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1. Introduction  

The Traveling Salesman Problem (TSP) is to find a Hamiltonian tour of minimal length on a 

fully connected graph. The TSP is a NP-Complete, and there is no polynomial algorithm to 

find the optimal result. Many bio-inspired algorithms has been proposed to address this 

problem. Generally, generic algorithm (GA), ant colony optimization (ACO) and particle 

swarm optimization (PSO) are three typical bio-inspired algorithm for TSP. In this section 

we will give a brief introduction to the above three bio-inspired algorithms and their 

application to the TSP. 

1.1 GAs for TSP 

GAs were introduced by Holland in the 1970s [1]. These algorithms are adaptive search 

techniques based on the mechanisms of natural selection and the survival of the fittest 

concept of biological evolution. By simulating biological evolution, GAs can solve searching 

problem domains effectively and easily apply to many of the current engineering problems. 

GAs have been widely used in many applications of TSP and its extensions throughout the 

literature [2-4].  

A particularly nice introduction to GAs is given in Goldberg’s book [5]. The main idea 

behind GAs is to start with randomly generating initial solutions and implements the 

“survival of the fittest” strategy to increasing better solutions through generations. A 

traditional GA process includes initial population generation, fitness evaluation, 

chromosome selection, applying genetic operators for reproduction, and suspension 

condition.  

In designing a GA, how to encode a search solution is a primary and key issue [6]. Many 

optimization operators for TSP were proposed by Goldberg [5]. A commonly used encoding 

strategy is transposition expression [7]. In the transposition expression strategy, each city of 

the TSP is encoded as a gene of the chromosome with the constraint that each city appears 

once and only once in the chromosome. Transposition expression is the most nature 

expression for TSP which based on the order of tour. While such method may leads to 

infeasible tour after traditional crossover operator [7]. This is a common occurrence for TSP. 

Although feasibility can be maintained in many ways named ‘repair algorithms’, such 

algorithms can consume a considerable amount of time and can inhibit convergence. O
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Source: Travelling Salesman Problem, Book edited by: Federico Greco, ISBN 978-953-7619-10-7, pp. 202, September 2008,  
I-Tech, Vienna, Austria
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Figure 1. Transposition expression encoding method for TSP 

Another typical encoding method is Random Keys encoding [8] which is introduced by 
Bean. In Random Keys encoding a random numbers encode the structure of the solution. 
Such representation ensures that feasible tours are maintained during the application of 
genetic operators. 
  In the GA, the crossover and mutation are two of most important method for the success of 
the algorithm. A crossover operator generates new individuals through recombining the 
current population hopefully to retain good features from the parents. Numbers of different 
crossovers   have been proposed in the literatures to solve the TSP using a GA. The partially 
mapped crossover [5,11-12], linear order crossover [13] and order based crossover 
[5,8,11,12,14] are the commonly used crossover strategy in the TSP context. Expect the 
commonly used crossover strategy, many different crossover strategy are proposed for the 
TSP problem, for example: sub-tour crossover[15,16], edge recombination [17-20], distance 
preserving crossover [21-22], generic crossover [23], NGA [24], EAX [25-26], GSX [27-28], 
heuristic based crossover [29-35].  
A mutation operator is used to enhance the diversity and provide a chance to escape from 
local optima. Many mutation operators were proposed such as inverse, insert, displace, 
swap, hybrid mutation [34], and heuristic mutation. The former five are realized by small 
alterations of genes. Heuristic mutation was proposed by Cheng and Gen [37-38], which 
adopts a neighborhood strategy to improve the solution.  
At present, the genetic algorithm to solve the TSP has been to promote large-scale TSP, as 
well as a multiple TSP (MTSP) and generalized TSP. A lot of progress was made recently. 
Arthur E. Carter and Cliff T. Ragsdale propose a new GA chromosome and related 
operators for the MTSP [39]. H. D. Nguyen, et al described a hybrid GA based on a parallel 
implementation of a multi population steady-state GA involving local search heuristics [40]. 
Samanlioglu et.al proposes a methodology uses a “target-vector approach” in which the 
evaluation function is a weighted Tchebycheff metric with an ideal point for a symmetric 
multi-objective traveling salesman problem [41-43]. 

1.2 Ant colony optimization (ACO) for TSP 

Ant Colony Optimization (ACO), first proposed by M. Dorigo et al. [44-46], is a population-
based, general-purpose heuristic approach to combinational optimization problems. The 
earliest ACO algorithm [44-45], Ant System (AS), was applied to the TSP (mainly because 
the TSP is “a shortest path problem to which the ant colony metaphor is easily adapted and 
that it is a didactic problem” [4]. After that, most improved ACO algorithms also used the 
TSP as a test problem and the result is promising.  
As the name suggests, ACO took inspiration from the foraging behavior of real ant colonies. 
Ants deposit pheromone on the ground they cover while working, forming a pheromone 
trail. Other ants tend to follow the pheromone trail. Consider an ant colony exploring the 
paths between their nest to a food source. At the beginning, the ants choose paths randomly 
in equal rate since there’s no pheromone on the paths help them make the decision. Suppose 
that every ant walk in the same speed, shorter paths accumulate pheromone faster than 
longer paths because ants on those paths return earlier. A moment later, the difference in the 

www.intechopen.com



Bio-inspired Algorithms for TSP and Generalized TSP 

 

37 

amount of pheromone on the paths becomes sufficient large so that the ants’ decision are 
influenced and more ants select the shorter paths. Experiments show that this behavior can 
lead the ant colony to the shortest path. 
 

 

Figure 2. an ant colony exploits the paths between S and T. (A) The two paths are selected 
with the same probability at first. (B) Ant 2 choosing the lower path returns to S earlier. 
Thus pheromone on the lower path rises faster. (C) Most ants walk on the lower path after a 
minute. 

Typical ant algorithms stimulate the above foraging behavior of ant colonies using a set of 
agents (artificial ants) and an indirect communication mechanism employing (artificial) 
pheromone. A simple framework may look like this:  
 

Loop  /* at this level each loop is called iteration */ 
      Each ant is positioned on a starting node. 
      Loop /* at this level each loop is called a step */ 
                Each ant applies a stochastic state transition rule to incrementally build a solution  
      Until all ants have built a complete solution 
      A pheromone updating rule is applied 
Until End condition 

 

The stochastic state transition rule and the pheromone updating rule are two factor to the 
success of the ACO. And many strategies have been proposed for these two operators. The 
Ant Colony System (ACS) [48-50] and MAX-MIN Ant System (MMAS) [51] are among the 
most successful algorithms [52]. Recent researches focus most on extending the applications 
of ACO algorithms to more challenge problems. There’re also some studies on the 
convergence theory of ACO algorithms too [47, 53-58]. 

1.3 PSO for TSP 
The particle swarm optimization (PSO) was originally presented by Kennedy and Eberhart 
in 1995 [59]. It is an algorithm based stochastic optimization technique which inspired by 
social behavior among individuals. In the PSO system, individuals (we call them particles) 
move around a multidimensional search space. Each particle represents a potential solution 
of the problem, and can remember the best position (so1ution) it has reached. All the 
particles can share their information about the search space, so there is a global best 
solution.  

In each iteration, every particle adjusts its velocity iv and position ix according to the 

following formulas: 

 
1 1 , 2 2 ,( ) ( )i i i pbest i i gbest i

i i i

v v c r x x c r x x

x x v

= + ∗ ∗ − + ∗ ∗ −

= +
 (1) 
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Where w is inertia weight, 1c and 2c are acceleration coefficients, 1r  and 2r  are two 

independent random values between 0 and 1. xi,pbest is the best solution this particle has 
reached; xi,gbest is the global best solution of all the particles until now.  
Due to the continuous characters of the position of particles in PSO, the standard encoding 
scheme of PSO can not be directly adopted for TSP. Much work was published to avoid 
such problem. Clerc adopted discrete particle swarm optimization (DPSO)[60] to make PSO 
suitable for solving TSP. Bo Liu, et al. proposes a PSO-based MA [61](PSOMA) for TSP, 
which combined evolutionary searching mechanism of PSO and adaptive local search. 
Yong-Qin Tao, et al. proposed a GRPSAC algorithm [62] combined ACO with PSO 
organically and adds gene regulation operator at the same time, which make solution of TSP 
problem more efficiency. Other recently work such as heuristic information method based 
on improved fuzzy discrete PSO [63] and chaotic PSO algorithm [64] were proved to be 
effective for TSP.  

2. Ant colony optimization (ACO) for TSP 

2.1 The method of ant colony optimization solving TSP 

Among the bio-inspired algorithms, the ant colony optimization (ACO) is a popular 
approach for TSP since it’s proposed by M.Dorigo in early nineties [65-66]. Ant colony 
optimization (ACO) takes inspiration from the foraging behavior of some ant species. These 
ants deposit pheromone on the ground in order to mark some favorable path that should be 
followed by other ants of the colony. Ant colony optimization exploits a similar mechanism 
for solving optimization problems. 
In TSP, a set of cities is given and the distance between each of them is known. The goal is to 
find a Hamiltonian tour of minimal length on a fully connected graph. This goal is very 
similar with the ants to find the shortest path between the nest and the food source. In ant 
colony optimization, the problem is tackled by simulating a number of artificial ants moving 
on a graph that encodes the problem itself. A variable called pheromone is associated with 
each edge and can be read and modified by ants. The artificial ants explore the pheromone 
to find the most favorable path which is the shortest Hamiltonian Tour in TSP. 
Ant colony optimization is an iterative algorithm. In an iterative step, each ant of the colony 
builds a solution by walking from vertex to vertex on the graph with the constraint of not 
visiting any vertex that has been visited before. The solution construction and the 
pheromone updating are two main steps for the ACO. In the solution construction step, an 
ant selects the next vertex to be visited according to a stochastic mechanism that is biased by 
the pheromone. After the solution construction step, the pheromone is updated on the basis 
of the quality of the solutions. 
Under the above framework, many different version of the algorithm are proposed. 
According to the M.Dorigo’s work [46,67], the Ant System (AS), MAX−MIN Ant System 
(MMAS) and Ant Colony System (ACS) are three of most popular ant algorithms. 
Following, we will give a short brief of those three algorithms on TSP. 

2.1.1 Ant System (AS) 
Ant System is the first ACO algorithm proposed in the literature [44,65-66]. Its main 
characteristic is that, at each iteration, the pheromone values are updated by all the m ants 
that have built a solution in the iteration itself. The pheromone ij, associated with the edge 
joining cities i and j, is updated as follows: 
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(1 )
ij

m
k

ij ij

k

τ ρ τ τ
=

← − ⋅ + Δ∑  ᧤1᧥ 

where ρ is the evaporation rate, m is the number of ants, and 
ij

kτΔ  is the quantity of 

pheromone laid on edge (i, j) by ant k: 

 
/ ( , ) ,

0 ,ij

kk
Q L if ant k used edge i j in its tour

otherwise
τ

⎧
Δ = ⎨

⎩
 ᧤2᧥ 

where Q is a constant, and kL  is the length of the tour constructed by ant k. 

In the construction of a solution, ants select the following city to be visited through a 
stochastic mechanism. When ant k is in city i and has so far constructed the partial solution 
Sp, the probability of going to city j is given by: 

 

( )

[ ( )] [ ]
( )

[ ( )] [ ]( )

0

gs gs

k
gr gr

gs
r J gk

k

t
if s J g

tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑  ᧤3᧥ 

where ( )kJ g  is the set of cities not visited yet by ant k when at city g. The parameters α  

and β control the relative importance of the pheromone versus the heuristic information ηij, 

which is given by 
1

ij

ijd
η = , where ijd  is the distance between cities i and j. 

2.1.2 MAX −MIN Ant System (MMAS) 
The MAX −MIN Ant System [51] is an improvement over the original Ant System. In the 
MMAS, only the best ant updates the pheromone trails and the value of the pheromone is 
bound. The pheromone update is implemented as follows: 

 

max max

min min

                      (1 ) ,

                       (1 ) ,

(1 ) ;

ij

ij

ij

best

ij

best

ij ij

best

ij

if

if

otherwise

τ ρ τ τ τ

τ τ ρ τ τ τ

ρ τ τ

⎧ − ⋅ + Δ >
⎪
⎪= − ⋅ + Δ <⎨
⎪

− ⋅ + Δ⎪⎩

  (4) 

where maxτ  and minτ min are respectively the upper and lower bounds imposed on the 

pheromone and 
ij

bestτΔ is: 

 
1 ( , )

0 ;ij

bestbest
L if i j belongs to thebest tour

otherwise
τ

⎧
Δ = ⎨

⎩
  (5) 
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where bestL  is the length of the tour of the best ant. 

For the maxτ and minτ , they are typically obtained empirically and tuned on the specific 

problem considered [68]. And some guidelines have been provided for defining minτ  and 

maxτ  on the basis of analytical considerations [51]. 

2.1.3 Ant Colony System (ACS) 

The ACS was considered the most efficient algorithm on the TSP problem. The main 
contribution of ACS [48, 50, 69] is introducing a novel local pheromone update in addition 
to the global pheromone.  
The local pheromone update is performed by all the ants after each construction step. Each 
ant applies it only to the last edge traversed: 

 
0(1 )ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅   (6) 

where ( ]0,1ϕ∈  is the pheromone decay coefficient, and 0τ  is the initial value of the 

pheromone. 
Using the local update strategy, the pheromone concentration on the traversed edges is 
decreased. So, the subsequent ants are encouraged to choose other edges and to produce 
different solutions. This makes it less likely that several ants produce identical solutions 
during one iteration. 

2.2 An adaptive strategy for weight parameter 
Many strategies for ACO have been studied, but little theoretical work has been done on 

ACO’s parameters α and β, which control the relative weight of pheromone trail and 

heuristic value. In this part, we will theoretical show the importance and functioning of α 

and β. The theoretical analysis show that a fixed β may not enable ACO to use both heuristic 

and pheromone information for solution when α = 1. An adaptive β strategy and a new 

ACO called adaptive weight ant colony system (AWACS) with the adaptive β and α = 1 is 

introduced. The numerical experiment results show that the AWACS is more effective and 
steady than traditional ACS. 

2.2.1 Theoretical analysis of the weight parameter  

  Given , ( )ka b J g∈ , if ( ) ( )k k

ga gbP t P t> , which means that city a may be chosen by the ant 

k as the next city to city g with higher probability than city b, then α and β satisfies the 

following formula: ( ) ( ) [ ( )] [ ] [ ( )] [ ]k k

ga gb ga ga gb gbP t P t t tα β α βτ η τ η> ⇔ > .  

 When ( ) ( )ga gbt tτ τ=  or
ga gbη η= , for , 0α β∀ > , the formula above holds, so we have:  

 ( ) ( )
ga gb ga gbk k

ga gb

ga gb ga gb

P t P t
η η τ τ
τ τ η η

> =⎧
> ⇔ ⎨ > =⎩

 (8) 
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However, when ( ) ( ), ( ) 0, ( ) 0ga gb ga gbt t t tτ τ τ τ≠ > >  and 
ga gbη η≠ ( ( ) 0, ( ) 0ga gbt tη η> > ), one 

has: ( ) ( ) [ ( )] [ ] [ ( )] [ ] log ( ) log ( ) (log log )k k

ga gb ga ga gb gb ga gb gb gaP t P t t t t tα β α β βτ η τ η τ τ η η
α

> ⇔ > ⇔ − > − . 

And we have: 

 

log ( ) log ( )

log log

log ( ) log ( )

log log

ga gb

gb ga

gb ga

ga gb

gb ga

gb ga

t t

t t

τ τβ η η
α η η

τ τβ η η
α η η

−⎧
< >⎪ −⎪

⎨ −⎪ > <⎪ −⎩

 (7) 

Particularly, when α=1, which exists in ACO algorithms like ACS, a conclusion can be 

drawn: 

 

log ( ) log ( )

log log
( ) ( )

log ( ) log ( )

log log

ga gb

gb ga

gb gak k

ga gb

ga gb

gb ga

gb ga

t t

P t P t
t t

τ τ
β η η

η η

τ τ
β η η

η η

−⎧
< >⎪ −⎪> ⇔ ⎨ −⎪ > <⎪ −⎩

 (8) 

For the sake of convenience, some symbols about the pheromone trail are defined as 

follows: max

( )
( ) max { ( )}

k

g gr
r J g

t tτ τ
∈

=   is the highest pheromone trail among all the cities 

feasible to be selected as next stop to city g .  min

( )
( ) min { ( )}

k
g gr

r J g
t tτ τ

∈
= is the lowest one, and 

1

( )

( ) ( ) ( )

k

ave

g k gr

r J g

t J g tτ τ−

∈

= ∑  is the average pheromone trail, where ( )kJ g  is the 

number of elements in the set ( )kJ g . max 1

( )
max { }

k

g gr
r J g

dη −

∈
=  is the highest heuristic value of 

elements in the set ( )kJ g . min 1

( )
min { }

k
g gr

r J g
dη −

∈
=  stands for the lowest heuristic value, and 

1 1 1

( ) ( )

( ) ( )

k k

ave

g k gr k gr

r J g r J g

J g J g dη η− − −

∈ ∈

= =∑ ∑  is the average heuristic value. 

Let 1α = , two cases are discussed in the following: 

཰ max min max
[ ( )] [ ] [ ( )] [ ]

ave

g g g g
t t

α β α βτ η τ η> . It means that the ants will select the paths with 

the maximum pheromone trail with a very high probability ACS. According to Formula (3), 

one has 

max

1max min

log ( ) log ( )
( , )

log log

ave

g g

g g

t t
M g t

τ τ
β

η η

−
< =

−
, because it is obvious that 

max min

g gη η>  

holds in TSPLIB problems. 

ཱ 
min max max

[ ( )] [ ] [ ( )] [ ]
ave

g g g g
t t

α β α βτ η τ η> . It means that the ants will select the 

 paths with the maximum heuristic value with a very high probability in ACS. It is  
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obvious that 

min max

2max

log ( ) log ( )
( , )

log log

g g

ave

g g

t t
M g t

τ τ
β

η η

−
> =

−
 holds, when max ave

g gη η>  and 

min ( ) 0g tτ > . 

According to the analysis of case ཰ and ཱ, ACO may work as a non-heuristic searching 

when 
1 ( , )M g tβ < , and as a greedy searching without using pheromone trail 

when
2 ( , )M g tβ > . Therefore, a fixed β may not enable ACO to find optimal solution by 

using both heuristic and pheromone information. However, the process of ACO will not be 
in the extreme as non-heuristic or greedy searching when

1 2( , ) ( , )M g t M g tβ≤ ≤ . So a new 

adaptive parameter β  is designed as follows:  

 

max

max

log ( ) log ( )
1, ( , )

log log

ave

g g

ave

g g

t t
g t

τ τ
α β

η η
−

= =
−

 ( min ( ) 0g tτ > )  (9) 

where 
1 2( , ) ( , ) ( , )M g t g t M g tβ≤ ≤  can be proved. 

Based on the adaptive parameter ( , )g tβ  strategy shown in Formula (4), a novel ACO 

algorithm, which is called adaptive weight ant colony system (AWACS) can be described as 
follows. 
 

Initialize  /* β is chosen in [0, 5] randomly, q0=0.6 */ 

Loop  /* at this level each loop is called iteration */ 
       Each ant is positioned on a starting node. 
       Loop /* at this level each loop is called a step */ 
                 Each ant applies a stochastic state transition rule to incrementally build a solution 
                 and a local pheromone updating rule 
       Until all ants have built a complete solution 
       A global pheromone updating rule is applied 

       β(g,t) is updated  (g = 1,…,n) following Formula (11) 

Until End condition 
 

The proof of its convergence (g = 1,…,n) is the same as the one in Ref. [54]. According to the 

work of Ref. [54], it still holds that 
min( ) 0g tτ >  and max ( )g tτ < +∞  (g = 1,…,n) when the 

adaptive parameter β(g,t) strategy in Formula (4) is applied. Then, AWACS can be proved to 

find the optimal solution with probability one following the conclusion given by T. Stützle 
and M. Dorigo [54,69]. 

2.2.2 Numerical results and analyses 

A comparison of the performance of ACS and AWACS is given in this section. In our 

experiments, the parameters are set as follows: m = 10, α = ρ= 0.1, 1

0 ( )nnnLτ −= . q0 is set  

q0 =0.9 in ACS, and q0 =0.6 in AWACS , respectively. The initial value of β in AWACS is a 
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random figure changing in the interval [1,5]. The initial feasible solutions of TSP are generated in 

the way from Ref [49]. What’s more, no local search strategy is used in experiment. 
The experiments are conducted on two set of TSP problems. In the first set of 10 TSP, the 
distances between cities are measured by integers and in the left 10 TSP, and the distances 
are measured by real values. The datasets can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/ iwr/comopt/soft/TSPLIB95/TSPLIB.html. The detail of the experiment 
result is given at table 1, table 2 and table 3. 
 

Instance Optimal 
Best 

(ACS)
Best 

(AWACS)
Average

(ACS) 
Average 

(AWACS)
Tavg(s)
(ACS)

Tavg (s) 
(AWACS) 

Best β  

(ACS) 

st70 654 657 657 675.9 675.5 16.9 27.4 4 

rat99 unknown 1188 1188 1211.7 1199.4 53.2 59.7 3 

pr107 unknown 44539 44398 44906.3 44783.9 39.5 55.4 4 

pr124 unknown 59205 59067 59819.9 59646.6 59.2 42.3 4 

eil101 612 614 613 634.6 631.4 22.4 76.3 5 

rd100 7858 7909 7861 8100.4 8066.2 59.5 54.1 3 

eil51 415 415 415 423.9 423.7 6.7 7.8 3 

lin105 14345 14376 14354 14509.3 14465.6 73.7 50.8 4, 5 

kroD100 21249 21486 21265 21893 21628.2 25.8 60 5 

kroC100 20703 20703 20703 21165.3 20914.9 29.5 67.7 4 

Table 1. Comparison I of the results obtained by ACS and AWACS 

Instance Optimal
Best 

(ACS) 
Best 

(AWACS)
Average

(ACS) 
Average 

(AWACS)
Tavg(s)
(ACS)

Tavg (s) 
(AWACS) 

Best β  

(ACS) 

kroA100 21282 21285.44 21285.44 21345.78 21286.33 51.3 51.8 2, 3 

kroE100 22068 22078.66 22068.75 22206.62 22117.16 56.3 64.5 5 

berlin52 7542 7544.36 7544.36 7544.36 7544.36 8.7 9.8 5 

kroB150 26130 26127.35 26127.71 26332.75 26214.10 177.8 164.8 5 

ch150 6528 6530.90 6530.90 6594.94 6559.66 373.6 118.1 2 

kroB100 22141 22139.07 22139.07 22335.72 22177.47 55.5 68.6 4 

kroA150 26524 26618.33 26524.86 26809.08 26685.73 204.5 242.9 5 

u159 42080 42075.67 42075.67 42472.04 42168.54 356.7 80.2 1 

pr76 108159 108159.4 108159.4 108610.6 108581.7 50.5 42.8 1 

pr136 96772 96870.89 96785.86 97854.16 97236.61 344.3 158.9 14,5 

Table 2. Comparison II of the results obtained by ACS and AWACS 
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Instance 
\Standard deviation

AWACS
ACS

1β =  

ACS

2β =  

ACS

3β =  

ACS

4β =  

ACS

5β =  

kroA100 8.49 460.04 338.84 183.55 625.81 447.03 

kroE100 123.82 327.01 467.75 529.73 330.12 366.49 

berlin52 0.00 376.98 376.19 357.76 548.34 0.00 

kroB150 221.98 447.98 652.57 821.48 664.54 486.91 

ch150 54.50 114.76 153.71 109.36 171.66 54.81 

kroB100 132.37 554.43 579.73 1091.25 558.86 233.01 

kroA150 384.39 522.81 942.11 974.79 640.34 432.72 

u159 623.16 726.99 3531.45 2458.43 1509.09 1661.63 

pr76 1158.43 1180.56 5058.92 2088.68 1677.73 1411.15 

pr136 1300.78 2386.53 5303.40 4572.69 3304.40 2173.27 

Table 3. Comparison of standard deviations of the tour lengths obtained by AWACS and 
ACS 

As shown in the above tables, there might be something like precision and time cost in the 
result of our experiments different from those in the former research because of the different 
program tools, systems and computing machines. Another possible reason is that the 
distances between cities in the first 10 instances are measured by integer numbers. But ACS 
and AWACS are running in the same setting, so the result remains helpful to compare the 
performance of these two algorithms.  

From Table 1-2, it could be seen that AWACS performs better than ACS with the fixed β. 

The shortest lengths and the average lengths obtained by AWACS are shorter than those 
found by ACS in all of the TSP instances. As Table 3 shows, it can be concluded that the 
standard deviations of the tour lengths obtained by AWACS are smaller than those of ACS 

with the fixedβ. Therefore, we can conclude that AWACS is proved to be more effective and 

steady than ACS.  

ACS has to change the best integer value of parameterβ with respect to different instances in 

the experiments. AWACS can avoid the difficulty about how to choose the experimental 

value ofβ, because its adaptive strategy can be considered as a function trying to find the 

best setting for each path search via meeting the request of Formula 4. Though, the time cost 

tavg of AWACS is more than ACS in some case, it is less than the sum of time ACS costs with 

β =1,2,3,4,5 in all of the instances. As a result, the adaptive setting can save much time in 

choosing the experimentalβ. Item tavg of AWACS is not less than ACS in all of the instances 

because it needs to compute the value of β n (number of cities) times in each iteration. 

However, the adaptive function of AWACS is feasible to use because of its acceptable time 

cost. 

www.intechopen.com



Bio-inspired Algorithms for TSP and Generalized TSP 

 

45 

2.3 Bi-directional searching ant colony system 

In 2.2, an adaptive strategy for the weight parameter is proposed by exploring the function 
of the parameter in the stochastic mechanism. In this section, we will further explore the 
stochastic mechanism and a bi-directional searching ant colony system is proposed.  

2.3.1 Bi-directional searching strategy using adaptive weight parameter  

In the proposed ACO algorithms, the state transition rule of the artificial ants is given as 
follows:  
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It means that the ants will select the paths with the maximum pheromone trail by the higher 
probability than most of the other feasible paths, even if they are paths with the highest 
heuristic value. 
For the second one,  
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It means that the ants will select the paths with the maximum heuristic value by the higher 
probability than most of the other feasible paths, even if they are paths with the highest 
pheromone trail.  
Combing the above two methods of the parameter setting, the new ACO algorithm BSACS 
is designed as: 

 Initialize   

/*β is chosen between 0 and 5 randomly, q0=0.6 */ 

Loop  /* at this level each loop is called iteration */ 
           Each ant is positioned on a starting node 
           Loop /* at this level each loop is called a step */ 
                     Each ant applies a state transition rule to incrementally build a solution and  
                     a local pheromone updating rule is applied 
           Until all ants have built a complete solution 
           A global pheromone updating rule is applied  

β(g,t)is updated by either of the two methods by probability 0.5 (g=1,…,n) 

Until End_condition 

2.3.2 Numerical results and analyses 

In this section, several large TSP instances of TSPIB [70] are tested by BSACS and ACS to 
show the efficiency of the BSACS. The parameters are set as follows: m = 10, a = ρ= 0.1, 

1

0 ( )nnnLτ −= , and α=1.  q0=0.9  in ACS,  ε0=0.001  and q0=0.6 in BSACS , respectively. All 

the instances are computed by BSACS 10 times, and so does ACS with each  

β(β =1,2,3,4,5). As shown in Table 4 and Table 5, Item (1) is the length of the best tour 

obtained by ACS and BSACS. Item (6) is the length of optimal solution published in the 
TSPLIB: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html. 

Item (2) is the relative error which can be computed by 1
100%(2) ((1) (3)) (3)−= ×− × . Item 

(1) and (2) show that BSACS can obtain better solution than ACS in all of the instances. Item 
(4) is the average length of the solutions found by both ACS and BSACS. Item (5) is the best 

value of β which can make ACS perform the best according to Item (1) or Item (4). 

The experiment result shows that BSACS can perform better than ACS in every 

computation. What’s more, ACS has to change the selection of β in different instances and 

cannot solve different large size TSP problems steadily with a fixed value of β. The reason is 

that ACS is not able to effectively use the pheromone trail and heuristic value in searching 

when β of the transition rule is fixed and unchanged in iterations. This disadvantage could 

be avoided by using BSACS because the new rule of BSACS (Formula 1) functions based on 
both pheromone trail and heuristic value adaptively. For the computational complexity, the 

BSACS need more time than ACS, because β(g,t)(g=1,…, n) has to be updated at each 

iteration. However, it doesn’t mean that the cost of BSACS is more than ACS in the 
application, because the cost of ACS for the best parameter selection (Item (5) in Table 2) has 
not been calculated here. Therefore, BSACS can save the time in choosing the experimental 
value of the parameter. Generally, the BSACS improves the performance of ACS in solving 
large size TSP problems. 
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Instance Algorithm (1)Best (2)%Error (3)Optimal 

ACS 118773 0.423 
bier127 

BSACS 118372 0.076 
118282 

ACS 15888 0.68 
d198 

BSACS 15780 0.00 
15780 

ACS 128829 1.734 
ts225 

BSACS 126905 0.206 
126643 

ACS 51286 0.96 
pcb442 

BSACS 51271 0.93 
50799 

ACS 28147 1.67 
att532 

BSACS 27939 0.91 
27686 

ACS 38318 3.829 
u574 

BSACS 37662 2.052 
36905 

ACS 9015 2.37 
rat783 

BSACS 8819 0.14 
8806 

ACS 22977 3.27 
fl1577 

BSACS 22611 1.63 
222490. 

Table 4. Comparison of the best solution obtained by ACS and BSACS 

Instance Algorithm
(4) 

Average 
(5)Best β of 

ACS 

(6) tavg 

(second) 

ACS 119185.3 2, 3 45.6 
bier127

BSACS 118826.8 - 91.0 

ACS 16054.8 2 97.8 
d198 

BSACS 15842.1 - 124.5 

ACS 129102.5 4, 5 32.0 
ts225 

BSACS 127262.8 - 67.0 

ACS 51690.2 2 281.6 
pcb442

BSACS 51642.8 - 461.2 

ACS 28532.0 2 401.5 
att532 

BSACS 28163.7 - 539.7 

ACS 38657.8 1, 5 305.3 
u574 

BSACS 38291.9 - 504.3 

ACS 9066.0 2 1185.4 
rat783 

BSACS 8985.8 - 1559.8 

ACS 23163.5 2 3884.0 
fl1577 

BSACS 22680.3 - 6290.2 

Table 5. Comparison of the average solution obtained by ACS and BSAC 

2.4 An adaptive volatility rate of pheromone trail 
The following presents a trial work of setting the parameters of ACO adaptively. First, a tuning 
rule for ρ is designed based on the quality of the solution constructed by artificial ants. Then, we 
introduce the adaptive ρ to form a new ACO algorithm, which is tested to compute several 
benchmark instances of traveling sales-man problem and film-copy deliverer problem.  
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2.4.1 An adaptive volatility rate setting strategy  

After constructing its tour, an artificial ant also modifies the amount of pheromone on the 
visited edges by applying the pheromone updating rule. The rule is designed so that it tends 
to give more pheromone to the edges which should be visited by ants. The classical 
pheromone updating rule is as (1). And the optimal ρ was set ρ =0.1 experimentally [46, 49, 
55], which means that 90 per cent of the original pheromone trail remains and its 10 per cent 
is replaced by the increment.  
In order to update the pheromone according to the quality of solutions found by ants, an 
adaptive rule for volatility of the pheromone trail is designed as follows: 

 
1 1 1/( )m m m PL L Lρ − − −= +  (11) 

whereLm is the length of the solution Sm found by ant m, and Lp is the length of the solution 

Sp built based on the pheromone matrix, shown as 
( )

arg max {[ ( , )}
mu J r

s r uτ
∈

=  where s  is the 

city selected as the next one to city r  for any (r,s)∈ Sp. 
The motivation of the proposed rule is: better solutions should contribute more pheromone, 
and the worse ones contribute less. And a new ACO algorithm with the adaptive rule 
(shown as Equation 3) is introduced as follows: 
 

Initialize   

/*β is chosen between 0 and 5 randomly, q0=0.6 */ 

Loop  /* at this level each loop is called iteration */ 
           Each ant is positioned on a starting node 
           Loop /* at this level each loop is called a step */ 
                  Each ant applies a state transition rule to incrementally build a solution and  
                  a local pheromone updating rule is applied 
                  Each ant the calculate the ρi is based on its solution’s length 
          Until all ants have built a complete solution 
          ρbest is calculated based on the best solution  Sbest. 
          Carry out the pheromone updating rule with  ρi (i=1,…,k) and ρbest.  

Until End_condition 

2.4.2 Numerical results 

This section indicates the numerical results in the experiment that the proposed ACO 
algorithm is used to solve TSP problems [69]. Several TSP instances are computed by ACS 
[49], ACO [71] and the proposed ACO on a PC with an Intel Pentium 550MBHz Processor 
and 256MB SDR Memory, and the results are shown in Table 1.  
It should be noted that every instance is computed 20 times. The algorithms are both 

programmed in Visual C++6.0 for Windows System. They would not stop until a better 

solution could be found in 500 iterations, which is considered as a virtual convergence of the 

algorithms. Table 6 shows that the proposed ACO algorithm (PACO) performs better than 

ACS [49] and ACO [71]. The shortest lengths and the average lengths obtained by PACO are 

shorter than those found by ACS and ACO in all of the TSP instances. Furthermore, it can be 

concluded that the standard deviations of the tour lengths obtained by PACO are smaller 

than those of another algorithms. Therefore, we can conclude that PACO is proved to be 
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more effective and steady than ACS [49] and ACO [71]. Computation time cost of PACO is 

not less than ACS and ACO in all of the instances because it needs to compute the value of 

volatility rate k+1 times per iteration. Although all optimal tours of TSP problems cannot be 

found by the tested algorithms, all of the errors for PACO are much less than that for 

another two ACO approaches. The algorithms may make improvement in solving TSP when 

reinforcing heuristic strategies like local search like ACS-3opt [49] and MMAS+rs [51] are 

used. 
 

Problem Algorithm best ave time(s) 
standard 
deviation 

ACS 21958 22088.8 65 1142.77 

ACO 21863 22082.5 94.6 1265.30 kroA100 

PACO 21682 22076.2 117.2 549.85 

ACS 130577 133195 430.6 7038.30 

ACO 130568 132984 439.3 7652.80 ts225 

PACO 130507 131560 419.4 1434.98 

ACS 84534 86913.8 378.4 4065.25 

ACO 83659 87215.6 523.8 5206.70 pr226 

PACO 81967 83462.2 762.2 3103.41 

ACS 14883 15125.4 88.8 475.37 

ACO 14795 15038.4 106.6 526.43 lin105 

PACO 14736 14888 112.2 211.34 

ACS 23014 23353.8 56.2 685.79 

ACO 22691 23468.1 102.9 702.46 kroB100 

PACO 22289 22728 169.6 668.26 

ACS 21594 21942.6 54.8 509.77 

ACO 21236 21909.8 78.1 814.53 kroC100 

PACO 20775 21598.4 114.8 414.62 

ACS 48554 49224.4 849.2 1785.21 

ACO 48282 49196.7 902.7 2459.16 lin318 

PACO 47885 49172.8 866.8 1108.34 

Table 6. Comparison of the ACS [49], ACO [51] and the proposed ACO (PACO) in TSP 
instances 

3. Genetic algorithm for generalized TSP 

3.1 Generalized TSP (GTSP) 

The generalized traveling salesman problem (GTSP) is a kind of combinatorial optimization 

problem, which has been introduced by Henry-Labordere [72] and Saksena [73] in the 

context of computer record balancing and of visit sequencing through welfare agencies since 

1960s. The GTSP can be described as the problem of seeking a special Hamiltonian cycle 

with lowest cost in a complete weighted graph.  

www.intechopen.com



 Travelling Salesman Problem 

 

50 

Let G=(V, E, M) be a complete weighted graph where { }1 2, , , ( 3),nV v v v n= >"  

{ }| ,i j i jE e v v V= ∈  and { }| 0 0, , ( )i j ij iiW w w and w i j N n= ≥ = ∀ ∈  are vertex set, edge 

set, and cost set, respectively. The vertex set V is partitioned into m possibly intersecting 

groups 
1 2, , mV V V"  with 1jV ≥  and

1

m

j jV V== ∪ . The GTSP is required to pass through all 

of the groups, but not all of the vertices differing from that of TSP. For convenience, we also 

call W as the cost matrix and take it as W=(wij)n×n. There are two different kinds of GTSP 
under the abovementioned framework of the special Hamiltonian cycle [75-76]: (1) the cycle 
passes exactly one vertex in each group (refer to Fig. 1) and (2) the cycle passes at least one 
vertex in each group (refer to Fig. 2). The first kind of GTSP is also known as E-GTSP, where 
E stands for equality [76]. In this paper we only discuss the GTSP for the first case and will 
still call it as GTSP for convenience. 
 

 

Figure 3.  Exactly one vertex is visited in a GTSP cycle. 

GTSP has extensive application fields. Laport et al. [75], Lien et al. [77], and Castelino et al. 
[78] reported the applications of GTSP. Just as mentioned in Ref. [77], “for many real-world 
problems that are inherently hierarchical, the GTSP offers a more accurate model than the 
TSP.” Generally, GTSP provides a more ideal modeling tool for many real problems. 
Furthermore, GTSP can include the grouped and isolated vertices at the same time 
according to our present extension. Therefore, GTSP includes TSP theoretically (see Fig. 3) 
and application fields of GTSP are wider than those of TSP. 
Although since late 1960s GTSP has been proposed [72-74], the related reported works are 
very limited compared with those on TSP [79–82] and the existing algorithms for GTSP are 
mainly based on dynamic programming techniques [72-74,76,83-84]. However, because of 
its NP-hard quality, only a few solutions of modest-size problems are supported by the 
current hardware technology and most of them fail to obtain the results due to the huge 
memory required in dynamic programming algorithms and the problem of lengthy 
computational time.  
The main methodology of the dynamic programming algorithms is to transform the GTSP 
into TSP and then to solve the TSP using existing algorithms [76, 84–86]. The shortcomings 
of these methods are that the transformation increases the problem dimension dramatically 
and in some cases the dimension would expand up to more than three times of the original 
[77, 87-89]. Therefore, although theoretically the GTSP could be solved using the 
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corresponding transformed TSP, the technological limitation ruins its practical feasibility. 
Some studies have been performed to discuss and solve the problem [90–92]. This study, we 
will show some bio-inspired method on the GTSP problem. 

3.2 Genetic algorithm for generalized TSP 

Genetic algorithm (GA) is one of the powerful tools to deal with NP-hard combinatorial 
optimization problems and has been widely applied for finding the solution of TSP due to 
its high efficiency and strong searching ability. However, theoretical and application studies 
related to using GA methods to solve GTSP are very few. The [90] and [93] are two of most 
interesting work on this problem. In [90], a hybrid GTSP solving algorithm is proposed 
based on random-key GA and local search method, the main difficult of the method it is 
hard to handle large scale problems. In [93], a generalized chromosome is used and a 
generalized chromosome- based GA (GCGA) is proposed accordingly. The advantages of 
the GCGA are that it does not require the transformation from GTSP to TSP and remove the 
limitation of triangle inequality of the cost matrix, which enables the GCGA to be able to run 
with high efficiency.  

3.2.1 Generalized chromosome  

The solution of GTSP is a special Hamiltonian cycle, which passes through all of the groups. 
The encoding for solution of GTSP is designed similarly to the one proposed by Huang et al. 
[94]. A hybrid encoding, which includes a head encoded with binary number and a body 
encoded with integer number, is given for the solution as figure 1 shows. 
 

 

Figure 4. Hybrid Encoding for Solution of GTSP 

In the body, there are  m integer elements representing m groups ( ˆm m m= + � , m̂ supper 

vertexes and m�  scattering vertexes[93]. In the head, there are m̂  binary elements 

representing vertexes in groups.  

Let 
ˆ1 1[ ,..., ,..., , ,..., ,..., ]i m j me e e g g g  be a GTSP solution, where 

ie (encoded in binary 

number) is the sequence number of the vertex in Group i, and 
jg  (encoded in integer 

number) is the sequence number of the jth group in the cycle. The set of hybrid encoding can 

be denoted by { }| , ,D x x h b h H b B= = ⊕ ∈ ∈ , and each solution for GTSP can be encoded as 

x D∈ , where 
1 ˆ

ˆ{ | ,..., ; , }i im
H h h e e e V i m= = ≤ ≤  represents the head and 

1{ | ,..., }mB b b g g= = ) represents the body. 

3.2.2 The framework of the GCGA 

The special designed operators are needed to conduct random search on the generalized 
chromosome. The GCGA contains the following four operators: Initializing operator P, 
Generalized crossover operator C, Generalized crossover operator C and Generalized 
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reversion operator R. We give a brief introduction to these five steps in this section. More 
information about the GCGA can refer to [93].  
1. Initializing operator P 
Initializing operator P is used to generate an initial population. It is a two-element random 
operator. Its two variables are H and B, and its result is a subset of D. Denoting P as a 
population, then the initialization of P can be represented as PN=(H,B), where PN is an 
operator to randomly generate an initial population with size N.  
2. Generalized crossover operator C 
To implement the crossover operation and generate new chromosomes, a generalized 
crossover operator is defined as C:D×D→ D×D. It is a two-element random operator. Its 
variables are the elements of D. The behavior of the operator is somewhat similar to the two-
point crossover in the standard GA. Let the two crossover points selected randomly be 

1i and 2i  (assume 1 2i i< ), where 
^ ~

1 (2 )i random m m= + , and 
^ ~

2 (2 )i random m m= + . If 

1
ˆi m>  then the crossover takes place in the body parts. In this case, the effect of crossover 

operator is equal to the conventional crossover in some extent, because the body parts of GC 

are equivalent to two normal chromosomes. If 2
ˆi m≤ , then the crossover takes place in the 

head parts. In this case, it is only needed to exchange the genes within the crossover 

segments. If 1 2
ˆi m i≤ < , then the generalized crossover can be treated as the combination 

of the above cases.  
3. Generalized mutation operator M 
To increase the diversity of the gene segments, the generalized mutation operator M is 
designed based on the insertion mutation used in standard GA. Preliminary gene 

^ ~

2 (2 )i random m m= +  is randomly selected, which is taken as the gene to be mutated. The 

difference between GCGA and standard GA is that if ˆi m<  then the preliminary gene lies 
in the head part and its corresponding body part also need to be generated.  
4. Generalized reversion operator R 
To enhance the convergent speed of the GCGA, the generalized reversion operator is 
designed which is similar to the conventional reversion operation. Operator R can be used 

to select two reversion points 1i  and 2i  according to  
1

ˆ( )i random m m= + � , and 

2
ˆ( )i random m m= + � . If the solution generated after the reversion operator, then the 

operator R is taken, otherwise the operator won’t taken. 

3.3 Improved Evolutionary Algorithm (EA) for GTSP 
3.3.1 The framework of EA for GTSP 
In this section, an improved EA for the GTSP (EA-GTSP) has been proposed. In the EA-
GTSP, the generalized chromosome described in 3.2 is used to encode the problem. And the 
following three operators are specially designed to improve the efficiency of the algorithm 
on the GTSP: crossover operator, mutation operator and local optimization strategy. 
a. Crossover 
At Step 3, pairs of solutions may be selected to carry out the crossover operator by the 

crossover probability Pc. Given two solutions 
x x xS h b= ⊕  and 

y y yS h b= ⊕  selected at 

Step 3 ( hx, hy∈H.bx,by∈B), the process of crossover can be shown as follows:  
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Two integer numbers 1 2,i i ( 1 2,i i ≤ m̂＋( m̂＋m� ), 1 2i i< ) are generated randomly to set 

the crossing position. If 1 m̂i > , then, ( , )b b b bx y x y′ ′⊗ → , which is the same operator as the 

GCGA, 'x h b
x x

′= ⊕ , 'y h b
y y

′= ⊕ . If 
2 m̂i ≤ , ( , )h h h hx y x y′ ′⊗ → , ' 'x h b

x x
= ⊕ , ' 'y h b

y y
= ⊕ . 

If 
1 m̂i <  and 

2 m̂i ≥ , ( , )h h h hx y x y′ ′⊗ →  and ( , )b b b bx y x y′ ′⊗ → , x h b
x x

′ ′ ′= ⊕  and 

y h b
y y

′ ′ ′= ⊕ .  

If the GTSP solution Sx  costs less than Sy ( 2 m̂i ≤ ),  

1 1 1 2 2 2

{ , ..., , . AND . , ..., . AND . , , ..., }
ˆ1 1 1

h e e e e e e e e
x x xi xi yi xi yi xi xm
′ = − +  

1 1 1 2 2 2

{ , ..., , . OR . , ..., . OR . , , ..., }
ˆ1 1 1

h e e e e e e e e
y x xi xi yi xi yi xi xm
′ = − + ; 

otherwise,  

1 1 1 2 2 2

{ , ..., , . AND. , ..., . AND. , , ..., }
ˆ1 1 1

h e e e e e e e e
x y yi xi yi xi yi yi ym
′ = − +  

1 1 1 2 2 2

{ , ..., , .OR . , ..., .OR . , , ..., }
ˆ1 1 1

h e e e e e e e e
y y yi xi yi xi yi yi ym
′ = − + . 

If the GTSP solution Sx costs less than Sy ( 1 m̂i <  and 
2 m̂i ≥ ), 

1 1 1

{ , ..., , . AND . , ..., . AND . }
ˆ ˆ1 1

h e e e e e e
x x xi xi yi xm ym
′ = −  

1 1 1

{ , ..., , . OR . , ..., . OR . }
ˆ ˆ1 1

h e e e e e e
y x xi xi yi xm ym
′ = − ; 

otherwise,  

1 1 1

{ , ..., , . AND . , ..., . AND . }
ˆ ˆ1 1

h e e e e e e
x y yi xi yi xm ym
′ = −  

1 1 1

{ , ..., , . OR . , ..., . OR . }
ˆ ˆ1 1

h e e e e e e
y y yi xi yi xm ym
′ = − . 

 

b. Mutation 
The mutation operator is added to help EA-GTSP converge to the global optimal solution. 

Each solution is affected by the mutation operator by probability mP . There are two 

procedures called head mutation and body mutation in the operator. 

In the head mutation, given a head of a solution, the procedure of head mutation is: 

Head mutation: h h
z z

′→ , 
3 3 3

{ ,..., , ( ), , ..., }
ˆ1 1 1

h e e rebuild e e e
z z zi zi zi zm
′ = − +  
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where 
3 3 3

{ , ..., , , , ..., }
ˆ1 1 1

h e e e e e
z z zi zi zi zm
= − + . 

3

( )rebuild e
zi

 will generate a segment of 

binary bits randomly. Every binary element of solution SZ may be affected by 

3

( )rebuild e
zi

 when 
mh mhr P<  (

mhr  is generated randomly in [0,1] for each binary element 

of the solution obtained at Steps 3 and 4). 
In the body mutation, the procedure is described as follows: 

Body mutation: 'b b
z z
→ , ' { ' , ..., ' , ' , ' , ..., ' }

ˆ1 1 1
b g g g g g
z z zi zi zi zm
= − +  

where { , ..., , ..., }
ˆ1

b g g g
z z zi zm
=  and 

mb mbr P<  (
mbr  is generated randomly in [0,1] for 

each solution obtained at Steps 3 and 4).  
  So the mutation operator of the EA-GTSP is defined as follows: 

Mutation of EA-GTSP: ' ' 'mutation

z z z z z zS h b S h b= ⊕ ⎯⎯⎯⎯→ = ⊕ .  

c. Local Optimal Strategy 
The local optimal strategy is helpful to find the best solution in a local searching space. Each 
solutions of the population are optimized according to a heuristic algorithm as follows: 
 

Input: GTSP solution Sq 

For i =1 to m̂  do       //optimization for head 

    Choose a vertex in Group i to make Sq cost the lest 
 End for                                      

 For j =1 to m̂ m+ � -1 do //optimization for body 

     Choose an order for gqjand gqj+1 to make Sq cost the least. 
 End for                                      
Output: a new solution S’q (Sq is changed into S’q.) 

d. Decoding for solution of GTSP 
Because the head encoding is designed as binary number, it needs to be decoded in the 
following function. 

[ , , ] [ . MOD . , , . MOD . , ..., . MOD . ]ˆ1ˆ ˆ1 1

decoding
h e e e V e V e Vi mm i m
= ⎯⎯⎯⎯→… …  

where Vi  is the number of vertexes in Group i ( iV ). 

Until now, we can summarize the algorithm of the improved EA for the GTSP as follows. 

Initialize parameters. 
Encode and initialize a population of solutions. 

 /*β is chosen between 0 and 5 randomly, q0=0.6 */ 

Loop  /* at this level each loop is called iteration */ 
       Crossover Operator: select pairs of solutions and change them into pairs of new Local 
       solutions with the crossover operator by the crossover probability. 
       Optimal Strategy: optimize all of the solutions with a heuristic algorithm locally. 
       Mutation Operator: select several solutions by the mutation probability and change  
End_condition 
Decoding for solution of GTSP 
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3.3.2 Numerical result 

In this section, the efficiency of the EA-GTSP and other algorithms are compared on some 
benchmark problems [93].  
 

Problem 
\five runs 

EA-GTSP 
Best 

EA-GTSP 
Average 

GCGA 
Best 

GCGA 
Average 

HCGA 
Best 

HCGA 
Average 

30KROA150 11018 11018 11018 11022 11018 11018 

30KROB150 12195 12195 12196 12314 12195 12195 

31PR152 51573 51573 51586 53376 51573 51573 

32U159 22664 22664 22664 22685 22664 22664 

40KROA200 13408 13408 13408 13617 13408 13408 

40KROB200 13113 13114 13120 13352 13113 13119 

45TS225 68340 68403 68340 68789 68340 68432 

46PR226 64007 64007 64007 64574 64007 64007 

53GIL262 1011 1011 1011 1057 1011 1011 

53PR264 29546 29546 29549 29791 29546 29546 

60PR299 22617 22631 22638 22996 22631 22638 

64LIN318 20769 20799 20977 22115 20788 20914 

80RD400 6446 6480 6465 6604 6456 6498 

84FL417 9663 9663 9663 9725 9663 9663 

88PR439 60099 60249 61273 62674 60184 60558 

89PCB442 21695 21735 21978 22634 21768 21860 
 

Table 7. Comparison of solution among EA-GTSP, GCGA and HCGA 

The instances can be obtained from TSPLIB library which were originally generated for 

testing standard TSP algorithms. To test GTSP algorithms, Fischetti et al. [95] provided a 

partition algorithm to convert the TSP instances to GTSP instances. 

In our experiments, we set the population size as 100 (pop_size=100), crossover probability as 

0.5 ( 0.5cP = ), and mutation probability as 0.09 (Pm=0.09, Pmh=0.001, Pmb=0.005). The 

algorithms would stop when no better solution could be found in 500 iterations. All of the 

instances are computed by EA-GTSP, HCGA [94] and GCGA [93] twenty times on a PC with 

2.0 GHz processor and 256 MB SDR memory, and the results are shown in Table 1. 

In Table 7, not only the best solution obtained by EA-GTSP is shorter than the one obtained 

by HCGA and GCGA does, but also the one on average, in all of the examples. It can show 

global optimal function of EA-GTSP. In order to show the performance of EA-GTSP, there is 

a comparison between it and several heuristic algorithms [96] by computing the same GTSP 

instances. As Table 2 shows, EA-GTSP is more efficient and steady than all of the test 

algorithms because it can get the best solution in most of the instances. 
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Problem\fi
ve runs 

EA- 
GTSP 

NN 
(G-opt)

NN 
(G2-opt)

CI 
(G-opt)

CI 
(G2-opt)

MO 
(G-opt)

MO 
(G2-opt)

CI2 GI3 

30KROA150 11018 11018 11018 11018 11018 11018 11018 11018 11018 

30KROB150 12195 12196 12196 12196 12196 12196 12196 12196 12196 

31PR152 51573 52506 52506 51915 51915 51820 51820 51820 51820 

32U159 22664 23296 23296 22664 22664 22923 22923 23254 23254 

40KROA200 13408 14110 14110 14059 14059 13887 13887 13406 13406 

40KROB200 13113 13932 13111 13117 13117 13117 13117 13111 13111 

45TS225 68340 68340 68340 69279 69279 68756 68756 68756 68756 

46PR226 64007 65811 65395 65395 65395 64007 64007 64007 64007 

53GIL262 1011 1077 1032 1036 1036 1021 1021 1064 1064 

53PR264 29546 31241 31241 31056 31056 30779 30779 29655 29655 

60PR299 22617 24163 23069 23119 23119 23129 23129 23119 23119 

64LIN318 20769 22233 21787 21858 21858 22403 22403 21719 21719 

80RD400 6446 7083 6614 6550 6550 6546 6546 6439 6439 

84FL417 9663 9754 9754 9662 9662 9697 9697 9932 9697 

88PR439 60099 63736 62514 61126 61126 62091 62091 62215 62215 

89PCB442 21695 23364 21704 23307 23307 22697 22697 22936 22936 

 

Table 8. Comparison of solution among EA-GTSP, GCGA and HCG 

4. Conclusion and discussions 

The chapter introduces two examples of bio-inspired algorithm for traveling sales-man 

problems and its extended version. The first algorithm, named ant colony optimization 

(ACO) which is designed inspired by the natural ants’ behavior, is a novel method to deal 

with TSPs. The experimental results prove the performance of ACO approach, which is 

feasible to solve TSP instances as well as the traditional method. The research results about 

the self-adaptive parameters of ACO are presented in the chapter, which indicates how to 

set an optimal ACO algorithm for different TSPs. Another algorithm is genetic algorithm, 

which is used to solve generalized traveling sales-man problem (GTSP) that is one extended 

style of TSPs. The best-so-far genetic algorithm for GTSP is introduced in the final sub-

section. Bio-inspired algorithms are the feasible methods for TSPs, and can attain better 

performance with the modified setting like self-adaptive parameters and hybrid coding, 

which are described in the chapter. 
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