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Abstract

Stress intensity factor determination plays a central role in linearly elastic fracture mechanics
(LEFM) problems. Fracture propagation is controlled by the stress field near the crack tip.
Because this stress field is asymptotic dominant or singular, it is characterized by the stress
intensity factor (SIF). Since many rock types show brittle elastic behaviour under hydrocarbon
reservoir conditions, LEFM can be satisfactorily used for studying hydraulic fracture devel‐
opment. The purpose of this paper is to describe a numerical method to evaluate the stress
intensity factor in Mode I, II and III at the tip of an arbitrarily-shaped, embedded cracks. The
stress intensity factor is evaluated directly based on displacement discontinuities (DD) using
a three-dimensional displacement discontinuity, boundary element method based on the
equations of proposed in [1]. The boundary element formulation incorporates the fundamental
closed-form analytical solution to a rectangular discontinuity in a homogenous, isotropic and
linearly elastic half space. The accuracy of the stress intensity factor calculation is satisfactorily
examined for rectangular, penny-shaped and elliptical planar cracks. Accurate and fast
evaluation of the stress intensity factor for planar cracks shows the proposed procedure is
robust for SIF calculation and crack propagation purposes. The empirical constant proposed
by [2] relating crack tip element displacement discontinuity and SIF values provides surpris‐
ingly accurate results for planar cracks with limited numbers of constant DD elements. Using
the described numerical model, we study how fracturing from misaligned horizontal well‐
bores might results in non-uniform height growth of the hydraulic fracture by evaluating of
SIF distribution along the upper front of the fracture.

© 2013 Sheibani and Olson; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Stress intensity factor determination plays a central role in linearly elastic fracture mechanics
problems. Fracture propagation is controlled by the stress field near the crack tip. Because the
stress field near the crack tip is asymptotic dominant or singular, it is characterized by the
stress intensity factor. The real stress distribution at the vicinity of crack tip and the K-field
LEFM approximation can be depicted schematically as in Figure 1. The stress singularity right
at the tip of the crack cannot be experienced in real nature because inelastic deformation
prevents the crack tip from being perfectly sharp. However, according to small scale yielding
of the process zone immediately around the crack tip in comparison with the K-field region
(Figure 2), the SIF is the quantity which dictates if/when the crack will propagate. The
inaccuracy of the stress field calculation using the SIF based on LEFM is less than 15% of the
exact solution over the distance ranging from r <0.01a to r <0.15a, where r is the radius of K-
field region and a is the half length of the crack [4].

Since SIF was proposed by Irwin [5] to express displacements and stresses in the vicinity of
crack tip, several analytical techniques have been developed for a variety of common crack
configurations; however, these analytical solutions are limited to simple crack geometries and
loading conditions. For the case of 3-D planar cracks embedded in a semi-infinite body, there
are less available analytical solutions for SIF. These exact analytical solutions provide good
insight about fracture problems but they are not usable for general crack propagation modeling
where the geometry of simultaneously propagating cracks can be asymmetrical and irregular
and the boundary conditions can be complicated. Fortunately, advances in numerical model‐
ing procedures supported by the fast growing speed of computational calculation have opened
new doors for fracture propagation analysis.
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Figure 1. Schematic representation of stress distribution around the crack tip [3]
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Figure 2. Process zone and K-filed representation [3]

There are four general distinctive numerical methods to model fracture propagation problems:

1. The boundary element method (BEM) requires discretization and calculation only on
boundaries of the domain. The stress resolution is higher in comparison with finite
element and finite difference methods because the approximation is imposed only on
boundaries of the domain, and there is no further approximation on the solution at interior
points. Particularly, for some problems where the ratio of boundary surface to volume is
high (for instance for large rock masses), BEM can be advantageous because FEM or other
whole-domain-discretizing methods require larger numbers of elements to achieve the
same accuracy.

2. The Finite Element Method (FEM) has been widely used in fracture mechanics problems
since it was implemented by [6] for SIF calculation. Several modifications have proposed
to remove its deficiencies in LEFM problem modeling. [7] and [8] devised “quarter point
element” or “singularity elements” to improve the accuracy of stress and displacement
distributions around the crack and SIF evaluation. To overcome the time consuming
process of remeshing in fracture propagation problems, [9] proposed the Extended Finite
Element Method (XFEM). XFEM allows fracture propagation without changing the mesh
by adding analytical expressions related to the crack tip field to the conventional FE
polynomial approximation in what are called “enriched elements”. Further work is being
done ([10] and [11]) to address the accuracy and stability of XFEM modeling, especially
for multiple crack problems and approaching tip elements called “blending elements”.

3. The Finite Difference Method (FDM) requires calculations on a mesh that includes the
entire domain. FDM usage in fracture mechanics is mostly limited to dynamic fracture
propagation and dynamic SIF calculation ([12] and [13].)

4. The Discrete Element Method (DEM) is mostly applied when continuity cannot be
assumed in discontinuous, separated domains. The method apply to describe the behavior
of discontinuities between bodies with emphasize on the solution of contact and impact
between multiple bodies [14].
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Generally, when the geometry of a problem is changing, whole-domain-discretizing methods
like FEM, FDM and DEM are more time-consuming than BEM because of the remeshing
process around a propagation fracture. However, BEM loses its advantage when the domain
is grossly inhomogeneous.

The “Integral equation” approach (also called influence function) and the “displacement
discontinuity method” are two types of BEM widely used in LEFM analysis. Both approaches
incorporate only boundary data by relating boundary tractions and displacements. In the
integral equation technique, superposition of known influence functions (called Green’s
function) along boundaries generate a system of simultaneous integral equations [15]. In DDM,
unknown boundary values are found from a simple system of algebraic equitation [16].
Generally, DDM has the advantage over integral equations in being faster, while integral
equations can be more accurate for non-linear problems.

SIF values can be obtained from the displacement discontinuity magnitudes at crack tip
elements  [17-19].  However,  according  to  [16],  DDM consistently  overestimates  displace‐
ment discontinuities at the tip of the crack (considering element midpoint) by as much as
25%.  To improve the  accuracy of  the  solution,  some researchers  proposed using higher
accuracy crack tip element and/or using relatively denser distribution of elements near the
crack tip. [20] proposed higher order elements to improve the DDM solution and they used
numerical  integration to find the fundamental  solution of  linear and quadratic  displace‐
ment  discontinuities.  [21]  proposed  another  approach  called  “hybrid  displacement
discontinuity method” by using parabolic DD for crack tip elements and constant DD for
other  elements.  He concluded increasing the  number  of  elements  more  than 8-10  times
cannot yield more accurate results and the error in mode I stress intensity factor calcula‐
tion for a 2-D straight crack with uniform internal pressure, sporadically changes in a range
of 1% to about 10% depending on the ratio of parabolic element length to constant element
length. However, [22] used the same combination of DD element and concluded the ratio
of crack tip element to constant DD element must be between 1-1.3 to obtain good results
with relative error less than 3% in mode II  SIF calculation for a straight 2-D crack.  [23]
presented  a  new  hybrid  displacement  discontinuity  method  by  using  quadratic  DD
elements and special crack tip elements to show r  variation of displacement near the crack
tip. [24] used the same method with few modifications about the position of collocation
points to determine quadratic elemental displacement. They showed the error can be fixed
up to 1.5% for Mode I,  and about 2% for mode II  SIF calculation for a  slanted straight
crack. [25] took a different approach; instead of direct calculation of stress intensity factors
from displacement discontinuities, they proposed a “equivalence transformation method”
in which stresses on the crack surface are calculated from displacement discontinuities, and
then by using crack line Green’s function, the SIF at the crack tip can be obtained from
calculated  stresses.  They  implemented  the  equivalence  transformation  method  to  calcu‐
late dynamic stress intensity factors for an isolated 2-D crack in an infinite sheet subject‐
ed to Heaviside loading. By comparison with the exact solution and using 80 DD elements,
they inferred the error in mode I SIF is less than 1% and for mode II doesn’t exceed 1.5%.
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All of the methods mentioned above including using special crack tip elements or equivalence
transformation methods to decrease the error in crack tip element displacement and corre‐
sponding SIF calculation; however, they all need numerical integration and can be more time-
consuming than constant elemental DD approximation. Ref. [2] empirically determined the
coincidence between DDM modeling and analytical displacement distribution solution of a
straight 2-D crack to remove the error. He showed the margin of error is less than 5% even by
using only 2 elements in a 2-D crack. His proposed formula has been widely used in geologic
fracture problems [26-29]. This paper extends Olson’s method ion [2] to SIF calculation for 3-
D homogenous, isotropic and linearly elastic material problems. [30] changed the correction
constant. The empirical constant they proposed was used by some researchers afterwards ([31]
and [32]), but we argue the change does not actually improve SIF accuracy.

According to Murakami and [33] and [34] the maximum mode I stress intensity factor
appearing at a certain point along the crack front can be estimated by Equation (1) with less
than 10% error for an arbitrary-shaped planar crack.

K I  max =0.50σ π area (1)

where ‘area’ is the area of crack projected in the direction of the maximum principal stress.

Fortunately, for simple crack geometries like elliptical and circular cracks, there exist analytical
formulae for mode I stress intensity factor variation along the crack tip which help us to
evaluate the accuracy of the numerical modeling ([35] and [36]). For rectangular defects there
are no analytical formulae, but the accuracy of DDM numerical modeling can be examined by
comparing against earlier numerical work using integral equation methods [37-40].

2. Numerical procedure

2.1. Displacement discontinuity method

The general concept of the displacement discontinuity method proposed by [16] is to approx‐
imate the distribution of displacement discontinuity of a crack by discretizing it into elements.
Knowing the analytical solution for one element, the numerical elastic solution of the whole
discontinuity can be calculated by adding up the effect of all subdividing elements.

The 3-D displacement discontinuity used here is based on the analytical elastic solution of
normal and shear displacement of a finite rectangular discontinuity in half-space (Figure 3)
proposed by [1]. These equations are closed-form half-space solutions of deformations and
deformation derivatives in which most of singularities and mathematical instabilities were
removed.

By placing N unknown constant displacement elements within the boundaries of the region
to be analyzed and knowing the boundary conditions on each element (traction or displace‐
ment), a system of 3N linear algebraic equations can be set up as the following:

Stress Intensity Factor Determination for Three-Dimensional Crack Using the Displacement Discontinuity Method...
http://dx.doi.org/10.5772/56308

745



σs
i = ∑

j=1

N
Ass

ijDs
j + ∑

j=1

N
Asd

ij Dd
j + ∑

j=1

N
Asn

ij Dn
j    a

σd
i = ∑

j=1

N
Ass

ijDs
j + ∑

j=1

N
Asd

ij Dd
j + ∑

j=1

N
Asn

ij Dn
j  b

σn
i = ∑

j=1

N
Ans

ij Ds
j + ∑

j=1

N
And

ij Dd
j + ∑

j=1

N
Ann

ij Dn
j  c

(2)

where N is the total number of elements, s, d, n are the directions of local coordinates depicted
in Figure 3, Ds

j,  Dd
jand Dn

j are unknown strike-slip shear, dip-slip shear and opening

displacement discontinuities of the jth element, σs
i,  σd

iand σn
i are known strike-slip shear, dip-

slip shear and normal boundary tractions induced on the ith element, and A is the boundary
influence coefficient of the stresses tensor. If known values are the displacements of one side
of boundary elements, these equations will be modified as:
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where, us
i,  ud

iand un
i are known strike-slip and dip-slip shears and opening on the positive (or

negative) face of the crack (Figure 3), and the B matrix is called the boundary influence
coefficient of the displacements tensor.
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Figure 3. D displacement Discontinuity Modeling

Effective and Sustainable Hydraulic Fracturing746



2.2. Stress intensity factor computation

By knowing the crack tip element displacement discontinuities, KI, KII and KIII can be directly
calculated using Equations 4a, b & c respectively:

K I =C
DnE π

4(1 - ν 2) P
   a

K II =C
Ds E π

4(1 - ν 2) P
   b

K III =C
Dt E π

4(1 + ν) P
   c

(4)

where E is modulus of elasticity, νis Poisson’s ratio, Pis crack tip element length perpendicular
to crack front, Dnis the opening of crack tip element, Dsis shear displacement discontinuity
perpendicular to Dnand the crack front, Dtis front-parallel displacement discontinuity (Fig.
3) and Cis an empirically determined constant that accounts for the discrepancy between the
numerical approximation and the analytical solution. [2] empirically determined that the
analytical and numerical solutions for a planar 2-D crack coincide at approximately at

x = (a - P
1.3 ), where xis the distance from the center of the crack and ais half length of the crack.

He showed by using the empirical constant C =0.806the margin of error is less than 5% for
stress intensity factor calculation of a 2-D crack even when there are only two elements in a
crack. The proposed modified constant of C =0.798by [30] does not improve on this accuracy.

3. Validation of numerical model

3.1. Rectangular crack

There is no analytical solution for the stress intensity factor variation along a rectangular crack
front. However, rectangular cracks were the subject of several papers where the “Integral
Equation” or “Body Force Method” was used to numerically approximate mixed Mode SIF
values [37-42]. Results obtained from [39] are in a good agreement with [40] for maximum SIF
calculation of rectangular cracks. In addition, [39] investigated how maximum stress intensity
factors change in a half-space in terms of crack depth. Because of these reasons, [39] and [40]
were selected as reference solutions to which we compare the results from this paper. Studies
done by [37], [41] and [43] yield relatively different results for K I max calculation. These earlier
works are different about 5% in average [39]. In addition they cannot be used for stress intensity
factor variation along the crack edge. Equation 1 proposed by [34] is among few studies done
to find the maximum stress intensity factor of an arbitrary-shaped crack. Using that formulae
and knowing the maximum stress intensity factor for a rectangular discontinuity always is at
the middle of longer edge, the maximum stress intensity factor of a rectangular crack can be
approximated with adequate accuracy. For instance, they approximated the dimensionless
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stress intensity factor at the edge-midpoints of a square crack as F I =0.768 which the error is
about 1%.

Considering a rectangular crack as shown in Figure 4, the following dimensionless parameter
is proposed to demonstrate the result of stress intensity factor of a rectangular crack. F I is called
the dimensionless stress intensity factor along the crack front y =b:

F I =
K I (x , y)|x = x ,  y = ± b

σn πb
(5)

The stability of the solution can be examined by investigation of the strain energy variation
through increasing the number of elements. Figure 5-b shows that strain energy (U ) linearly

varies with 1
n  and has an asymptotic behavior with respect to n, where n is the number of

element on each side of a square crack shown in Figure 5-b. The area of the square crack is A
under constant pressure p.Assuming the error in strain energy calculation approaches zero if

n →∞ ( 1
n →0), the correct answer for error estimation in the strain energy calculation can be

obtained from Figure 5-b. Figure 5a shows the error calculation in strain energy. The displace‐
ment discontinuity method always overestimates the strain energy (or displacement across
the crack surface) but it yields more accurate results closer to the exact solution when the
number of elements increases. The error changes from 48.8% using a 3×3 mesh to about 1.99%
for a mesh including 71×71 elements. In comparison with the two dimensional analysis of a
straight crack [16], the rate of convergence is faster, but the error in strain energy calculation
is higher using the same number of elements to divide one side of a crack.

Figure 4. Approximation of the exact solution of strain energy for a square pressurized crack
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Figure 5. Error in strain energy calculation as a function of number of elements on each side of a pressurized square
crack (a=b)

The error in strain energy calculation is mainly related to the largest error occurring at the
corners of the square crack where the displacement gradient is highest. Figure 6 shows the
stress intensity factor variation along the half-length of the crack tip using DDM compared
with the integral equation solution suggested by [40]. The total number of elements used in
the simulation was 22×22 to be consistent with the number of colocation points used in [40].
The difference between these two solutions is negligible for all elements but the corners
(element No. 11). However, the corner elements of rectangular cracks don’t play an important
role in fracture propagation problems because the level of SIF is the lowest there and unlikely
to control the initiation of crack propagation.
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Figure 6. Dimensionless stress intensity factor variation along the half length of a square crack front

Figure 7. Extrapolation of FI max for a square crack in an infinite body

It is always desirable to use a coarser mesh to save computation time, but the accuracy of DDM
depends strongly on mesh refinement. Figure 7 shows the extrapolation of maximum dimen‐
sionless stress intensity factor, F I max(which occurs at side-midpoint of a square crack) as a

function of 1
n . It shows the numerical result of F I max is parabolic with the reciprocal of the
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subdivision number. Figure 7 shows that the most reliable value of F I max for a square crack is
0.7607, which is slightly different (0.6%) than the value reported by [39] using body force
method.

Figure 8 shows the variation of dimensionless stress intensity factor, F1, along the crack front

y=b for various values of b
a , using 22×22 elements, a mesh refinement consistent with [40].

Figure 9 shows the maximum dimensionless stress intensity factor (F I max) at the location
(x=0, y =b). When b/a <1, the crack tip at y=b is represents the longer edge of a rectangular crack,
whereas when b/a>1 the crack tip at y=b represents the shorter tip. The dimensionless SIF is
referenced to the plane strain SIF for a crack with half-length b for all b/a. The results show that
at b/a=0.125, the maximum SIF (at location x=0, y=b) has reached the plane strain value (F1=1).
As b/a increases (equivalent to reducing the crack length a relative to b), F1 is reduced. When
b/a=1.0, the square crack, F1=0.75. A penny-shaped crack has more restricted opening, and has
the ratio of 0.64 to the plane strain SIF. Reducing a further such that b/a>1 makes a the short
dimension of the crack and thus the limiting dimension for crack opening and SIF value. The
SIF at y=b will then go to 0 as a→0. In comparing to the solution of [Wang et al 2001], it is
evident that the distribution of SIF near the x=a crack tip is more accurate when b/a <1, but the
maximum value of SIF is a good match for all cases. Using higher element density around the
rectangular crack front and a coarser mesh at the center was investigated, but we found a
uniform mesh yielded more accurate results using fewer elements in comparison with non-
uniform mesh.

Figure 8. Dimensionless stress intensity factor variation along the crack front y = b.
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Figure 9. Maximum dimensionless stress intensity factor along the crack front y = b.

Considering a rectangular vertical crack in a half-space, and assuming ν =0.3, the dimension‐
less stress intensity factor at midpoints of crack fronts nearest (A1) and farthest (A2) from the
free surface are presented in Figure 10a and b respectively, as a function of b / aand b / d . F1 max

and F2 max are the dimensionless stress intensity factors corresponding to points A1and A2

respectively and can be defined as the following:

F1 max =
K I (x , y)|A1

σn πb
 a

F2 max =
K I (x , y)|A2

σn πb
 b

(6)

where σn is the normal pressure at the surface of crack. For every combination of b / aand
b / d , the stress intensity factor along the side nearest to the free surface is greater than the side
farthest away.

Effective and Sustainable Hydraulic Fracturing752



Figure 10-a and b show for greater aspect ratio (b / agrater or taller crack) SIF is less affected

by the depth. Both F1 max and F2 max increase as the crack approaches the surface of solid. The

mode I stress intensity factor along the crack fronts of a rectangular discontinuity in an infinite

body is independent of Young’s modulus [45]. Figure 11a and 11b show that Poisson’s ratio ν

variation has a slight effect on F1 max and F2 max, but only for cracks close to the free surface.



 

 

Figure 10. a Dimensionless stress intensity factor, F1 maxas a function of b/a and b/d for a rectangular crack in half-
space (ν = 0.3); b Dimensionless stress intensity factor F2 max as a function of b/a and b/d for a rectangular crack in half-
space (ν = 0.3)
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(a) 

(b) 

Figure 11. a. Effect of Poisson’s ratio on dimensionless stress intensity factor, F1 maxfor a rectangular crack in half-
space; b. Effect of Poisson’s ratio on dimensionless stress intensity factor F2 max for a rectangular crack in half-space

In contrast to Mode I, for mode II and III stress intensity factor of a crack in an infinite body is
dependent on elastic constants. By defining the dimensionless stress intensity factor for mode

II, F II =
K II (x , y)|x = x ,  y = ± b

τzx πb
 and assuming a frictionless surface crack, Figure 13 shows the

maximum dimensionless stress intensity factor along the rectangular crack front y =bsubject
to front-perpendicular shear stress τzx. The figure shows increasing Poisson’s ratio will

increase mode II stress intensity factor at the tip of a rectangular crack embedded in an infinite
space. Results were satisfactory compared with [38].
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Figure 12. Effect of Poisson’s ratio on Mode II dimensionless stress intensity factor for a rectangular crack in an infinite
space.

3.2. Elliptical crack

For an elliptical crack embedded in an infinite body, the stress intensity factor variation along
the crack edge can be obtained from the following analytical solution [36]:

K I (θ)=
σn(πb)

1
2

E (k ) ( sin2 θ +
b 4

a 4 cos2 θ

sin2 θ +
b 2

a 2 cos2 θ
) 1

4
(7)

where:

θ =tan-1 y
x  ,  x 2

a 2 + y 2

b 2 =1 and,

 E (k )= ∫0
π
2 (1 - k 2sin2 θ)dθ and  k =1 - b 2

a 2

E (k )is the complete elliptical integral of the second kind while a is the major axis and bis the
minor axis of ellipse. The maximum and minimum stress intensity factor at the end of minor
and major axes, respectively, can be calculated using Equations 8a and 8b:

(K I )max = K I (θ = π
2 )=

σn πb
E (k )    a

(K I )min = K I (θ =0)=
σn πb
E (k )

b
a   b

(9)
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Figure 13a and b show dimensionless stress intensity factor variation along the elliptical
crack  front  using  analytical  solutions  and  DDM  numerical  modeling.  Totally  154  DD
elements were used in the model depicted in Figure 13a, and 628 elements in Figure 13b.
Whereas SIF is proportional to the area of planar crack, the area of boundary element mesh
in both cases is almost equal to the area of the modeled ellipse. For both models, the aspect

ratio  of  the  ellipse  is  b
a =2  and  F1 =

K1(θ)

σn(πb)
1
2

.  Both  figures  show  that  the  trend  of  stress

intensity  factor  variation  can  be  appropriately  modeled  by  DDM.  Oscillation  in  SIF  is
because  of  stepwise  mesh  boundary  used  to  define  the  geometry  of  the  ellipse  using
rectangular elements. However, by using the average of SIF of the neighboring circumfer‐
ential elements, the accuracy improves for both models and the maximum error decreas‐
es from about 24% to 9% for the first model and from 28% to 10% for the second model,
as compared to the analytical solution in [36]. Using 20 elements along the major axis and

10 along the minor axis of the ellipse results in good agreement for F1 at θ =0 and π
2 (Figure

13-a).  For  θ ≥60°,  the  rectangular  mesh  deviates  less  from  the  ellipse,  and  the  error  in
dimensionless stress intensity factor is non-oscillatory and small. Increasing the number of
elements doesn’t improve the accuracy (Figure 13-b).

3.3. Penny-shaped crack

Stress intensity factor at the tip of a circular crack of radius ain an infinite solid under uniaxial
tension σn is [46]:

2
π σn πa (10)

where:

θ =tan-1 y
x  ,  x 2 + y 2 =a 2

Two different size meshes were considered to calculate dimensionless stress intensity factor
variation along the tip  of  a  circular  crack as  depicted in Figures  14a and 14b.  The first
model includes 76 elements and the second one has 308 elements. According to Figure 7,
for a rectangular crack using 9×9 elements, the error in stress intensity factor is about 3
percent.  For  the  penny-shaped  crack,  as  with  the  elliptical  crack,  the  error  is  a  strong
function of location. Because of the symmetry, error calculations are shown only for one
eighth of the circle. The main reason of error in stress intensity factor along the crack front
is jagged geometrical definition of the circle by using rectangular displacement discontinu‐
ity  elements.  The error  in  SIF can reach up to  20% along the crack front;  however,  the

results are better for θ =0 or π
2 - about 2.5% for the coarser model and almost zero for the

finer model. Figure 15 compares F1variation along the quarter front of the penny-shaped
crack for two DD models as well as analytical solution. The figure shows the finer mesh
helps to increase the accuracy where the crack front is straight, but is not helpful where
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the crack front is stepwise. Similar to elliptical cracks, using the average SIF of neighbor

circumferential elements considerably increases the accuracy of SIF distribution along the

crack front of the penny-shaped discontinuity.

 
(a) 

 
(b) 

  

Figure 13. a. Dimensionless SIF variation along an elliptical crack front using analytical solution and DDM ( b
a = 2.0),

model No. 1 including 154 elements; b. Dimensionless SIF variation along an elliptical crack front using analytical solu‐

tion and DDM ( b
a = 2.0), model No. 2 including 628 elements
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(a) 

(b) 

Figure 14. a Error in dimensionless calculation along a penny-shaped crack front, Model 1 including 76 elements; b.
Error in dimensionless calculation along a penny-shaped crack front, Model 2 containing 308 elements
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Figure 15. Comparison between dimensionless SIF for two DDM models with analytical solution of a penny-shaped
crack stress intensity factor

4. Fracture propagation

For vertical fractures, lateral kinking propagation is modeled based on maximum circumfer‐
ential stress criteria [47], which states growth should occur at the crack tip along a radial path
perpendicular to the direction of greatest tension:
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tan
θ0

2 = 1
4

K I

K II
- Sgn(K II

) ( K I

K II
)2

+ 8   a

Keq = K I cos3 θ0

2 - 3
2 K II cos

θ0

2 sin
θ0

2    b
(11)

where θ0 is the angle of kinking and Sgn(K II )denotes the sign of  K II . Equation 10-a is used to
calculate the equivalent opening mode stress intensity factor in the direction of crack extension
(Keq) as in formula (10b).

Our model takes into account the height growth as pure Mode I propagation. Any contribution
of Mode III or out of plane shear on vertical propagation is neglected; however, the possibility
of fringe crack generation based on Mode I+III combination will be studied by Mode III SIF
evaluation along the upper front of the fracture. The angle of twisting is dependent on the
magnitude of Mode III and Mode I SIF as well as mechanical properties [48] and can be
calculated using Equation 11. Higher values of Mode III SIF (or lower opening mode) result
in bigger twisting angle.

α = 1
2 tan-1 K III

K I (1

2
- ) (12)

Fracture front propagation velocity defines which edge extends first. Charles power law [49]
was used to relate the equivalent opening Mode stress intensity factor at the tip of the crack
to the propagation velocity as the following [49]:

V = AKeq
n (13)

5. Application: Fracture misalignment and height growth

Figure 16 shows the ideal alignment of horizontal well and longitudinal hydraulic fracture
system where the horizontal well is perpendicular to the minimum remote horizontal stress
Shmin =S3 and the wellbore lies in the principal remote stress plane, parallel to SHmax =S2.
However, hydraulic fractures may not necessarily start perpendicular to the minimum
horizontal remote stress because of the lack of alignment between the wellbore and the
principal stresses, local stress perturbation, or natural fracture adjacent to a horizontal well
[50]. The geometry of a hydraulic fracture could be further complicated by lateral propagation
which is non-planar and height growth that is non-uniform. The non-planarity of the fracture
path and its resultant near-wellbore width restriction and excessive treating pressure were
considered by [51] and [52] using 2-D and pseudo 3-D displacement discontinuity modeling,
respectively. In this paper, we study the effect of misalignment angle on the possibility of
irregular height growth as well as fringe fracture generation by contemplating the stress
intensity factor distribution around the periphery of misaligned hydraulic fracture. Wellbore
stress effects are not considered in this study.
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Figure 16. Ideal longitudinal fractured horizontal well with hydraulic fracture perpendicular to σhmin.

For the propagation cases that follow, we assume Shmin =Sxx
r  = 15 MPa (where rdenotes remote

stresses), P fracis constant and equal to 20.0 MPa, the remote compression differential stress is
(σ yy

r - σxx
r )=2.0 MPa, the propagation velocity exponent is n =2, ν =0.25and E =30.0 GPa. The

initial fracture length and height are assumed to be 3 meters (a square crack), subdivided by
9 DDM elements. The fracture is assumed to remain rectangular during the propagation (i.e.,
the height is uniform along the entire length, but the crack path in plan-view can be non-
planar).

To examine the effect of horizontal well misalignment angle on fracture propagation (Figure
17), first we assume the differential compression in ydirection (S yy

r - Sxx
r ) is 40% of the net

injection pressure (P frac - Sxx
r ). Fracture path non-planarity is strongly affected by the initial

misalignment angle, β, especially for extreme cases. The starter fracture is centered at (0,0) and
is rotated counterclockwise by β. The smallest misalignment β =10° is the closest to planar
fracture and β =89° is the most curved path.

Nonplanar propagation has an impact on height growth (Figures 18 and 19). For the smaller
misalignment cases (β <=45º), crack height keeps pace with crack length growth for our
imposed rectangular shape (Figure 18). For our stronger misalignment cases of β >45º, the crack
height growth is somewhat hindered to only ~80% of the length. Looking at the opening mode
SIF (KI) distribution along the top edge of the fracture is more interesting, however, since our
propagation algorithm responds only to the average crack tip SIF. The more severe the fracture
reorientation, the lower the KI for the initial fracture segment, where for the 89º misalignment
case, the KI at the center of the crack is 50% lower than it would be for a planar fracture. This
implies that at the wellbore, there could be a restriction in fracture height because of the non-
planar propagation that might also restrict width and hinder infectivity.
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Figure 17. Map view of non-planar fracture paths (upper front propagation, ∆ H
2 = 25.0 m)

Figure 18. Vertical versus lateral growth of the hydraulic fracture
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Figure 19. KI along the upper front of hydraulic fracture implying height growth restriction around the wellbore due

to misalignment normalized to SIF of planar fracture at x = 0(upper front propagation, ∆ H
2 = 25.0 m)

The time progression of the KI variation along the top fracture front is displayed in Figure 20
for the case β =80° . The KI at the initial fracture location (the injection location) grows very
slowly in comparison to the curving wings of the fracture.

Figure 20. KI distribution variation normalized by the absolute maximum opening mode SIF during propagation along
the upper front of a hydraulic fracture perforated from a misaligned horizontal wellbore. Misalignment angle, β = 80 ° .
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Although KI is restricted in the misaligned portion of the fracture, Mode III or out of plane
shear SIF(KIII) is accentuated. This twisting SIF could cause the fracture to break down into
several en echelon cracks, causing further propagation hindrance in the vertical direction.
Figure 21 depicts the distribution of KIII for varying fracture misalignment based on the
simulation of Figure 19.

Figure 21. Mode III SIF along the upper front of hydraulic fracture normalized to SIF of planar fracture at x = 0, imply‐

ing height growth restriction around the wellbore due to misalignment (upper front propagation, ∆ H
2 = 25.0 m)

Fracture path is affected by remote stresses as well as near-tip stress distribution and is
quantifies by ratio R[53] assuming compression is positive:

R =
(σHmax - σhmin)
(P frac - σhmin) =

(σ yy
r - σxx

r )
(P frac - σxx

r ) (14)

The magnitude of Rshows how fast the misaligned fracture will be aligned with maximum
horizontal stress. Figure 20 present the bigger the magnitude of Rratio, the faster the fracture
will be rotated to be aligned perpendicular to minimum horizontal stress. Because the
differential remote stress is kept constant for these 3 cases, smaller magnitude of ratio Rmeans
the dominance of fracture driving stresses results in a straighter fracture path.
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Figure 22. R ratio effect on fracture path. Upper front propagation, ∆ H
2 = 25.0 m, β = 80 ° and (σ yy

r - σxx
r ) = 2.0 MPa.

6. Conclusion

Numerical methods are necessary for the SIF evaluation of 3-D planar cracks because analytical
solutions are limited to simple geometries with special boundary conditions. In this paper, the
capability of DDM using constant rectangular discontinuity elements and considering the
empirical constant proposed by Olson (1991) was satisfactory examined for cracks with simple
geometry. The accuracy of the model is excellent especially for rectangular and square shaped
cracks. The stepwise shape of the mesh boundary when representing elliptical or penny-
shaped cracks introduces more error in to the calculation, but the minimum and maximum
SIF values can be accurately computed.
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