman Problem

54

where
3 3 3

{ , ..., , , , ..., }
ˆ1 1 1

h e e e e e
z z zi zi zi zm
= − + .

3

()rebuild e
zi

 will generate a segment of

binary bits randomly. Every binary element of solution SZ may be affected by

3

()rebuild e
zi

 when
mh mhr P< (

mhr is generated randomly in [0,1] for each binary element

of the solution obtained at Steps 3 and 4).
In the body mutation, the procedure is described as follows:

Body mutation: 'b b
z z
→ , ' { ' , ..., ' , ' , ' , ..., ' }

ˆ1 1 1
b g g g g g
z z zi zi zi zm
= − +

where { , ..., , ..., }
ˆ1

b g g g
z z zi zm
= and

mb mbr P< (
mbr is generated randomly in [0,1] for

each solution obtained at Steps 3 and 4).
 So the mutation operator of the EA-GTSP is defined as follows:

Mutation of EA-GTSP: ' ' 'mutation

z z z z z zS h b S h b= ⊕ ⎯⎯⎯⎯→ = ⊕ .

c. Local Optimal Strategy
The local optimal strategy is helpful to find the best solution in a local searching space. Each
solutions of the population are optimized according to a heuristic algorithm as follows:

Input: GTSP solution Sq

For i =1 to m̂ do //optimization for head

 Choose a vertex in Group i to make Sq cost the lest
 End for

 For j =1 to m̂ m+ � -1 do //optimization for body

 Choose an order for gqjand gqj+1 to make Sq cost the least.
 End for
Output: a new solution S’q (Sq is changed into S’q.)

d. Decoding for solution of GTSP
Because the head encoding is designed as binary number, it needs to be decoded in the
following function.

[, ,] [. MOD . , , . MOD . , ..., . MOD .]ˆ1ˆ ˆ1 1

decoding
h e e e V e V e Vi mm i m
= ⎯⎯⎯⎯→… …

where Vi is the number of vertexes in Group i (iV).

Until now, we can summarize the algorithm of the improved EA for the GTSP as follows.

Initialize parameters.
Encode and initialize a population of solutions.

 /*β is chosen between 0 and 5 randomly, q0=0.6 */

Loop /* at this level each loop is called iteration */
 Crossover Operator: select pairs of solutions and change them into pairs of new Local
 solutions with the crossover operator by the crossover probability.
 Optimal Strategy: optimize all of the solutions with a heuristic algorithm locally.
 Mutation Operator: select several solutions by the mutation probability and change
End_condition
Decoding for solution of GTSP

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

55

3.3.2 Numerical result

In this section, the efficiency of the EA-GTSP and other algorithms are compared on some
benchmark problems [93].

Problem
\five runs

EA-GTSP
Best

EA-GTSP
Average

GCGA
Best

GCGA
Average

HCGA
Best

HCGA
Average

30KROA150 11018 11018 11018 11022 11018 11018

30KROB150 12195 12195 12196 12314 12195 12195

31PR152 51573 51573 51586 53376 51573 51573

32U159 22664 22664 22664 22685 22664 22664

40KROA200 13408 13408 13408 13617 13408 13408

40KROB200 13113 13114 13120 13352 13113 13119

45TS225 68340 68403 68340 68789 68340 68432

46PR226 64007 64007 64007 64574 64007 64007

53GIL262 1011 1011 1011 1057 1011 1011

53PR264 29546 29546 29549 29791 29546 29546

60PR299 22617 22631 22638 22996 22631 22638

64LIN318 20769 20799 20977 22115 20788 20914

80RD400 6446 6480 6465 6604 6456 6498

84FL417 9663 9663 9663 9725 9663 9663

88PR439 60099 60249 61273 62674 60184 60558

89PCB442 21695 21735 21978 22634 21768 21860

Table 7. Comparison of solution among EA-GTSP, GCGA and HCGA

The instances can be obtained from TSPLIB library which were originally generated for

testing standard TSP algorithms. To test GTSP algorithms, Fischetti et al. [95] provided a

partition algorithm to convert the TSP instances to GTSP instances.

In our experiments, we set the population size as 100 (pop_size=100), crossover probability as

0.5 (0.5cP =), and mutation probability as 0.09 (Pm=0.09, Pmh=0.001, Pmb=0.005). The

algorithms would stop when no better solution could be found in 500 iterations. All of the

instances are computed by EA-GTSP, HCGA [94] and GCGA [93] twenty times on a PC with

2.0 GHz processor and 256 MB SDR memory, and the results are shown in Table 1.

In Table 7, not only the best solution obtained by EA-GTSP is shorter than the one obtained

by HCGA and GCGA does, but also the one on average, in all of the examples. It can show

global optimal function of EA-GTSP. In order to show the performance of EA-GTSP, there is

a comparison between it and several heuristic algorithms [96] by computing the same GTSP

instances. As Table 2 shows, EA-GTSP is more efficient and steady than all of the test

algorithms because it can get the best solution in most of the instances.

www.intechopen.com

 Travelling Salesman Problem

56

Problem\fi
ve runs

EA-
GTSP

NN
(G-opt)

NN
(G2-opt)

CI
(G-opt)

CI
(G2-opt)

MO
(G-opt)

MO
(G2-opt)

CI2 GI3

30KROA150 11018 11018 11018 11018 11018 11018 11018 11018 11018

30KROB150 12195 12196 12196 12196 12196 12196 12196 12196 12196

31PR152 51573 52506 52506 51915 51915 51820 51820 51820 51820

32U159 22664 23296 23296 22664 22664 22923 22923 23254 23254

40KROA200 13408 14110 14110 14059 14059 13887 13887 13406 13406

40KROB200 13113 13932 13111 13117 13117 13117 13117 13111 13111

45TS225 68340 68340 68340 69279 69279 68756 68756 68756 68756

46PR226 64007 65811 65395 65395 65395 64007 64007 64007 64007

53GIL262 1011 1077 1032 1036 1036 1021 1021 1064 1064

53PR264 29546 31241 31241 31056 31056 30779 30779 29655 29655

60PR299 22617 24163 23069 23119 23119 23129 23129 23119 23119

64LIN318 20769 22233 21787 21858 21858 22403 22403 21719 21719

80RD400 6446 7083 6614 6550 6550 6546 6546 6439 6439

84FL417 9663 9754 9754 9662 9662 9697 9697 9932 9697

88PR439 60099 63736 62514 61126 61126 62091 62091 62215 62215

89PCB442 21695 23364 21704 23307 23307 22697 22697 22936 22936

Table 8. Comparison of solution among EA-GTSP, GCGA and HCG

4. Conclusion and discussions

The chapter introduces two examples of bio-inspired algorithm for traveling sales-man

problems and its extended version. The first algorithm, named ant colony optimization

(ACO) which is designed inspired by the natural ants’ behavior, is a novel method to deal

with TSPs. The experimental results prove the performance of ACO approach, which is

feasible to solve TSP instances as well as the traditional method. The research results about

the self-adaptive parameters of ACO are presented in the chapter, which indicates how to

set an optimal ACO algorithm for different TSPs. Another algorithm is genetic algorithm,

which is used to solve generalized traveling sales-man problem (GTSP) that is one extended

style of TSPs. The best-so-far genetic algorithm for GTSP is introduced in the final sub-

section. Bio-inspired algorithms are the feasible methods for TSPs, and can attain better

performance with the modified setting like self-adaptive parameters and hybrid coding,

which are described in the chapter.

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

57

5. References

J.H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.

1975

R. Cheng, & M. Gen, Crossover on intensive search and traveling salesman problem.

Computers & Industrial Engineering, 27(1–4), pp. 485–488, 1994.

R. Cheng, M. Gen, & M. Sasaki, Film-copy deliverer problem using genetic algorithms.

Computers & Industrial Engineering, 29(1–4):pp. 549–553, 1995.

N. Kubota, T. Fukuda, & K. Shimojima, Virus-evolutionary genetic algorithm for a self-

organizing manufacturing system. Computers and Engineering, 30(4), 1015–1026,

1996.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison–Wesley, Reading, MA.1989.

R. Cheng, M. Gen and Y. Tsujimura, “A tutorial survey of jobshop scheduling problems

using genetic algorithms – I. Representation”, Computers and Industrial

Engineering, pp. 983–997, 1996.

C. R. Reeves, “A genetic algorithm for flowshop sequencing”, Computers and Operations

Research, 22(1), pp. 5–13, 1995

J. C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA

Journal on Computing, 6(2), pp.154–160,1994.

L. Davis, Job shop scheduling with genetic algorithms. In: Proceedings of the International

Conference on Genetic Algorithms, London, pp. 136–140, 1985.

D.E. Goldberg, R.J. Lingle, Alleles, loci and the traveling salesman problem. In: Proceedings

of the International Conference on Genetic Algorithms, London, pp.154–159, 1985.

I. Oliver, D. Smith, J. Holland, A study of permutation crossover operators on the traveling

salesman problem. In: Proceedings of the Second International Conference on

Genetic Algorithms, London, pp. 224–230, 1987.

T. Starkweather, et al., A comparison of genetic sequencing operators. In: Proceedings of the

Fourth International Conference on Genetic Algorithms, Los Altos, CA, pp. 69–76,

1991.

F. D. Croce, R. Tadei and G. Volta, “A genetic algorithm for the job shop problem”,

Computers and Operations Research, 22(1), pp. 15–24, 1995.

G. Syswerda, Uniform crossover in genetic algorithms.In: Proceedings of the Third

International Conference on Genetic Algorithms, Los Altos, pp. 502–508, 1989.

M. Yamamura, , T Ono, and S. Kobayashi, Character-preserving genetic algorithms for

traveling salesman problem, Journal of Japan Society for Artificial Intelligence, vol.

6.pp. 1049-1059, 1992.

M. Yamamura, T Ono, and S. Kobayashi, Emergent search on double circle TSPs using

subtour exchange crossover, in: Proceedings of the Third IEEE Conference on

Evolutionary Computation, IEEE Press, Nagoya, Japan, pp. 535-540, 1996.

J. Dzubera and D. Whitley, “Advanced correlation analysis of operators for the traveling

salesman problem,” in Parallel Problem Solving From Nature—PPSN III, Y.

Davidor, H.-P. Schwefel, and R. Männer, Eds. New York: Springer-Verlag, pp. 68–

77, 1994.

www.intechopen.com

 Travelling Salesman Problem

58

K. Mathias and D. Whitley, “Genetic operators, the fitness landscape, and the traveling

salesman problem,” in Parallel Problem Solving From Nature. Amsterdam, The

Netherlands: Elsevier, pp. 219–228, 1992.

H. D. Nguyen, I. Yoshihara, and M. Yasunaga, “Modified edge recombination operators of

genetic algorithms for the traveling salesman problem,” in Proc. 3rd Asia-Pacific

Conf. Simul. Evol. and Learn., Nagoya, Japan, pp. 2815–2820, 2000.

T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, and D. Whitley, “A comparison of

genetic sequencing operators,” in Proc. 4th Int. Conf. Genetic Algorithms, pp. 69–

76, 1991.

B. Freisleben and P. Merz, “A genetic local search algorithm for solving symmetric and

asymmetric traveling salesman problems,” in Proc. IEEE Int. Conf. Evol. Comput.,

pp. 616–621, 1996.

P. Merz and B. Freisleben, “Genetic local search for the TSP: New results,”in Proc. IEEE Int.

Conf. Evol. Comput., pp. 159–164, 1997.

——, “Memetic algorithms for the traveling salesman problem,” Complex Syst., 13(4), pp.

297–345, 2001.

S. Jung and B. Moon, “The natural crossover for the 2D Euclidean TSP,” in Proc. Genetic and

Evol. Comput. Conf, pp. 1003–1010, 2001.

Y. Nagata and S. Kobayashi, “Edge assembly crossover: A high-power genetic algorithm for

the traveling salesman problem,” in Proc. 7th Int. Conf. Genetic Algorithms, pp.

450–457, 1997.

Y. Nagata, “The EAX algorithm considering diversity loss,” in Parallel Problem Solving

From Nature—PPSN VIII. New York: Springer-Verlag, pp. 332–341, 2004.

H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “Greedy genetic algorithms for

symmetric and asymmetric TSPs,” IPSJ Trans. Math. Modeling and Appl., 43, SIG10

(TOM7), pp. 165–175, 2002.

H. Sengoku and I. Yoshihara, “A fast TSP solver using GA on JAVA,” in Proc. 3rd Int. Symp.

Artif. Life and Robot , pp. 283–288, 1998.

J. Grefenstette, et al. Genetic algorithms for the traveling salesman problem, in: Proceedings

of the First International Conference on Genetic Algorithms, Lawrence Erlbaum

Associates, Hillsdale, pp. 160-168,1985.

G. Liepins, et al. Greedy genetics, in: Proceedings of the First International Conference on

Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, pp.90-99, 1985.

P.W. Poon, J.N. Carter. Genetic algorithm crossover operators for ordering applications.

Computers and Operations Research 22 (1), pp. 135–147,1995.

L. Qu, R. Sun, A synergetic approach to genetic algorithms for solving traveling salesman

problem. Information Sciences 117 (3–4), pp. 267–283, 1999.

C. Liaw. A hybrid genetic algorithm for the open shop scheduling problem. European

Journal of Operational Research 124 (1), pp. 28–42, 2000.

K. Katayama, H. Sakamoto, H. Narihisa. The efficiency of hybrid mutation genetic algorithm

for the traveling salesman problem. Mathematical and Computer Modeling 31 (10–

12), pp.197–203, 2000.

R. Knosala, T. Wal. A production scheduling problem using genetic algorithm. Journal of

Materials Processing Technology 109 (1–2), 90–95, 2001.

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

59

C. Moon, et al., An efficient genetic algorithm for the traveling salesman problem with

precedence constraints. European Journal of Operational Research 140 (3), pp. 606–

617, 2002.

R. Cheng, M. Gen, Resource constrained project scheduling problem using genetic

algorithms. International Journal of Intelligent Automation and Soft Computing,

1996.

K. Katayama and H. Sakamoto. The Efficiency of Hybrid Mutation Genetic Algorithm for

the Travelling Salesman Problem. Mathematical and Computer Modelling 31,pp.

197-203,1990.

Arthur E. Carter, Cliff T. Ragsdale. A new approach to solving the multiple traveling

salesperson problem using genetic algorithms. European Journal of Operational

Research 175, pp. 246–257 , 2006.

H. D. Nguyen, et al. Implementation of an Effective Hybrid GA for Large-Scale Traveling

Salesman Problems: IEEE Transactions on Systems, Man and Cybernetics-Part B:

Cybernetics, 37(1):92-99,2007

F. Samanlioglu, M.E. Kurz, , & W.G. Ferrell Jr.. A genetic algorithm with random-keys

representation for a symmetric multiobjective traveling salesman problem. In:

Proceedings of the Institute of Industrial Engineers Annual Conference. Orlando:

Florida, 2006.

F. Samanlioglu, M. E. Kurz, W. G. Ferrell Jr., & Tangudu, S. A hybrid random-key genetic

algorithm for a symmetric traveling salesman problem. International Journal of

Operations Research, 2(1), 47–63, 2007.

F.Samanlioglu et al. A memetic random-key genetic algorithm for a symmetric multi-

objective traveling salesman problem. Computers & Industrial Engineering.

www.sciencedirect.com, 2008.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a Colony of

Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B:

CYBERNETIC, 26(1), FEBRUARY, 1996.

M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,

Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT, 1992.

M. Dorigo, G.D. Caro, L.M. Gambardella. Ant algorithms for Discrete Optimization.

Massachusetts Institute of Technology, Artificial Life 5, pp. 137-172, 1999.

W.J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution.

Information Processing Letters 82, pp.145-153, 2002.

M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem.

BioSystems, 43, pp. 73-81, 1997.

M. Dorigo and L.M. Gambardella. Ant Colony System: A cooperative learning approach to

the traveling salesman problem. IEEE Transactions on Evolutionary Computation,

1(1), pp. 53-66, 1997.

L.M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies.

Proceedings of IEEE International Conference on Evolutionary Computation. 1996.

T. Stutzle and H.H. Hoos. MAX-MIN Ant System. Future Generation Computer

Systems,16(8), pp. 889-914, 2000.

www.intechopen.com

 Travelling Salesman Problem

60

M. Dorigo, M. Birattari, T. Stutzle. Ant colony optimization. Computational Intelligence

Magazine, IEEE, Vol. 1, Nov., pp.28-39, 2006.

W.J. Gutjahr. A graph-based ant system and its convergence. Future Generation Computer

Systems 16(9), pp. 873-888, 2000.

T. Stutzle, M. Dorigo. A Short Convergence Proof for a Class of Ant colony Optimization

Algorithms. IEEE Transactions on Evolutionary Computation, 6(4), 2002.

M. Dorigo, C. Blum. Ant colony optimization theory: A survey. Theoretical Computer

Science, 344, pp. 243-278, 2005.

A. Badr, A. Fahmy. A proof of convergence for Ant algorithms. Information Sciences 160,

pp. 267-279, 2004.

S. Fidanova. ACO Algorithm with Additional Reinforcement. M. Dorigo et al. (Eds): ANTS

2002, LNCS 2463, pp. 292-293, 2002.

S. Fidanova. Convergence Proof for a Monte Carlo Method for Combinatorial Optimization

Problems. M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 523-530, 2004

 J. Kennedy and R.C. Eberhart. Particle Swarm Optimisation. In Proceedings of the

International Conference on Neural Networks, pp.1942–1948, 1995.

Clerc, M.. Discrete Particle Swarm Optimization, Illustrated by Traveling Salesman Problem.

In New Optimization Techniques in Engineering. Springer-Verlag, Berlin , 2004.

Bo Liu, Ling Wang, Yi-hui Jin, and De-xian Huang, An Effective PSO-Based Memetic

Algorithm for TSP, In: D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, LNCIS

345, pp. 1151 – 1156, 2006.

Yong-Qin Tao, Du-Wu Cui, Xiang-Lin Miao, and Hao Chen, An Improved Swarm

Intelligence Algorithm for Solving TSP Problem. In D.-S. Huang, L. Heutte, and M.

Loog (Eds.): ICIC 2007, LNAI 4682, pp. 813–822, 2007.

Bin Shen, Min Yao, and Wensheng Yi., Heuristic Information Based Improved Fuzzy

Discrete PSO Method for Solving TSP. In Computer Science, PRICAI 2006, LNAI

4099, pp. 859 – 863, 2006.

Yuan, Zhenglei, et al. Chaotic Particle Swarm Optimization Algorithm for Traveling

Salesman Problem.Automation and Logistics, 2007 IEEE International Conference

on 18-21. pp. 1121 – 1124, 2007.

M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search strategy,”

Dipartimento di Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-016, 1991.

M. Dorigo, “Optimization, learning and natural algorithms (in italian),” Ph.D. dissertation,

Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

M. Dorigo and G. Di Caro, “The Ant Colony Optimization meta-heuristic,” in New Ideas in

Optimization, D. Corne et al., Eds., McGraw Hill, London, UK, pp. 11–32, 1999.

Sun, J., Xiong, S. W., Guo, F. M.: A new pheromone updating strategy in ant colony

optimization, Proceedings of 2004 International Conference on Machine Learning

and Cybernetics, 1, pp. 620-625, 2004

Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA. 2004.

G. Reinelt, "TSPLIB. A traveling salesman problem library," ORSA Journal on Computing,

3(4), pp. 376-384, 1991.

www.intechopen.com

Bio-inspired Algorithms for TSP and Generalized TSP

61

K. Socha, J. Knowles, and M. Sampels, “A MAX–MIN ant system for the university

timetabling problem,” in Proc. ANTS 2002, ser. LNCS, M. Dorigo et al., Eds., vol.

2463, p. 1, Berlin, Germany: Springer Verlag, 2002.

A. L. Henry-Labordere, RIRO B 2, 43, 1969.

J. P. Saskena, CORS J. 8, 185, 1970.

S. S. Srivastava, S. Kumar, R. C. Garg, and P. Sen, CORS J. 7, 7 ,1969.

G. Laporte, A. Asef-vaziri, and C. Sriskandarajah, J. Oper.Res. Soc. 47, 1461, 1996.

M. Fischetti, J. J. Salazar, and P. Toth, Oper. Res. 45, 378, 1997.

Y. N. Lien, E. Ma, and B. W.-S. Wah, J. Chem. Inf. Comput. Sci. 74, 177, 1993.

K. Castelino, R. D’Souza, and P. K. Wright, http://kingkong.me.berkeley.edu/_kenneth/

N. E. Bowler, T. M. A. Fink, and R. C. Ball, Phys. Rev. E 68,036703, 2003.

M. Andrecut and M. K. Ali, Phys. Rev. E 63, 047103, 2001.

T. Munakata and Y. Nakamura, Phys. Rev. E 64, 046127, 2001.

J. Bentner, G. Bauer, G. M. Obermair, I. Morgenstern, and J.Schneider, Phys. Rev. E 64,

036701 2001.

G. Laporte and Y. Nobert, INFOR 21, 61, 1983.

C. E. Noon and J. C. Bean, Oper. Res. 39, 623, 1991.

D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,Int. J. Prod. Res. 41, 2581, 2003.

D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,Oper. Res. Lett. 31, 357, 2003.

V. Dimitrijevic and Z. Saric, J. Chem. Inf. Comput. Sci. 102,105, 1997.

G. Laporte and F. Semet, INFOR 37, 114, 1999.

C. E. Noon and J. C. Bean, INFOR 31, 39, 1993.

L. V. Snyder and M. S. Daskin, A Random-key genetic algorithm for the generalized

traveling salesman problem (Northwestern University, see, l-

snyder3@northweatern.edu, m-daskin@northwestern.edu)

O. Jellouli, in IEEE International Conference on Systems, Man, and Cybernetics, 4, pp. 2765–

2768, 2001.

Y. Matsuyama, Trans. Inst. Electron., Inf. Commun. Eng. D-II J74D-II, 416, 1991.

C. G., Wu, Y. C., Liang, H. P., Lee, and C., Lu, Generalized chromosome genetic algorithm

for generalized traveling salesman problems and its applications for machining,

Physical Review E. 69, 1, 2004

Huang H, Yang XW, Hao ZF, Liang YC, Wu CG, Zhao X. Hybrid chromosome genetic

algorithm for generalized traveling salesman problems, Lecture Notes in Computer

Science 3612: 137-140 2005.

M. Fischetti, J. J. Salazar, and P. Toth, Branch-and-cut algorithm for the symmetric

generalized traveling salesman problem, Operations Research. 45(3), pp.378-394,

1997.

J., Renaud, F. F., Boctor, An efficient composite heuristic for the symmetric generalized

traveling salesman problem, European Journal of Operational Research 108,

pp.571-584, 1998.

Huang H, Yang XW, Hao ZF, Cai RC. A novel ACO algorithm with adaptive parameter,

Lecture Notes in Bioinformatics 4115: 12-21 2006.

Huang H, Hao ZF. ACO for continuous optimization based on discrete encoding. Lecture

Notes in Computer Science 4150: 504-505 2006.

www.intechopen.com

 Travelling Salesman Problem

62

Huang H, Hao ZF. An ACO algorithm with bi-directional searching rule. Dynamics of

Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms

13: 71-75, 2006.

Hao ZF, Huang H, Zhang XL, Tu K. A time complexity analysis of ACO for linear functions,

Lecture Notes in Computer Science 4247: 513-520 2006.

Zhifeng Hao, Han Huang, Yong Qin, Ruichu Cai. An ACO Algorithm with Adaptive

Volatility Rate of Pheromone Trail, Lecture Notes in Computer Science 4490: 1167–

1170, 2007.

www.intechopen.com

Traveling Salesman Problem

Edited by Federico Greco

ISBN 978-953-7619-10-7

Hard cover, 202 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the

research community to consider a problem from the everyday life from a mathematical point of view. A

traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He

knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the

salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions

for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the

research community because it arises as a natural subproblem in many applications concerning the every day

life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that

the total cost of a solution is determined by adding up the costs arising from two successively items, can be

modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no

real importance.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhifeng Hao, Han Huang and Ruichu Cai (2008). Bio-inspired Algorithms for TSP and Generalized TSP,

Traveling Salesman Problem, Federico Greco (Ed.), ISBN: 978-953-7619-10-7, InTech, Available from:

http://www.intechopen.com/books/traveling_salesman_problem/bio-

inspired_algorithms_for_tsp_and_generalized_tsp

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

