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1. Introduction  

The problems of finding optimal routes for vehicles from one or several depots to a set of 
locations/customers are known as Vehicle Routing Problems (VRPs) and have many 
practical applications, especially in transportation and distribution logistics.  An extensive 
literature exists on these problems and their variations (e.g.  Bodin(1990), Laporte(1992), 
Laporte & Osman(1995), Ball et al.(1995), Toth & Vigo (2002a)).  
The Capacitated Vehicle Routing Problem (CVRP) is defined on a graph G = (V, A) where 
V={0,1,2, …, n} is the set of nodes (vertices), 0 is the depot (origin, home city), and the 
remaining nodes are customers. The set A = {(i, j): i, j ∈ V, i ≠ j} is an arc (or edge) set. Each 
customer i ∈ V \ {0} is associated with a positive integer demand qi and each arc (i, j) is 
associated a travel cost cij (which may be symmetric, asymmetric, deterministic, random, 
etc.). There are m vehicles with identical capacity Q. The CVRP consists of determining a set 
of m vehicle routes satisfying the following conditions:  

• Each route starts and ends at the depot, 

• Each customer is visited by exactly one route, 

• The total demand of each route does not exceed the vehicle capacity Q, 

• The total “cost” of all routes is minimized. 
The CVRP has been studied extensively in the literature (for recent publications, see e.g. 
Achutan et al. (1996), Toth & Vigo (2002b), Ralphs et al. (2003),  Baldacci et al. (2004), Kara et 
al. (2004), Letchford & Salazar-Gonzalez (2006), Yaman (2006)). CVRP was first defined by 
Dantzig and Ramser in 1959. In that study, the authors used distance as a surrogate for the 
cost function. Since then, the cost of traveling from node i to node j, i.e., cij, has usually been 
taken as the distance between those nodes.  
The real cost of a vehicle traveling between two nodes depends on many variables: the load 
of the vehicle, fuel consumption per mile (kilometer), fuel price, time spent or distance 
traveled up to a given node, depreciation of the tires and the vehicle, maintenance, driver 
wages, time spent in visiting all customers, total distance traveled, etc. (Baldacci et al. (2004), 
Toth & Vigo (2002a), Desrochers et al. (1990)). Most of the attributes are actually distance or 

                                                 
1 A preliminary version of this paper has appeared in the proceedings of the First 
International Conference on Combinatorial Optimization and Applications, COCOCA 2007, 
Xi’an, China, (Kara et  al., 2007). O
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time based and can be approximated by the distance. However, some variables cannot be 
represented by the distance between nodes. Examples of such variables are vehicle load, fuel 
consumption per mile (kilometer), fuel price, time spent  up to a given node. Most of these 
types of variables may be represented as a function of the flow on the corresponding arc 
(load or weight of the vehicle, number of items on the vehicle, the order in the tour of 
starting and/or ending node of the arc and etc.). Thus, for some cases, in addition to the 
distance traveled, we need to include flow on the related arc as another indicator of the cost. 
In this study, we propose a cost function which is defined as a product of the distance 
traveled and the flow on that arc.  To the best of our knowledge, the vehicle routing 
literature has not previously included such a definition of cost, which is the main motivation 
of this research. 
 In the VRP, vehicles collect and/or deliver the items and/or goods from/to each customer on 
the route. Thus, the flows on the arcs change throughout the tour. They show an increasing 
step function in the case of collection and a decreasing step function in the case of delivery. So, 
flows cumulate or diminish along the tour. For this reason, we call a CVRP with flow based 
cost function as the Cumulative Vehicle Routing Problem, abbreviated as CumVRP. 
The main contribution of this paper may be summarized as: 

• Define a new cost function for vehicle routing problems as a multiple of length of the 
arc traveled and the flow on this arc. Name this problem as Cumulative Vehicle 
Routing Problem (CumVRP). 

• Present polynomial size integer programming formulations for CumVRP for collection 
and delivery cases. 

• Show the relationship between the proposed CumVRP with the  m-Traveling 
Repairman and related problems .  

• Illustrate the use of CumVRP in the real life situations such as energy minimizing VRP 
and school-bus routing problems. 

We provide problem identification and integer programming formulations of the CumVRP 
for both collection and delivery cases in Section 2. In Section 3, we show that the proposed 
problem is a generalization of the m-Traveling Repairmen Problem, and so is relevant to 
minimum latency and its variations mentioned in the literature. Two additional applications 
of the flow-based cost function, namely the Energy-Minimizing VRP and the Average-
Distance Minimizing School Bus-Routing Problem, are also illustrated in the same section. 
The proposed models are tested and illustrated by real life data from Turkey and the results 
are given in Section 4. Concluding remarks are in Section 5. 

2. Formulations  of the CumVRP 

In this section, details of the Cumulative Vehicle Routing Problem are outlined and then 
integer linear programming formulations are presented. 

2.1 Problem identification 
Consider a vehicle routing problem defined over a network G = (V, A) where V={0,1,2, …, n} 
is the node set, 0 is the depot and A = {(i, j): i, j ∈ V, i ≠ j} is the set of  arcs, and, components 
are given as: 
Parameters: 

dij  is the distance from node i to node j.  
qi  is the nonnegative weight (e.g. demand or supply) of node  i. 
m is the number of identical vehicles. 
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Q0  is the initial value of flow from the origin to the first node of the tour in the case of 
collection, or the final value of flow from the last node of the tour to the origin in the case of 
the delivery, ( e.g. tare of the truck in the case of  carrying goods).  
M represents the flow capacity of the arcs of the network   (maximal value of the flow on 
any arc of the network, for example, capacity plus tare of the trucks in the case of carrying 
goods).  
Decision Variables: 

xij = 1 if the arc (i, j) is on the  tour of a vehicle, and zero otherwise;  
yij  is the flow on the arc (i, j)  if the vehicle (traveler) goes from i to j, and zero otherwise. 
Cost: 

The cost of traversing an arc (i , j), cij, is defined as the product of the distance of  the arc (i , j)  
and flow on this arc. 
With those given above, we define Cumulative Vehicle Routing Problem (CumVRP) as: 

• Each node (customer) is served exactly by one vehicle. 

• Each route starts and ends at the depot. 

• For each tour, the flow on the arcs cumulate as much as preceding node’s supply in the 
case of collection  or diminish  as much as preceding node’s demand in the case of 
delivery. 

• The flow on any arc of each tour doesn’t exceed the flow capacity of the arcs. 

• The objective is to find a set of m vehicle routes of minimum total cost where  the cost is  
defined as the product of the distance of the arc (i , j)  and flow on this arc. 

Definition of the yij’s is the core of this approach. The flow on the first arc of any tour must 
take a predetermined value and then must always increase (or decrease) by qi units just after 
node i.  In the case of collection, the flow variable shows an increasing step function; for 
delivery, it shows a decreasing step function. Therefore a model constructed for collection 
case may not be suitable for the delivery case. The following observation states the 
relationship between them. 
Observation 1: When the distance matrix is symmetric, the optimal route of the delivery 
(collection) case equals the optimal route of the collection (delivery) case traversed in the 
reverse order.  
Proof:  Consider a route which consist of k nodes:  n0- n1-n2-…-nk-n0, where n0 is the depot. 
For the collection case, the  cost of this tour is: 

 
1

0 01 0 , 1 0 0
1 1 1

jk k

i j j i k
j i i

Q d Q q d Q q d
−

+
= = =

⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ∑   (1) 

For the delivery case, the cost of the reverse route n0- nk-nk-1-…-n1-n0 is:  

 
1

0 0 0 1, 0 10
1 1 1

  
jk k

i k i j j
i j i

Q q d Q q d Q d
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+
= = =

⎛ ⎞⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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Observe that (1) and (2) are the same for symmetric D=[dij] matrices.฀ 

2.2 Mathematical models  

For the symmetric-distance case, one does not need to differentiate between collection and 
delivery since the solution of one will determine the solution of the other.  For the case of an 
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asymmetric distance matrix, due to the structure of the problem, we present decision 
models  for collection and delivery cases, separately. The model for the collection case is:     

   F1: 
0 0

n n

ij ij
i j

Min d y
= =
∑∑  (3) 
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− =∑ ∑       i = 1, 2, …, n (8) 

 y0i =Q0 x0i   i = 1, 2, …, n (9) 

 ( )
ij j ij
y M q x≤ −     (i , j) ∈ A (10) 

 
0

( )
ij i ij
y Q q x≥ +  ( , )i j A∀ ∈  (11) 

 0 1
ij
x or= ,  (i , j) ∈ A (12) 

Where q0 = 0. 
The objective function given in (3) gives the proposed cost function. Constraints (4) and (5) 

ensure that m vehicles are used. Taking “≤” instead of “ = “ in these relation is also possible 
when one imposes to use at most m vehicle. Constraints (6) and (7) are the degree 
constraints for each node, together with (4) and (5), they are called assignment constraints of 
the formulation. Constraint (8) is the classical conservation of flow equation balancing 
inflow and outflow of each node, they guarantee that, flow variables of each tour perform 
an increasing step function. Those constraints also prohibit any illegal subtour. Constraint 
(9) initialize the flow on the first arc of each route, cost structure of the problem necessitates 
such an initialization. Constraints (10) take care of the capacity restrictions and forces yij to 
zero when the arc (i,j) is not on any route, and  constraint (11) produce lower bounds for  the 
flow on any  arc. Integrality constraints are given in  (12). We do not need nonneqativity 
constraints for yij’s since we have constraints given in (11). 
Let us call constraints (9), (10) and (11) as the bounding constraints of the formulation . 
Validity of these bounding constraints is shown in proposition 1 below.  
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Proposition 1: In the case of collection, the constraints given in (9), (10) and (11) are valid for 

CumVRP.  

Proof: As it is explained before, we need initialization value of yij’s for each tour that 

constraints (9) do it, otherwise yij’s may not be actual flow on the arcs. Constraints (11) is 

valid since going from i to j the flow must be at least the initial value plus the weight of the 

node i (unless node i is the depot, in which case q0 = 0). Similarly, since the vehicle is 

destined for node j, it will also collect the weight at node j (unless j is the depot). In that case, 

the flow on the arc upon arriving at node j should be enough to take the weight of node j, 

i.e.,
ijijjij Mxxqy ≤+ , which produce constraints (10).□ 

 Similar constraints for classical CVRP may be seen in (Gouveia (1995), Baldacci et al.(2004), 

Letchford & Salazar-Gonzalez (2006), Yaman (2006)). 

 Due to Observation 1, the delivery problem for the symmetric case need not be discussed. 

For the asymmetric case, the delivery problem will be modeled by replacing constraints (8) 

,(9), (10) and (11) with the following  given below. 

 
0 0

n n

ji ij i
j j
j i j i

y y q
= =
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− =∑ ∑  for i=1,2,….,n  (13) 

 yi0 =Q0 xi0 for i=1,2,….,n (14) 

 ( )
ij i ij
y M q x≤ −  ( , )i j A∀ ∈  (15) 

 
0

( )
ij j ij
y Q q x≥ +  ( , )i j A∀ ∈  (16) 

Thus the model for the delivery case is: 

F2:       
0 0

n n

ij ij
i j

Min d y
= =
∑∑  

s.t. (4)-(7),(12) - (16). 

where q0=0.                                                                                                          

Both of the proposed models have n2+n binary and n2+n continuous variables, and 

2n2+6n+2  constraints, i.e., proposed formulations contain O(n2) binary variables and O(n2) 

constraints.  

3. Applications of the CumVRP  

In this section, we show that the special case of the CumVRP turns out some routing 

problems, namely, Minimum Latency Problem, m-Traveling Repairman Problem, Energy 

Minimizing Vehicle Routing Problem and School-bus Routing Problem. 

3.1 Relevance to minimum latency and related problems 

The Time-Dependent Traveling Salesman Problem (TDTSP) is a generalization of the standard 

Traveling Salesman Problem in which the cost of traveling from one node to another 

depends not only on the two locations, but also on their positions in the tour (Picard & 
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Queyranne  (1978), Lucena (1990), Gouviea & VoB (1995)). When the objective of the TDTSP 

is to minimize the sum of distances traveled from the depot to all nodes, the problem is 

known as the Traveling Salesman Problem with Cumulative Cost or the Cumulative Traveling 

Salesman Problem (CTSP), as defined by Bianco et al.(1993). The CTSP is exemplified by pizza 

delivery since the time it takes the pizza to reach the customer is determined by the total 

travel time from the depot. 

Latency of a node is defined as the total distance traveled up to that node. The Minimum 

Latency Problem is to find a tour starting at a depot and visiting all nodes in such a way that 

the total latency is minimized (Archer et al. (2003), Blum et al. (1994)). This problem is also 

known as the Delivery Man Problem (Fischetti et al. (1993)) or the Traveling Repairman Problem  

(Jothi & Raghavachari (2007)). 

We conclude therefore that, the Cumulative Traveling Salesman Problem, the Minimum 

Latency Problem and the Traveling Repairman Problem are all same with respect to the 

structure of their objective functions. 

The Multiple Traveling Repairman Problem (mTRP) is a generalization of the Minimum 

Latency Problem (hence repairman) and finds m tours, each starting at the depot and 

covering all the nodes while minimizing total latency (Jothi & Raghavachari 2007).  

We now investigate the relations between the CumVRP and the mTRP.  
Lemma 1: mTRP is a special case of the delivery formulation of  CumVRP, where Q0 =1 and 

qi =1 for all i=1, 2, …, n and M =  n-m+2. 

Proof: Consider delivery formulation of CumVRP. Define yij  as the  number of remaining 

arcs on the tour from the node i to the origin if traveler goes from i to j, zero otherwise. Letn 

Q0 =1, and qi =1 for all i=1,2,…,n. For each tour, the corresponding yij’s shows a descending 

ordered integer sequences ending with 1. For such a case, consider a route composed of k 

intermediate nodes as n0- n1-n2-…-nk-n0, where n0 is the depot. Let dij denote the distance 

from ni to nj of this route and yij are the corresponding flow variables. Since there are (k+1) 

nodes in this tour, in order to end with value 1, the starting value of yij must be (k+1). So the 

part of the objective function of the CumVRP model corresponding to the this route is, 

 (k+1)d01+kd12+(k-1)d23+……+dk0, (17) 

which can be rewritten as,  

 d01 + (d01 +d12 )+ (d01 +d12 +d23)+ …..+ (d01 +d12 +d23+…+ dk0). (18) 

 

As can be seen, expression (18) is the sum of the latencies of the nodes on this tour. Thus, the 

CumVRP formulation for this delivery problem involves finding m tours, each starting at 

the depot, such that the total latency up to each node is minimized; this is nothing but the 

mTRP problem. Hence, mTRP is a special case of the delivery formulation of the CumVRP.฀  

For this special case, m-1 traveler (repairman) may visit only one node and turn back to the 
depot. So maximal intermediate nodes on a tour will be n-(m-1) = n-m+1, which implies 
that, the value of the M in the formulation, i.e., the maximal number of arc on a tour, must 
be taken as n-m+1. Using Lemma 1, letting qi =1 for all i, Q0 =1 and M=n-m+1 in formulation 
F2, we produce a formulation for mTRP and so we propose an integer programming 
formulation for mTRP with O(n2) binary variables and O(n2) constraints as follows: 
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 F3: 
0 0

n n

ij ij
i j

Min d y
= =
∑∑  (3) 

s.t.  (4)-(7) ,(12) and 
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1
n n

ji ij
j j
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y y
= =
≠ ≠

− =∑ ∑  for i=1,2,….,n  (19) 

 yi0 = xi0 for i=1,2,….,n  (20) 

 ( )
ij ij
y n m x≤ − i 0, ( , )i j A≠ ∀ ∈  (21) 

 2
ij ij
y x≥  j 0, ( , )i j A≠ ∀ ∈  (22) 

In this formulation, constraints (19)-(22) play same role as the corresponding constraints do 
in F2In the formulation F3, if we take m=1, i.e., one traveler, we get an integer linear 
programming formulation for Minimum Latency (Traveling Repairman and Cumulative 
Traveling Salesman) Problem. Consequently, CumVRP produces a unified formulation for  
these special routing problems also. 
 It has been shown in the literature that the CTSP and related problems including the mTRP 
are NP-hard (Tsitsiklis (1992), Archer et al (2003)). Due to the Lemma 1, we conclude that 
CumCVRP is NP-hard. 
For some cases of the mTRP (e.g. delivering pizza), the distance (or traveling time) of the last 
arc on the tour may not be considered in the objective function.  

3.2 Energy minimizing vehicle routing problem [Kara et al., (2007)] 
For vehicle routing problems where vehicles carry goods from an origin (center, factory 
and/or warehouse) to the customer, or from the customer to the origin, the traveling cost 
between two nodes can be written as, 

Cost = f(load, distance traveled, others) 

where f(.) is any function. We derive a cost function that mainly focuses on the total energy 
consumption of the vehicles. Recall from mechanics that, 

Work = force * distance 

In the VRP, the movement of the vehicles can be considered as an impending motion where 
the force causing the movement is equal to the friction force (see for example Walker (2000)). 
Remember also that, 

Friction force = Coefficient of friction * weight. 

Thus, we have  

Work = Friction force * distance. 

Work = Coefficient of friction * weight * distance 

The coefficient of friction can be considered as constant on roads of the same type. Then, the 
work done by a vehicle over a link (i, j) will be: 
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Work = weight of the vehicle (over link (i, j)) * distance (of link (i, j)). 

Since work is energy, minimizing the total work done is equivalent to minimizing the total 
energy used (at least in terms of fuel consumption). Obviously, the weight of the vehicle 
equals the weight of the empty vehicle (tare) plus the load of the vehicle. Thus, if one wants 
to minimize the work done by each vehicle, or to minimize the energy used, one needs to 
use the cost as, 

 Cost of (i, j)= [Load of the vehicle over (i , j)+Tare] * distance of  (i, j),   (23) 

 There seems to be no such definition and objective cost function in the vehicle routing 
literature. However, there are references on the Internet (such as the Goodyear website) 
indicating that fuel consumption changes with vehicle load. The figure-1 below depicts the 
miles per gallon as a function of the total load. 
 Clearly, miles per gallon decrease with increased vehicle weight. Thus for a VRP in which 
goods are carried and fuel prices are relatively more important than the drivers’ wages, 
considering the load of the vehicle as well as the distances will produce a more realistic cost 
of traveling from one customer to another. This analysis shows that for such VRP’s we may 
define a more realistic cost of traveling from one customer to another by considering the 
load of the vehicle as well as the distances. We refer the VRP in which cost is defined as in 
expression (23) as  the Energy Minimizing Vehicle Routing Problem, this being a special case  of 
the CumVRP as shown below. 
 

 

Figure 1. Miles per Gallon versus vehicle weight (http://www.goodyear.com/truck/pdf/ 
commercialtiresystems/FuelEcon.pdf).  
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In CumVRP, let us define yij as the total weight of the truck while traversing the arc (i, j); qi 
‘s are supply (collection) or demand (delivery) of ith  customer;  Q0 is the  tare of the truck, 
Q is the capacity of each truck and M = Qo+Q. With these definitions, substituting Qo+Q 
instead of M in F1 and F2 , we get integer programming formulations of the collection and 
delivery cases of the Energy Minimizing Vehicle Routing Problem, respectively. 

3.3 School-bus routing problem 

School-bus routing is a primary application of the VRP; the question is how to transport 

students to and from school in an optimal way (Bodin (1990); Corberan et al. (2002)). The 

children are assigned to bus stops and a sequence of individual stops will form a bus route. 

In the morning, the buses pick up the students from bus stops and take them to the school; 

the procedure is reversed in the afternoon (Bodin (1990); Swersey & Ballard (1984)). Each 

school bus routing problem has different objectives and/or constraints. Bus capacity, the 

maximum number of stops per bus, the maximum length (or duration) of each tour and 

student riding time are the most frequently encountered additional requirements. There are 

different objectives, such as: minimizing transportation cost, minimizing transportation 

time, minimizing the time that a student spends on the bus, minimizing the number of buses 

required, minimizing fleet travel time, and balancing bus loads and route lengths (Corberan 

et al.(2002); Li & Fu (2002)). 

For a school-bus routing problem, suppose the decision maker wants to evaluate alternative 
routes with respect to average distance traveled (or average time spent) per student. We 
could find no such objective in the literature. Let us define this problem as the Average-
Distance Minimizing School-Bus Routing Problem. The CumVRP formulation can be used to 
solve such a school-bus routing problem. 
Because of the asymmetric nature of road traffic at different times of a day, the collection 

and delivery cases in school-bus routing problems must be handled separately. Let us define 

V= {0, 1, 2… n} as a set of nodes (vertices), where {0} is the school and the remaining nodes 

are bus stops. Let the set A, the distances between two nodes dij and the binary variables xij 

be defined as in Section 2.1. Define yij as the number of students in the bus while it is 

traveling on the arc (i, j) if the bus passes from bus stop i to bus stop j, zero otherwise. We 

assume that the buses start their tour in the morning from the parking place and end at the 

school. In the afternoon, the tours begin from the school and ends at the parking place. For 

simplicity, we assume that the parking place is at the school. In computing the average 

distance traveled per student, the distance (or time) from the parking place to the first pick-

up point in the collection case, and the distance from the last stop to the parking place in the 

delivery case, must not be considered; therefore  Q0 is equal to zero in both cases.  

Consider a school bus problem where Cap denotes the capacity of the bus and qi denotes the 

number of students boarding or disembarking at stop i.  Then any average-distance 

minimizing school-bus routing problem is equivalent to CumVRP where Q0=0 and  M = 

Cap. So then with these parameters, F1 will be a formulation for morning tours (collection) 

and F2 will be a formulation for afternoon tours (delivery). 

If there are other restrictions besides bus capacity, these constraints can easily be 
incorporated into the model. If the objective is defined as minimizing the average time spent 
per student, it is only necessary to measure the time needed to travel between the nodes of 
the arc set A and take the dij’s as the  time parameters. 
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4. Illustrative examples and computational analsis 

In this section, we conduct some numerical examples of CumVRP formulation focusing on 
the collection case of the Energy Minimizing VRP. 
 We solve the instances via CPLEX 8.1. on an Intel Pentium III 1400 MHz computer. We  
want to test the effect of the new objective function on the optimal routes (i.e. distance-based 
routes versus energy-based routes).  
The Energy Minimizing model of CumVRP is  tested for realistic instances by using the data 
from the Turkish highway map. In this demonstration, customers correspond to the cities 
and we assume that there is a main collection center at Ankara, the capital of Turkey. A 
truck starting at this center collects the goods from each city towards Ankara. In Turkey 
there are 81 cities. We used the most industrialized 31 cities in our analysis. We also 
generated a smaller set with 24 cities to test the performance of the model with respect to 
increase in the number of nodes. We did not include Istanbul in our computational analysis 
since the volume generated there is large enough for a dedicated trip to Istanbul. 
Our model has 5 types of parameters: travel distances between each city pair, the demand of 
each city,  the number of trucks (vehicle), tare and capacity of a truck. For the travel 
distances, we used the data proposed by Tan & Kara (2007)) which is available at 
(www.bilkent.edu.tr\~bkara/hubloc.htm). For the demand of each city we assumed that 
each individual generates 10-5 kg of reusable materials and so scaled the population of each 
city with that tare. Truck capacity is taken as 100 units whereas tare has been taken as 15% 
of the capacity. 
We varied the number of trucks by starting from the minimum possible number, which is 3 
for both cases, up to the largest meaningful number, which is 8 for 31 cities and 6 for 24 
cities. As can be seen in Table 1, increasing the number of trucks to values more than those 
numbers, results in the cost increasing since the model  forces to use that many trucks by 
assigning dedicated trips to certain cities and so the cost increases even though we increase 
the number of trucks.  
In Table 1, we present the objective function values, and the CPU hours provided by 
CPLEX. We terminate when the CPU time reaches 24 hours. 
 

# of cities # of trucks 
Energy consumption 

(kg-km) 
CPU time 

4 383835 
24 hr 

(optimality gap %11) 

5 345462 
24 hr 

(optimality gap %1.69) 

6 332188 4 hr 

7 321156 317.65 sec 

8 317522 27.54 sec 

31 

9 320031 29.29 sec 

4 311947 22.4 min 

5 284125 31.53 sec 

6 279521 10.32 sec 

24 
 

7 281313 12.27 sec 

Table 1. The CPU times and energy consumption values 
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For 31 cities, the CPU time increases as the number of trucks decreases. For 4 and 5 trucks, 
we terminated after 24 hours and reported the optimality gap. However, when the number 
of trucks is 7 or more, the optimum solutions are obtained within seconds. When we 
decrease the number of cities to 24, the CPU time decreases drastically. Even the 4 truck case 
is solved within minutes.  
Next, we wanted to observe the effect of the objective function on the optimal routes. For 
each (# of city, #of truck) combination, we generated two instances: one with the energy 
minimizing objective, and the other with the distance minimizing objective (the one 
customarily used in the literature). For each instance, we report the energy used and the 
distance of the corresponding solution in Table 2. We also calculate the percent deviation of 
each value from the best possible (e.g. [Energy consumption of the distance minimizing 
routes] / [Energy consumption of the energy minimizing routes]) 
 

Minimizing Energy Minimizing Distance 
# of 
city 

 

# of 
truck 

 

Energy 
consumptio
n (kg*km) 

Distance 
traveled  

(km) 

Percent from 
the best 
distance 

value 

Energy 
consumptio
n (kg*km) 

Distance 
traveled 

(km) 

Percent from 
the best 

energy value 

4 383835 9056 1,13 450907 8012 1,17 

5 345462 9517 1,15 424602 8304 1,23 

6 332188 10511 1,22 434119 8649 1,30 

7 321156 11379 1,25 421770 9115 1,31 

31 
 
 
 
 

8 317522 11914 1,23 437255 9683 1,38 

4 311947 8423 1,16 401120 7284 1,29 

5 284136 8857 1,15 374798 7677 1,32 
24 
 
 6 279521 9656 1,17 343374 8269 1,23 

Table 2. The results under both scenarios 

As can be seen in Table 2, the energy consumption of the routes which minimizes the total 
distance traveled can be up to 38% (31 cities, 8 trucks case) over the best possible energy 
consumption. Meanwhile, minimizing the energy consumption can increase the total 
distance traveled as much as %25.  
Also observe from Table 2 that, when the objective is total distance traveled, the smallest 
possible and largest meaningful numbers of trucks are equal (4 for both 24 and 31 cities). 
When we increase the number of trucks to 5 or more, the total distance traveled increases as 
the solution includes dedicated trips to certain cities (the ones closer to main depot Ankara). 
However, when the objective also includes the weights of the trucks, the cost could be 
decreased by the addition of the new trucks. The figures 2 and 3 demonstrate the solutions 
for 31 cities and 5 trucks. 
Observe from the figures 2 and 3 that the routes of the two cases are very different from 
each other. The eastern cities generate smaller volume and so 10 of them can be served by 
one truck (Figure 3). However, when we include the weights in the objective, the two routes 
are split into three routes. 
Even though we proposed a model with O(n2) binary variables and O(n2) constraints for the 
CumVRP, the CPU times of CPLEX over moderate sized problems  were not promising. It is 
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therefore necessary to develop efficient solution procedures for each special cases of the  
CumVRP, like heuristics proposed for CVRP (Gendreau, et al.,(1994); Toth & Vigo(2003)). 
However, these modifications are beyond the scope of this paper. 
 

�
��� �

� �
�

� �� �

� �
� �

�
�

� �� �
�

� ���� ��

�

�
� �

�

� ��

� 	

	� 	�	��� 	�
	�

�
�� 	�

	

��

����
��

��
	�

	� 		�
�	
��

��
 

 

Figure 2. The energy minimizing routes with 5 trucks 
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Figure 3. The distance minimizing routes for 5 trucks 

5. Conclusion  

This paper proposes a new objective function and corresponding formulations for the 
vehicle routing problem. The new cost function defined as the product of the distance of the 
arc and the flow on that arc. We call a vehicle routing problem with this new objective 
function as the Cumulative  Vehicle Routing Problem (CumVRP).  Integer programming 
formulations with O(n2) binary variables and O(n2) constraints are developed for both 
collection and delivery cases.  We show that the CumVRP is a generalization of the m-
Traveling Repairman and related problems in the literature; as an additional finding, we 
propose an integer programming formulation with O(n2) constraints and decision variables 
for the m-Traveling Repairman Problem. We discuss two additional applications of the 
CumVRP: the Energy-Minimizing VRP and the Average Distance-Minimizing School-Bus 
Routing Problem.  
The collection case of the proposed models for Energy Minimizing case of the CumVRP are 
tested and demonstrated by using CPLEX 8.1 on some problems from Turkey’s 31 and 24 
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city distance data. We conclude that, increasing the number of vehicles up to a threshold 
value causes a decrease in the total energy used. We also observed that, CPU time increases 
as the number of the vehicles decreases. As expected, the number of the customer, i.e., the 
number of the nodes of the related network, effects CPU times directly. Distance minimizing 
and energy minimizing solutions of the same problem indicate that, energy minimizing 
routes travel over longer distances than distance minimizing solutions and optimal routes of 
the distance minimizing case consume more energy than the other.  
Developing good heuristics for each special case of CumVRP and to conduct a 
computational analysis for comparing integer programming formulations of m-TRP 
problems are possible future research extensions. 
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