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1. Introduction

Recent developments in nanoscience and nanotechnology were strongly supported by
significant advances in nanofabrication. The growing demand for the fabrication of nano-
structured materials has become increasingly important because of the ever-decreasing
dimensions of various devices, including those used in electronics, optics, photonics, biology,
electrochemistry, and electromechanics (Henzie et al., 2004; Fan et al., 2006). In particular, a
societal revolution is expected with the miniaturization of mechanical, chemical or biological
systems known as microlectromechanical systems (MEMS) (Lee et al. 2012), or micrototal
analysis systems (UTAS) (Reyes et al. 2002, Dittrich et al. 2006, West et al. 2008).

Among all fabrication processes, photolithography has been strongly developed since few
decades to fulfil to the needs of the microelectronics industry. Researches in this area were
essentially motivated by finding ways to provide new solutions to pursue the trend towards
a constant decrease of the size of the transistors as stated in the "Moore's law" (Moore, 1965).
To reach these objectives, lithographic fabrication methods have been widely diversified
leading to DUV lithography (Ridaoui et al., 2010), X-ray lithography (Im et al., 2009) and e-
beam lithography (Gonsalves et al. 2009) to quote a few. Although some of these techniques
exhibit resolution of less than 10 nm, these methods are inherently 2D. Unlike conventional
microelectronics components, many MEMS or uTAS devices (motors, pumps, valves...)
require 3D fabrication capability to insure the same function as the corresponding macroscopic
device. Thus, lithographic fabrication of 3D microstructures has emerged and has been divided
in two categories depending if they give access to restricted or arbitrary 3D pattern fabrication.
On the first hand, specific structures as periodic patterns have been made using self-assembly
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(Shevchenko et al. 2002), layer-by-layer assembly (Kovacs et al. 1998), soft lithography (Quake
et al. 2000), and holographic photopolymerization (Campbell et al. 2000). However by these
techniques, no free-moving or complex microstructures have been achieved. On the other
hand, arbitrary 3D patterns have been realized by using the so-called direct write technologies
which gathers ink-based writing (Lewis et al. 2004), microstereolithography (Maruo et al.
2002) and two-photon stereolithography (TPS) (Kawata et al. 2001; Maruo et al. 1997). Though
examples of submicrometer resolution have been demonstrated for ink-based writing (Lewis
et al. 2004) and microstereolithography (Maruo et al. 2002), these techniques are mainly used
for micro or macrofabrication.

In this context, two-photon stereolithography which is an advanced version of microstereoli-
thography appears of high interest since it offers intrinsically sub-100 nm resolution. Addi-
tionally to its unique ability of writing arbitrary structures with sub-100 nm features without
use of any mask, TPS is also an attractive fabrication process due to the versatility of materials
used including polymers, biopolymers, ceramics, metals, and hybrid materials.

The aim of this chapter is to review some recent works about two-photon stereolithography
and its applications. In the first part, a brief introduction to TPS and the fundamental concepts
will allow illustrating its interest and its current development. The second part will be
dedicated to the most relevant materials developed for TPS regarding to the applications
targeted. Furthermore, some typical applications where 3 dimensionalities play a crucial role
will be highlighted. Finally, the last part will describe the recent advances in TPS both from
the writing speed and the resolution (Li et al. 2009) in order to compete with other nanofabri-
cation techniques. As the result, the contribution of this chapter is to propose a comprehensive
overview of fundamental issues in TPS as well as its current and future promising potential.

2. Two-photon stereolithography

2.1. Introduction

One of the first attempts to fabricate 3D structures arised from IBM in 1969 (Cerrina, 1997). By
combining electrodeposition and X-ray lithography, high-aspect ratio metal structures were
obtained. Further works on X-ray lithography gave rise to the well-known process LIGA in
the early 1980s (Becker et al. 1984). Despite the maturity of the technique and demonstration
of some 3D complex structures, their application has not been widespread due to the availa-
bility of synchrotron radiation sources and X-ray masks.

Historically speaking, TPS began with the 3D microfabrication process using photopolymers
developed by Kodama in 1981 (Kodama, 1981). Further developments lead to the birth of
stereolithography, then microstereolithography to achieve resolution down to 1 um. Even if
in some cases, submicrometer resolution has been demonstrated (Maruo et al. 2002), it is still
challenging to obtain microstructures with nano or submicron features due to the layer-by-
layer nature of this technique. To overcome this drawback, Wu et al. (Wu et al. 1992) proposed
the two-photon lithography concept which is based on the nonlinear optical process of two
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photon absorption (TPA). This work was directly inspired of the first demonstration of
localized excitation in two-photon fluorescence microscopy by Denk et al. two years before
(Denk et al. 1990). However, the feasibility of TPS' as a real 3D fabrication technique was
illustrated by Maruo et al. in 1997 through the fabrication of a 7 um-diameter and 50 um-long
spiral coil (Maruo et al. 1997). Finally, in 2001, micromachines and microbull with feature sizes
close to the diffraction limit were realized (Kawata et al. 2001). By using non-linear effects of
TPS, subdiffraction-limit spatial resolution of 120 nanometers has been successfully achieved.

2.2. Two-photon absorption

Contrary to conventional stereolithography techniques where polymerization is induced by
absorption of a single photon, TPS is based on two photon absorption (TPA) process. TPA and
more generally multiphoton absorption (MPA) process have been first predicted in 1931 by
Marie Goeppert-Mayer (Goeppert-Mayer, 1931) and then verified experimentally thirty years
later (Kaiser et al. 1961), thanks to the advent of laser. Finally, two-photon photopolymeriza-
tion was experimentally reported for the first time in 1965 as the first example of multiphoton
excitation-induced photochemical reactions (Pao et al. 1965). However, it's only with the
commercialization of tunable solide ultrashort pulse laser like Ti:Sapphire laser in the 1990s
that application of TPA is widespread in various domains like biology imaging (two photon
fluorescence microscopy) or microfabrication (TPS).
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Figure 1. A. Mechanism of TPA when simultaneous excitation occurs. B and C. Illlustration of two methods for increas-
ing the probability that TPA occurs: density of photon is increased by B. spatial compression using objectives with high
numerical aperture, C. temporal compression using ultrafast lasers.

Two different mechanisms have been described for TPA: the sequential excitation and the
simultaneous two-photon excitation. In the frame of TPS, only the second one is involved
(Figure 1A). In this case, a virtual intermediate state is created by interaction of the material
with the first absorbed photon. In order to reach the first real excited state, a second photon

1 TPS is also called two-photon polymerization (TPP), multiphoton absorption polymerization (MAP), 3-dimensional
Direct Laser Writing (3D DLW) or 3-dimensional lithography.
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has to be absorbed during the short lifetime (around 107 s) of this virtual state. To increase
the probability of such a non-linear absorption process, high density of photons is requested.
Consequently, in main applications (including TPS) where TPA is involved, objectives with
high numerical aperture (NA) and ultra short pulse laser are employed for increasing spatial
and temporal density of photons, respectively (Figure 1B and C). The main interest of TPA
compared to single photon absorption is that excitation is localized within the focal volume of
a laser beam. Consequently, it gives access to 3D microfabrication since the polymerization
threshold is not reached out of the focal volume. Typically, volume less than 1 um?® can be
addressed. In parallel to the technical developments for TPA, molecular engineering has been
strongly developed to design molecules or molecular architectures with large TPA cross
section. An exhaustive review on this point can be found in reference (He et al. 2008) and few
typical examples will be given in the next section.

2.3. Experimental set-up for TPS

The typical TPS setup is composed of three main parts: (i) the excitation source, (ii) the
computer-aided design (CAD) system and (iii) the scan method. The excitation source with
high intensity is important to favor TPA process. Even if Ti:Sapphire laser operating at 800 nm
are often used, Baldeck and coworkers have demonstrated that TPS could be performed
successfully by using a cheap Nd-YAG microlaser operating at 532 nm (Wang et al. 2002). The
CAD system has to be chosen carefully since trajectories can influence the writing time and
more important the mechanical resistance of the final structure. Finally, the scan method will
have a crucial impact of the throughput of the writing process. The first possibility is to use
Galvano mirrors for horizontal scanning coupled to piezoelectronic stage for vertical scanning
which presents the advantage to scan with high speed. However, the total horizontal range
accessible by this optical system is limited to few ten of micrometers due to spherical aberration
when using objectives with high numerical aperture. The most popular solution consists to
scaninx, y and z direction by using a piezoelectric stage. While the scan speed is low compared
to previous option, few hundred of micrometer can be scanned.

As depicted in Figure 2, a typical set-up is composed of a mode-locked Ti:Sapphire laser as
excitation source which presents duration pulse of ten hundred of femtosecond at 800 nm,
repetition rate around 80 MHz and average output power of 1-3 W. The intensity of the laser
is controlled by an optical or mechanical shutter. Before the introduction of the beam into the
microscope, itis expanded so as to overfill the back aperture of the objective. By tightly focusing
the pulsed laser beam (ns to fs pulses) into a multi-photon absorbing material, it is possible to
trigger a photoreaction (e.g. photopolymerization) inside a volume below the dimension of
the voxel. Complex structures (such as in Figures 3, 4, 6 and 8) can then be generated by moving
in the laser focus in the 3 dimensions inside the monomer substrate. Usually, samples are
placed on a 3D piezoelectric stage, and then move above the fixed laser beam by CAD. Upon
the irradiation, only areas exposed at the focal point are polymerized further than the poly-
merization threshold, leading to the desired structures after washing away the unsolidified
photoresist. Finally, the back reflection is collected by an additional port and send to a CCD
to monitor the fabrication in real time.
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Figure 2. Schematic typical experimental TPS set-up.

3. Materials for two-photon stereolithography

Basically, the formulation destined to TPS is composed of 2 main components: a photoinitiator
system and a monomer. The two-photon photoinitiator is a species, or a combination of
chemicals able to absorb efficiently two photons to generate excited states from which reactive
species can be created. One of the most important parameter is the two-photon absorption
cross section that directly characterizes the capacity of the photoinitiator to absorb two
photons. The reactive species (radicals or ions) must be able to initiate polymerization of the
monomers that constitute the building blocks of the final material. After initiation, propagation
and termination reactions take place as observed in the sequences of classical polymerization
scheme.

In principle, any one-photon photopolymerizable system can be adapted to TPS, provided that
a suitable TPS photoinitiator can be added to the monomer system. Most of the published
works deal with free radical photopolymers. The main reason is relative to a wider availability
of free radical photoinitiators.

Additionally to the photoinitiator and monomers, other chemicals can be added in TPS systems
like inhibitors (to control the polymerization threshold and thus spatial extend of polymeri-
zation - some examples will be given in the next section), and additives to bring specific
properties (fluorophores, metal nanoparticles, quantum dots, etc...). The choice of the mono-
mer is in relation with the final application whereas the choice of the photoinitiator integrates
the irradiation wavelength and nature of the monomer.
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Figure 3. structures realized by TPS with A. polyacrylate derivatives (A..: 532 nm; average power : 20 uW; writing
speed: 45 um.s'; Malval et al. 2011), B. and C. sol-gel materials for biocompatible 3D scaffold (A.,: 808 nm; average
power : 20 mW; writing speed: 200 um.s' Klein et al. 2011), D. trypsine derivative for biocatalysis degradation (A,
532 nm; average power : T mW; writing speed: nc, losin et al. 2012). Reproduced from the respective references.

As illustrated in Figure 3, different examples of 3D structures have been realized with various
materials. Interest of such structure will be discussed in each corresponding material sub-
section. The next paragraphs are aimed at giving some examples of systems and associated
applications.

3.1. Free-radical photoresists

Among different monomers available, acrylate monomers have been the most widely used for
TPS. The reason for this success is a wide range of commercially available acrylate monomers
with tailored properties: chain length, number of reactive function, viscosity, polarity to quote
a few. Moreover, acrylate monomers exhibit a high reactivity and good mechanical properties
that allow complex 3D structures being created.

In parallel, a wide choice of free-radical TPP photoinitiators has been developed. Highly
efficient two-photon absorbing systems such as 4,4'-dialkylamino trans-stilbene (Cumpston et
al. 1999) and other bis-donor bis(styryl)benzene or bis(phenyl)polyene (Lu et al. 2004; Zhang
et al. 2005; Rumi et al. 2000) were employed for two-photon initiated free radical polymeriza-
tion. Other conjugated photoinitiators as fluorenes (Belfield et al. 2000; Martineau et al. 2002,
Jin et al. 2008) and ketocoumarins (Li et al. 2007) derivatives also demonstrated remarkable
TPS properties. Finally, another promissing strategy is the direct photogeneration of highly
reactive radicals such as a-aminoalkyl ones.

In particular, Malval et al. demonstrated an elegant strategy to improve the efficiency of
thioxanthone-based systems (Malval et al. 2011, Figure 3A). New hybrid anthracene-thioxan-
thone system assembled into a chevron-shaped molecular architecture was proposed. A strong
increase in the two-photon absorption cross section by more than a factor of 30 as compared
to thioxanthone was observed. As a consequence, anthracene-thioxanthone constitutes a
suitable two-photon initiating chromophore with a much higher efficiency as thioxanthone
used as reference. At A, =710 nm for instance, the two-photon polymerization threshold of
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anthracene-thioxanthone was shown to be five times lower with respect to that of thioxan-
thone.

Additional examples of polyacrylate structures realized by TPS can be found in figure 4
section 4.1.

3.2. Cationic photoresist

Cationic photoinitiated polymerization of epoxides, vinyl ethers and methylenedioxolanes has
received increasing attention, owing in large part to the oxygen insensitivity of the cationic
process (Belfield et al. 1997a and 1997b). Moreover, cationic photoresist appears as an inter-
esting choice from application point of view since UV negative tone photoresists have
demonstrated their interest for microelectronics, optics, microfluidic or MEMS.

However, the difficulty to design efficient TPA photoacid generators has limited the devel-
opment of TPA cationic photoresists. For this reasons, many efforts have been devoted to
increase the sensitivity of such systems. First approach was based on sensitizers such as
coumarin (Li et al. 2001), phenothiazine (Billone et al. 2009), or thioxanthone (Steidl et al.
2009) associated to a commercial PAG such as onium salts. Second approach relies on a
molecular association of the acid generator functionality into the structure of the two-photon
active chromophore. In the latest case, the reactivity of the PAG is no longer limited by
diffusion and thus a significant improvement of the photopolymerization efficiency was
demonstrated (Zhou et al. 2002; Yanez et al. 2009; Xia et al. 2012).

Among other application, the epoxy-based photoresists are extremely interesting when
complex structures with high aspect ratio are needed. Indeed, thanks to their good mechanical
properties, they have been successfully used for application in microfluidic (Maruo et al.
2006) or MEMS (Bilickmann et al. 2012).

3.3. Advanced functional materials

Despite their advantages, polymers have intrinsic limitations for some applications. For
instance, their mechanical properties at high temperature or in contact with solvents degrade
rapidly. They also present low refractive index that limits their use in optical applications.
Their toxicity may prevent them from use in contact with living organisms. For these reasons,
alternative strategies have been developed to combine the advantages of 3D structuration by
TPA and functional materials.

The sol-gel route is interesting in the frame of micro-nano-fabrication since it allows the
fabrication of inorganic or hybrid organic-inorganic materials at relatively low temperature.
The first strategy followed for combining lithography and sol-gel materials consisted in
developing hybrid precursors that can undergo both sol-gel hydrolysis-condensation reaction
and photoinduced crosslinking (Blanc et al. 1999; Soppera et al. 2001). These materials, also
called Ormorcer® or Ormorsil® have been adapted to TPA by use of suitable photoinitiators
and interesting applications in the frame of optics (Ovsianikov et al. 2008) or biology (Klein et
al. 2011, see Figure 3B, C) were demonstrated. These materials were mostly used in optics since
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the refractive index of the material can be tuned by adding metal alcoxides. However, in these
hybrid materials, the proportion of organic moieties in the crosslinked material is still impor-
tant, so many efforts have been dedicated to the formulation of fully inorganic materials
(Passinger et al. 2007).

Another important class of inorganic materials is metals. Metals nanoparticles, nanostructures
or thin layers are indeed very interesting for electrical connections in devices and also for their
plasmonic properties. Recent works have been reported on the fabrication of 3D metallic
structures by combining TPS and silver evaporation (Rill et al. 2008). However, by this process,
full metal coverage is challenging and induces a supplementary step. Therefore, several groups
have developed more direct strategies based only on TPS. For instance, Prasad et al. have
fabricated submicrometric plasmonic structures which exhibit interesting conductive proper-
ties (Shukla et al. 2011). More recently, Spangenberg et al. also demonstrated that a silver
complexe can be used as TPA photoinitiating system and as precursors for nanoparticles
fabrications, leading in a single step to a polymer-metal nanoparticles nanocomposite
(Spangenberg et al. 2012). Such routes open the doors towards microstructures with conduc-
tive properties or magnetic properties that can be useful for MEMS actuation.

One other very important and growing field of applications for TPA materials is relative to
biological applications. TPA microstructuring has been extensively used the last years to
propose micro and nanostructured surfaces with tailored chemical composition to be used as
model substrates to investigate the development of biofilms. The unique advantage of TPS is
to propose real 3D structures that mimic with more accuracy the local environment of cells or
bacteria than planar surfaces. In this context, polymer matrixes have been widely used but
also, sol-gel materials were proposed since they are biocompatbile materials that can be used
as inert topological matrixes, as illustrated in Figure 3B and 3C (Klein et al. 2011). Additionally,
biological materials like trypsin or collagen precursors were developed to propose a direct
writing route for 3D biocompatible structures. Besides the interest of allowing a direct writing
of complex structures, an advantage of TPA microfabrication is to be adapted for integration
of microstructures in closed environment. For example, losin et al. demonstrated the possi-
bility of integrating trypsin’s micropillars in a microfluidic system (Figure 3D). Trypsin is an
enzyme used for catalyze the degradation of specific peptide. Interestingly, by following the
variation of fluorescence intensity resulting from the peptide clivage, the authors have shown
that trypsin structures kept its enzyme catalysis activity.

Although numerous materials have been designed to fulfill the requirements of various
applications, there is still an important demand for optimizing current systems. Besides, with
the emergence of STED-like lithography (for STimulated Emission Depletion, see next section),
designs of new photosystems will be crucial for the development of such technique.

4. Current challenges in TPS

As shown through several examples, TPS is a powerful and attractive technique for present
and futures applications. Due to the need of a well-controlled 3D nanofabrication technique,
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several commercial set-ups have emerged on the market since 5 years. However TPS suffers
from two main drawbacks for a more largely widespread in other scientific area or in indus-
tries. The first roadblock concerns the low-throughput of the process. Indeed, TPS is based on
a serial process (i.e. point-by-point writing) which is a serious problem when mass production
is needed. Moreover, compared to low-throughput techniques like e-beam lithography,
resolution achievable by TPS is still 1 or 2 order of magnitude lower.

In this section, we will discuss about different approaches to address these specific points and
highlight some recent developments which answer mostly to these drawbacks and promise a
brilliant future to TPS.

4.1. Resolution

Because of the rapid improvement of TPS resolution in the past decade, a special attention has
to be care on the way to define and measure it. In the most of works, “resolution” corresponds
to the lateral and/or axial features size of single voxel or single line. Different methods such as
ascending scan method (Sun et al. 2002) or suspending bridge method (DeVoe et al. 2003) have
been proposed in order to improve the accuracy of the measurements. However, these two
methods suffer from drawbacks which are the difficulty to avoid the truncation effect and the
unknown influence of material’s shrinkage. Therefore, though less information is provided,
most of the groups define resolution as the width of a single line on the surface.

Nevertheless, with the emergence of several STED-like lithographies, more precise definition
of resolution has become necessary in order to compare their abilities. Although extension of
the famous Abbe’s criterion introduced in conventional or two-photon absorption microscopy
can be extended to TPS to describe the optical limitation of the lithography system, ultimate
resolution for a given optical lithography system has to be determined by considering the role
of the photopolymer. Indeed, in the frame of the writing of two close lines, due to consumption
of photoinitiators and diffusion of various species (photoinitiator, scavengers), the writing
process of the second line can be strongly affected. This effect is sometimes referred as the
resin’s memory. Thus strong dependence with respect to the initial concentrations of photoi-
nitiator as well as the viscosity of the matrix is expected. Up to date, no mathematical model
includes all the parameters. Therefore, as suggested by Fischer et al. (Fischer et al. 2012), a
better solution for determine both axial and lateral resolution would be the fabrication of a 3D
periodic unit as a crystal photonic for a given photopolymerizable system. It has to be
mentioned that typical ratio between axial over lateral resolution in TPS is ranging from 2 to
5 depending of optical conditions. In the next part, one has to keep in mind that the resolution
or feature size is given for both an optical and chemical system.

4.1.1. Overview of the different strategies

Since the microbull with 120 nm features size realized by Kawata and coworkers (Kawata et
al. 2001), various approaches have been attempted to improve the resolution of TPS (Figure
4). The first approach which is still used nowadays relies on the design of high-efficiency
photoinitiators. By this method, linewidths of 80 nm have been measured (Xing et al. 2007).
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Another approach based on the use of a shorter wavelength has allowed writing of 3D structure
with 60 nm feature size (Haske et al. 2007). Indeed, as dictated by the extended to TPS Abbe’s
criterion, lateral resolution is proportional to the wavelength. However, the wavelength can
not be reduced indefinitely since the material may absorb linearly at shorter wavelength and
consequently lead to the lost of the intrinsic resolution of TPS. Finally, more recent and
impressive feature size was obtained by an enhanced version of TPS inspired by STED
microscopy (Li et al. 2009). The principle of this technique will be described in detail in the
next section. With 800 nm excitation wavelength, voxel of 40 nm height have been achieved,
that represents A/20. This spectacular result has to be compared with the voxel of 600 nm height
obtained by using conventional TPS where excitation wavelength is set at 800 nm which
corresponds to A/1.33. Even if no experimental evidence has been shown for lateral resolution
by this technique, A/20 is also clearly achievable. Further insight of this new technique is
addressed in the next subsection.

Y ———— 1T UM ——

Figure 4. Improving spatial resolution of two-photon microfabrication by different strategies during the past decade.
a) the famous microbull exhibiting 120 nm features size due to intrinsic properties of TPS (A = 780 nm, A/6.5; Kawata
et al. 2001), b) Photonic crystal with 60 nm features size due to the use of shorter wavelength (A = 532 nm, \/8; Haske
et al. 2007), ¢) 80 nm linewidth by using a high efficient photoinitiator (A = 800 nm, A\/10; Xing et al. 2007), d) and e)
microtower fabricated by using a conventional TPS and a STED-like TPS, respectively. In d and e insets, AFM measure-
ments of voxel size are shown. e) inset is the current smallest axial resolution (40 nm) for a voxel thanks to a STED-like
method (A =800 nm, A/20; Li et al. 2009). Reproduced from the respective references.

4.1.2. STED-like lithography

In the recent past, the diffraction resolution barrier of fluorescence light microscopy has been
radically overcome by stimulated emission depletion (STED) microscopy. Since its theoreti-
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cally (Hell et al. 1994) and experimentally (Klar et al. 1999) birth, STED delivers nowadays
routinely images of biological samples with a resolution down to 10-20 nm. Due to its great
achievements in life-science, STED and more globally super resolution microscopy have been
recognized as the “method of the year” in 2008 in Nature Methods. Finally, world record lateral
resolution down to 5.6 nm using visible light has been reported by Hell’s group (Rittweger et
al. 2009). In STED, a first short laser pulse is used to bring fluorescent molecules in their excited
state. In order to de-excite these chromophores through stimulated emission, a second laser
pulse (usually at longer wavelength to avoid one photon absorption) has to occur after
vibrational relaxation of the excited electronic state but before fluorescence occurs i.e. few ps
to few ns later than the first laser pulse. The efficiency of the deactivation strongly depends on
the intensity and the wavelength of the depletion pulse, as well as the time delay of depletion
pulse versus the excitation pulse. The precise localization of fluorescence arises from the spatial
phase shaping of the depletion beam. The latter causes de-excitation to occur everywhere
except in a region at the center of the original focal volume. The idea to translate these
groundbreaking concepts to optical lithography has been evoked in 2003 (Hell et al. 2003), but
tirst demonstration applied to TPS has been published only 6 years later (Li et al. 2009).
Nowadays, in the frame of STED-like optical lithography, 3 different depletion mechanisms
have been reported in the literature. In all cases, two laser beams are used, one for excitation
and a second one for deactivation as illustrated in Figure 5. Whereas the excitation beam allows
the formation of species (i.e radicals) which initiate the polymerization, the phase shaped
deactivation beam allow photophysically or photochemically inhibition of the reticulation
around the central excited zone. Depending of the phase mask used, the voxel can be reduced
along the axial direction (bottle-beam shape, see Figure 5B) or along the lateral direction (donut
shape).

3D piezo stage

A ‘?’ B Excitation ~ Deactivation Both
- beam beam beams

Excitation beam
Xy plane

B

Laser ()

CW/Short pulse {:

Phase mask

Xz plane

CW/short pulsd
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Figure 5. A. Schematic experimental set-up for STED-like optical lithographies. B. False-color, multiphoton-absorp-
tion—induced luminescence images of the cubes of the PSFs of the excitation beam, the phase shaped deactivation
beam, and both beams together. Adapted from reference (Li et al. 2009).
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4.1.2.1. Two-color photoinitiation/inhibition lithography

Among the three STED-like optical lithography methods, the so called two-color photoinitia-
tion / inhibition lithography (2PII) is the only one based on a photochemical deactivation of
photoinitiator (Scott et al. 2009, McLeod et al. 2010). In this case, by using continuous laser, the
excitation is performed by a single photon absorption process at 473 nm and deactivation
occurs also by a linear process at a distinct wavelength (364 nm). Upon deactivation beam, two
weakly reactive radicals are produced which can interact with the initiating radical to stop the
polymerization. By using a donut mode for shaping the deactivation beam, reduction of the
lateral extent of single voxel until 65 nm is reached. More recently, with a similar set-up,
another group has claimed having designed a more efficiency photopolymerizable system
which has been illustrated by the fabrication of 40 nm dots (Cao et al. 2011). While the idea to
use inexpensive continuous laser sources is attractive, this process has been demonstrated only
for fabrication of 2 dimensional structures. Although manipulation of the photoinhibiting
wavelength into a "bottle beam" profile would induce confinement along the third axis, when
focusing deeper into the photoresist volume, both excitation and deactivation might be
attenuated by the linear absorption of the material. Besides, consumption of photoinitiator
and/or photoinhibitor along the pathway of the beam could lead to a time and space depend-
ence of concentration of photoactivable species during the 3D fabrication. 2PII based on two-
photon absorption process for both excitation and deactivation could avoid this problem, but
up to now, no such experiment has been reported in the literature.

4.1.2.2. RAPID lithography

The first attempt to translate the spectacular optical resolution from STED microscopy to
lithography has to be attributed to Fourkas’s group (Li et al. 2009). Contrary to 2PII, deacti-
vationis based on a photophysical process. On preliminary experiments, Fourkas and coworkers
have used the conventional STED configuration. In this case, the excitation beam (800 nm) was
overlaid by a second beam red-shifted with respect to the excitation beam wavelength. Then,
in order to enhance the efficiency of stimulated emission, the depletion pulse was stretched to
duration of 50 ps. to guarantee enough intensity of the depletion beam. Deactivation i.e.
inhibition of the polymerization was observed for a wide range of wavelength (760 to 840 nm).
However, whereas tuning the pulse delay from 0 to 13 ns between the two beams should affect
the efficiency of the inhibition, no significant effect had been observed. Consequently the
deactivation was not assigned to stimulated emission like in STED, but the authors have
ascribed this effect to the depletion of an intermediate state with longer lifetime. Therefore
they have decided to name this method RAPID for Resolution Augmentation through Photo-
Induced Deactivation. Further experiments are under investigation to determine the nature of
the intermediate specie.

Thanks to the longer lifetime of the intermediate, a second configuration has been suc-
cessfully used: depletion effect has been performed with continuous laser which cancel
the need to control the delay between excitation (800 nm) and depletion (800 nm) beam:s.
By using the later configuration and a bottle beam profile for the depletion beam, voxels
of 40 nm height have been achieved. In the frame of this study, the depletion effect is so
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sensitive that the excitation beam can induce itself the deactivation. Interestingly, for a
RAPID compatible photoinitiator, the linewidth increases at faster scan speed. In the op-
posite, in conventional photoinitiator, faster scan and consequently weaker exposure dose
yields to decrease of the linewidth. This opposite effect for RAPID photoinitiator is ex-
plained by the depletion effect done by the excitation beam. Indeed, slow down the scan
speed allow to excited photoinitiator to be deactivate. Smartly, the authors have taken
benefit of this unexpected dependence towards scan speed to propose system insensitive
to abrupt change of trajectory (Figure 6). In this case, photopolymerizable system com-
bines both conventional and RAPID photoinitiators. Finally, according to conclusions of
Wegener and coworkers (Fischer et al. 2012), because the depletion time-constant is be-
tween 15 and 350 ms in case of RAPID lithography, writing speed is comprised between
30 um.s™ to 150 um.s™. While this speed corresponds to typical speeds used in academic
field, this slow speed might be an obstacle for its use in industry (see section 4.2).

Figure 6. A, B Large and close view of fabrication of sinusoidal structures with a conventional photoinitiator, respec-
tively. C, D Large and close view of fabrication of sinusoidal structures with a RAPID photoinitiator, respectively. E, F
Large and close view of fabrication of sinusoidal structures with a mixture of conventional and RAPID photoinitiators,
respectively. Reproduced from reference (Stocker et al. 2010).

4.1.2.3. STED lithography

For efficient STED, molecules have to present large oscillator strength between the ground
state Sy and the first excited sate S, to favor later depletion. Because of their use in fluorescence
microscopy, such type of molecules has also to exhibit strong fluorescence quantum yield. But
this relatively long lifetime excited state (usually few ns) allows the depletion to take place.

In contrary, common photoinitiator exhibit low oscillator strength and are designed to present
efficient intersystem crossing (ISC) yielding to reactive species which can give rise to radical
and further to polymerization. Moreover, excited state lifetime of photoinitiator is usually
found to be around 100 ps which would result in the use of high power pulses shorter than
100 ps to induce depletion. Unfortunately, with this large pulse energy, depletion could be
competed by multiphoton absorption leading to undesired polymerization. Compare to
previous STED-like lithography technique, STED lithography requires the use of two distinct-
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wavelength short pulse lasers for both excitation and deactivation. In addition, pulse delay
between the two beams has to be controlled carefully. While this configuration seems more
constraining than 2PII and RAPID, higher scan speed (around 5 m.s™) is expected (Fischer et
al. 2012).

STED lithography experiment has been attempted with isopropylthioxantone (ITX) as a
photoinitiator. But further experiments such as pump-probe experiment have shown that the
STED mechanism was not the main depletion pathway (Wolf et al. 2011) as claimed in previous
work (Fischer et al. 2010). Based on the pump-probe experiment in ethanol (Wolf et al. 2011),
a better suitable candidate appears to be the dye (7-diethylamino-3-thenoylcoumarin) (DETC)
since stimulated emission was clearly demonstrated.

However, because the S, lifetime of a molecule usually depends on the solvent, a detailed and
adapted pump probe study of DETC in the monomer has been realized (Fischer et al; 2012).
While it has been shown that stimulated emission was not the only possible pathway, it was
the first clear evidence of the possibility to perform true STED lithography. Fast and slow
components of depletion were observed to exhibit opposite wavelength dependencies which
indicate the existence of two distinct depletion mechanisms (Figure 7A). The fast component
was ascribed to stimulated emission depletion, since its spectral dependence fits nicely the
spectrum of the stimulated-emission (SE) cross-section. The slow component was not assigned
in the frame of this study and further studies have to be accomplished to unravel this point. It
has to be noted that at longer wavelength the relative strength of the fast component is weak
regarding those of slow component.

Interestingly, STED lithography pump-probe experiment with the same photopolymerizable
system, but with a depletion wavelength set at 642 nm has been performed by Harke and
coworkers (Harke et al. 2012). In this experiment, pulse delay experiment has been realized,
but no evidence of STED has been observed. Nevertheless, the unique component of depletion
effect presents a timescale in the same range as typical triplet lifetime. The authors assume that
the depleted excited state is not the singlet state S; as in STED, but the triplet state T;. Besides,
one possible and well-known pathway to deplete the triplet state proposed by the authors is
the reverse intersystem crossing (ReISC).

Until now, only 3 pump-probe experiments have been performed by two distinct groups. Even
if these studies lead to different observations and conclusions, it can certainly be explained by
the use of different experimental conditions (depletion wavelength, pulse delay, excitation
wavelength). Thus results illustrate the need to improve the knowledge in STED-like lithog-
raphy process to define requirements list for efficient STED lithography photoinitiators.

The recent progresses of STED-like lithography have allowed new very promissing applica-
tions in photonics. 3D polarization-independent carpet cloak for visible light have been
fabricated for the first time which demonstrate the unique ability of TPS as 3D fabrication
method (Fischer et al. 2011). In this case, 3D photonic crystal exhibits distance between two
lines of 375 nm and 175 nm in axial and lateral directions, respectively. This has to be compared
with the 510 and 210 nm values found in the frame of conventional TPS for axial and lateral
directions, respectively. Whereas noticeable improvement has been shown for axial resolution,
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Figure 7. A. Spectral sensitivity of the different processes for 10 mW depletion power. Due to pronounced single pho-
ton absorption, depletion is not possible in grey area. B. schematic illustration of the different pathway involved in the
depletion of DETC. Reproduced from references (Fischer et al. 2012 and Harke et al. 2012).

the gain in lateral resolution is less remarkable. This is explained by the use of a bottleneck
beam shaping for the depletion beam. While combination of bottleneck and donut phase masks
could be used to shape the beam and so to improve simultaneously lateral and axial resolution,
it may be interested for specific applications to use only bottleneck beam since it can induce a
more spherical voxel (ratio of 2.1 in this example).

Owing to its current and unique fabrication ability and its potential ability regarding to high-
throughput (5 m.s? scan have been predicted for pure STED lithography), an exponential
increase of works on this becoming hot topic is expected in the near future.

To conclude about these STED-like section, it has to be mentioned that because of the relative
novelty of STED-like optical lithographies (since 2009) and the fact that untilnow only 5 groups
in the world have shown their skills to design such type of experiment, new insights are
expected to appear rapidly in the near future. Interdisciplinary research has to be lead in order
to propose a STED lithographic set-up with the dedicated optimized materials for few tens of
nanometers in three dimensions. This will give birth of the first 3D arbitrary nanofabrication
technique.

4.1.3. Diffusion-assisted TPS

An alternative method to improve the resolution is to add a quencher in the photopolymer-
izable system. In presence of quencher, the photoinduced radical can be quenched which
consequently prevents polymerization. By this way, it has been shown that the radical
diffusion can be controlled resulting in the confinement of the polymerization region (Tanaka
et al. 2005). However, in this reported work, the concentration of quenching molecules has to
be much larger than those of radical produced in order to result in an effective deactivation.
Therefore, Lu and coworkers designed a novel photoinitiator with a radical quenching moiety
(Lu et al. 2011). In this case, an intramolecular radical deactivation can occur leading to a more
efficiently control of radical diffusion than in the case of an intermolecular one. As a result,
finer features can be formed. However, by these methods no sub-diffraction gaps between two
lines have been demonstrated, and only small effects on the feature size have been observed.
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More recently, Sakellari and coworkers proposed another route to control the extent of the
polymerization region (Sakellari et al. 2012). From their point of view, since a nondiffusing
quencher results only in an increase of the polymerization threshold, they proposed to add a
mobile quencher. Contrary to other works (Tanaka et al. 2005, Lu et al. 2011) where the
quencher plays its inhibitor role by interacting with the photoinitiator or the generated radical,
the quencher used in this work is an amine-based monomer. It interacts with other monomer
or become part of the polymer backbone without compromising the mechanical stability of
the structure. Last but not least, the amine functions allow a future metallization or further
chemical functionalization. By this method, fabrication of woodpile structures with 400 nm
intralayer period has been achieved for the first time with a single beam (Figure 8). Without the
amine-based monomer, the authors have already shown in previous works that the minimum
intralayer period achievable for an equivalent crystal photonic was around 900 nm (Sun et al.
2010). Moreover, this 400 nm intralayer period obtain by diffusion method has to be compare
with the best result obtained by STED-like lithography, i.e. 375 nm intralayer period for the
same type of photonic crystal (Fischer et al. 2011). Interestingly, while a single beam is used
in the frame of this diffusion assisted high resolution TPS (as named by their authors),
comparable resolution are obtained in both cases. While this method is easier to implement in
laboratory compare to STED-like lithography, it has to be mentioned that in order to get such
impressive resolution, the scan speed is intrinsically low to allow diffusion of the quencher
into the scanned area. Typical scan speed in this study is around 20 pm.s™. In the last section,
solutions to overcome this speed limitation will be addressed.

Figure 8. A. Microstructures realized by intramolecular quenching method. Scale bars are 5 um. B. SEM images of pho-
tonic crystal fabricated by diffusion assisted high resolution TPS and diffraction pattern generated by the photonic de-
vice. Reproduced from references (.. 780 nm; average power : 7.70 mW; writing speed: 66 um.s”, Lu et al 2011) and
(Aexe: 800 Nm; average power : 20 m\W; writing speed: 20 um.s Sakellari et al. 2012), respectively.

4.1.4. Other methods

Recently, 40 nm feature size has been obtained by combining chemical and optical approaches
(Emonsetal. 2012). The measurement of feature size has been performed by suspending bridge
method. From a chemical point of view, the authors have demonstrated that the addition of a
crosslinker (pentacrylate derivative) allow a resolution enhancement of a factor 2 (150 nm
feature size versus 82.5 nm with a 50 fs pulse laser). As expected, the addition of crosslinker
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should play a positive effect on the resolution since it allow to the suspended line to be
maintained during the development step. In the other hand, an additional resolution enhance-
ment has been achieved by using shorter laser pulse: the use of 8 fs instead of 50 fs allows
improving feature size of the line from 150 nm to 90 nm for photoresin without cross linker.

In addition to the above optical and chemical tricks, further improvement of resolution can be
achieved by other minor technical development like high hybrid optics diffractive (Burmeiter
et al. 2012).

To conclude, recent technical developments of TPS open the doors to strong improvement of
the resolution. Even if the diffraction limit has been beaten both in lateral and axial direction
thanks to different methods such as the STED-like lithography or the diffusion-assisted high
resolution TPS, effort research has to be focus on new photopolymerizable system to benefit
completely of the intrinsic resolution achievable by the different techniques. For STED-like
lithography, optimization of the photopolymerizable system should lead to feature size
around 10 nm. Finally, when comparing the different technique, a particular attention has to
be taken into account concerning the maximum scan speed for future use in industry. This will
be the object of the next section.

4.2. Recent advances in throughput: From prototyping towards production of semi-series

Despite the possibilities to fabricate 3D objects with sub-100 nm features in a single step, TPS
use is as far as we know limited to scientific community. Indeed, owing to the point-by-point
writing process, TPS appears as an extremely slow technique for mass production in industry.
Typical writing speed range in academic research goes from few pum.s to few mm.s* which
has to be compared with the few m.s™ used in industry for different laser process (ablation,
laser control, rapid prototyping by inspired-stereolithography methods,...). Until 2003, as for
resolution, the research effort for increasing the throughput of TPS was mainly focused to the
synthesis of high-efficiency photoinitiators. Nevertheless, in the past decade several research
groups have proposed various strategies to break down this technological bolt.

4.2.1. Influence of the scanning mode

As an attempt to solve this problem, Sun et al. demonstrated the impact of the laser beam
trajectory over the manufacturing time by significantly increasing the fabrication efficiency of
90% when using CSM (contour scanning method, also called vector mode) mode rather than
RSM (raster scanning method) mode. As shown in Figure 9, in the raster mode, all voxels which
constitute the volume whose contains the microstructure are scanned. In case of CSM mode,
only the voxels defining the surface of the microstructure are scanned. As a result, it took 3
hours or 13 minutes to manufacture the micro-bull using RSM and CSM mode respectively
(Sun, 2003). Further information on the role played by trajectories can be found laser and
photonics review (Park et al., 2009).

For applications where the objects have to be completely filled such as microlens, an additional
UV exposure step is done. However cracks in the structure might occur to leading to a dramatic
decrease of desired performance.
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Figure 9. Two fabrication strategies based on scanning mode: a) Raster mode, b) Vector mode (or contour mode), c)
and d) SEM images of a microbull structures using RSM and CSM respectively. Reproduced from reference Sun 2003.

4.2.2. Replication

To address the low-throughput of the method, LaFratta et al. have proposed to use TPS in
tandem with soft lithography technique known as microtransfer molding (Xia et al. 1998). By
this way, high-fidelity molds of structures with extremely high aspect ratios and large
overhangs have been realized (LaFratta et al. 2004, Figure 10). Besides, in the frame of this
work, more than ten replicas have been made from a single master without any significant
deterioration of the resulting structures. Even if this technique have been applied to more
complex structures such as arches or coils (LaFratta et al. 2006), a range of geometries or objects
such as closed traps or micropumps are still impossible or currently too challenging to replicate
using microtransfer molding. Finally, from our knowledge, no improvement or additional
example of this technique has been recently reported in the literature, underlying the difficul-
ties to separate the molder to the master without damage. Recent advances in soft lithography
might facilitate the delivering step.

Figure 10. a) and b) SEM images of master and replica array of towers respectively, ¢) and d) SEM images of master
and replica of coil respectively. Scale bars are 10 um. Reproduced from reference LaFratta 2004 and 2006.
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4.2.3. Multi-focal TPS

Another solution for boosting fabrication speed while avoiding geometric limitations associ-
ated with molding is the use of multi-focal strategy. This technical innovation has been first
demonstrated by Kawata and coworkers in 2005 (Kato, 2005). By combining TPS with a
microlens array, more than one hundred identical and individual 3D objects have been written
simultaneously resulting in a two-order increase in the fabrication yield compared to single-
beam TPS (Figure 11). In 2006, Kawata et al. succeed to write in parallel more than 700 hundred
identical structures (Formanek, 2006) illustrating the high potential for large scale production.

Figure 11. a) and b) examples of two- and three-dimensional fabrication by mean of microlens array.

Recently, Ritschdorff et al. proposed a more general approach of multi-focal TPS to allow
parallel but independently writing of different objects (Ritschdorff et al. 2012). Indeed, until
this work, advanced TPS based on multi-focal strategy was dedicated to the creation of
identical replicas or to the fabrication of a single structure with many identical sub-units. In
the frame of this recent work, a proof-of-concept has been illustrated with the construction of
biocompatible networks by using two independent sub-beams. In order to control each beam
separately, the main beam is directed through a dynamic mask (typically a spatial light
modulator). To extend this appealing strategy to numerous parallel and independently sub-
beam, high-power lasers are required. Additionally to the increase of the fabrication’s speed,
this work opens the doors to numerous and more flexible applications. For example, one could
imagine making unlimited modifications into microfluidic systems, but more interestingly,
generation of pattern with different exposure time will result to display gradients in chemical
functionality, mechanical functionality or porosity which play a key role in tissue engineering.

However the promising potential of multi-focal TPS for speed up fabrication is quite obvious,
two points have to be taken in consideration to use it as a tool in laboratory or industries. The
tirst point concerns the use of an expensive amplified femtosecond laser in order to provide
enough energy after each lens or dynamic mask. In addition, the laser beam intensity distri-
bution has also to be perfectly controlled to deliver the same amount of energy for each lens
and to fabricate uniform structures. It has to be mentioned that though this point may be a
brake for scientific community, this is clearly not the case for its use in industry. A more serious
issue with parallel fabrication is the precise control of alignment of the hundred forming laser
beams with respect to the plan of the substrate. A tilt of less than 1° of the substrate will result
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in the fabrication of inhomogeneous structures which is unacceptable from a metrology point
of view in industries.

4.2.4. Currently speed of TPS process

In the literature, usual process speeds of several 100 pum.s” are reported with sub-100 nm
resolution. More rarely, mm.s™ can be reached while keeping a submicrometric resolution.
Until recently, the fastest demonstration of microstructures with micrometric resolution has
been realized by Fourkas’s group by using a very sensitive photoinitiator (Kumi et al. 2010).
In the frame of this work, speed of 1 cm.s™ was reported.

Since march 2012, a 300-micrometer long model of a Formula 1 race car has been fabricated by
TPS in only four minutes while keeping micrometric resolution. Thus spectacular result means
that a process speed of 5 m.s is involved, which is the same order of other laser process used
in industry. A video of the construction can be found on the website of the Vienna University
(Vienna, 2012). Unfortunately, certainly due to economic interests, little information can be
freely accessed. According to their website, the increase in speed results from efforts from a
chemical and mechanical point of view.

5. Conclusion and perspectives

After the pioneers works on TPS (Maruo, 1997), the research efforts were mainly focused on
the synthesis of high efficient photoinitiators and materials in order to respectively speed up
the writing process and to improve the mechanical, optical or chemical properties of the
resulting 3D objects. Thanks to both the versatility of photopolymerizable systems and to the
possibility to incorporate additional materials into the structures, TPS has attracted consider-
able attention over the past decade leading to enough mature technology. Indeed, despite the
novelty of TPS, this is now daily used for broad range of applications such as creation of 3D
components for microfluidic systems, tissue scaffolding, optical components, and so on.
Besides, only 10 years after the first instance of 3D microstructures created by TPS, several
companies have developed commercial 3D microfabrication set-ups which have supported
the widespread of the technique in various research fields.

Recently, the rapid technical development of TPS provided much better structural resolution
and high-throughput. The combination of all these improvements in a single commercial set-
up will certainly boost the use of TPS in industry. From resolution point of view, the Abbe
diffraction limit in optical lithography has been overcome by using and/or adapting a concept
called STED originally from optical microscopy. The latter is already commercialized since
2005 by several well-known optical microscopy companies and is well expanded in life
sciences. Interestingly, even if both in optical microscopy and lithography the diffraction limit
has been beaten thanks to the STED principle, record for lateral spatial resolution in optical
lithography (175 nm) is still far away from thus in optical microscopy (5.6 nm). In order to
obtain comparable resolution, further investigations are required to enhance the comprehen-
sion of the photophysical and photochemical mechanism underlying the STED lithography.
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In particularly, a better understanding will give a list of criteria for novel photoinitiators
devoted to this promising technique.

Concerning the throughput of the technique, speed of 5 m.s™ has been recently announced by
an European consortium (march 2012). For comparison, this speed is quite close to those used
in conventional process in microelectronics industry such as control or ablation process (10 to
50 m.s™). Such promising advances should allow overcome limit for mass production and
consequently should reinforce the highly potential of TPS for industry.

To conclude, this technology opens up new perspectives in a wide range of applications such
as rapid prototyping of micro- and nanofluidics, small-scale production of microoptics
components, or 3D frameworks for cell biology. Finally, owing to its currently fast expansion
and to the versatile science involved in all the chain, TPS appears as a fantastic and so appealing
field of research for the next decades.

Acknowledgements

Agence Nationale pour la Recherche (ANR - Projects 2-PAGmicrofab ANR-BLAN-0815-03,
NANOQUENCHING and NIR-OPTICS), CNRS and Région Alsace are gratefully acknowl-
edged for financial supports.

Author details

Arnaud Spangenberg", Nelly Hobeika', Fabrice Stehlin', Jean-Pierre Malval’,
Fernand Wieder!, Prem Prabhakaran? Patrice Baldeck? and Olivier Soppera'

*Address all correspondence to: arnaud.spangenberg@uha.fr
1 Institut de Science des Matériaux de Mulhouse, Mulhouse, France

2 Laboratoire de Spectrométrie Physique, Université Joseph-Fourier, Saint Martin d"Heres,
France

References

[1] Amato, L, Gu, Y, Bellini, N, Eaton, S. M, Cerullo, G, & Osellame, R. (2012). Integrated
three-dimensional filter separates nanoscale from microscale elements in a microflui-
dic chip. Lab on a Chip, , 12, 1135-1142.

[2] Becker, E. W, Ehrfeld, W, & Muenchmeyer, D. (1984). Accuracy of X-ray lithography
using synchrotron radiation for the fabrication of technical separation nozzle ele-

55



56 Updatesin Advanced Lithography

[4]

[6]

[7]

[9]

[10]

[11]

[12]
[13]

[14]

ments. Inst. Kernverfahrenstech., Kernforschungszent. Karlsruhe G.m.b.H., Karls-
ruhe, Fed.Rep.Ger., , 92.

Belfield, K. D, & Abdelrazzagq, F. B. (1997). a. Novel photoinitiated cationic copoly-
merizations of 4-methylene-2-phenyl-1,3-dioxolane. Journal of Polymer Science Part A:
Polymer Chemistry, , 35, 2207-2219.

Belfield, K. D, & Abdelrazzaq, F. B. (1997). b. Photoinitiated Cationic Crosslinking of
4-Methylene-2-phenyl-1,3-dioxolane with 2,2’-(1,4-Phenylene)bis-4-methylene-1,3-di-
oxolane. Macromolecules, , 30, 6985-6988.

Belfield, K. D, Schafer, K. ], Liu, Y, Liu, J, Ren, X, & Stryland, E. W. V. (2000). Multi-
photon-absorbing organic materials for microfabrication, emerging optical applica-
tions and non-destructive three-dimensional imaging. Journal of Physical Organic
Chemistry, , 13, 837-849.

Billone, P. S, Park, J. M, Blackwell, J. M, Bristol, R, & Scaiano, J. C. (2009). Two-Pho-
ton Acid Generation in Thin Polymer Films. Photoinduced Electron Transfer As a
Promising Tool for Subwavelength Lithography. Chemistry of Materials, , 22, 15-17.

Blanc, D, Pelissier, S, Saravanamuttu, K, Najafi, S. I, & Andrews, M. P. (1999). Self-
processing of surface relief gratings in photosensitive hybrid sol-gel glasses. Ad-
vanced Materials, , 11, 1508-1511.

Biickmann, T, Stenger, N, Kadic, M, Kaschke, ], Frolich, A, Kennerknecht, T, Eberl, C,
Thiel, M, & Wegener, M. (2012). Tailored 3D Mechanical Metamaterials Made by
Dip-in Direct-Laser-Writing Optical Lithography. Advanced Materials, , 24, 2710-2714.

Burmeister, F, Zeitner, U. D, Nolte, S, & Tiinnermann, A. (2012). High numerical
aperture hybrid optics for two-photon polymerization. Optics Express, , 20, 7994-8005.

Campbell, M, Sharp, D. N, Harrison, M. T, Denning, R. G, & Turberfield, A. J. (2000).
Fabrication of photonic crystals for the visible spectrum by holographic lithography.
Nature , 404, 53-56.

Cao, Y, Gan, Z, Jia, B, Evans, R, & Gu, M. (2011). High-photosensitive resin for super-
resolution direct-laser-writing based on photoinhibited polymerization. Optics Ex-
press, , 19, 19486-19494.

Cerrina, F. (1997). Application of X-rays to Nanolithography. Proc. IEEE, , 84, 644-651.

Cumpston, B. H, Ananthavel, S. P, Barlow, S, Dyer, D. L, Ehrlich, J. E, Erskine, L. L,
Heika, A. A, Kuebler, S. M, Lee, I, Mccord-maughon, Y. S, Qin, D, Rockel, ], Rumi, H,
Wu, M, Marder, X. -L, Perry, S. R, & Two-photon, J. W. polymerization initiators for
three-dimensional optical data storage and microfabrication. Nature, , 398, 51-54.

Denk, W, Strickler, ], & Webb, W. W. (1990). Two-photon laser scanning fluorescence
microscopy. Science, , 248, 73-76.



[16]

[17]

[18]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Recent Advances in Two-Photon Stereolithography
http://dx.doi.org/10.5772/56165

Devoe, R. ], Kalweit, H, Leatherdale, C. A, & Williams, T. R. (2002). Voxel shapes in
two-photon microfabrication. Proceeding of the SPIE, , 4797, 310-316.

Dittrich, P. S, Tachikawa, K, & Manz, A. (2006). Micro total analysis systems. Latest
advancements and trends. Analytical Chemistry, , 78, 3887-3908.

Emons, M, Obata, K, Binhammer, T, Ovsianikov, A, Chichkov, B, & Morgner, U.
(2012). Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs
laser pulses. Optical Materials Express, , 2, 942-947.

Hell, S. W, Jakobs, S, & Kastrup, L. (2003). Imaging and writing at the nanoscale with
focused visible light through saturable optical transitions. Applied Physics A: Materials
Science & Processing, , 77, 859-860.

Fan, H. J, Werner, P, & Zacharias, M. (2006). Semiconductor Nanowires: From Self-
Organization to Patterned Growth. Small, March 2006), , 2(700), 700-717.

Fischer, J, Von Freymann, G, & Wegener, M. (2010). The Materials Challenge in Dif-
fraction-Unlimited Direct-Laser-Writing Optical Lithography. Advanced Materials, ,
22, 3578-3582.

Fischer, ], Ergin, T, & Wegener, M. (2011). Three-dimensional polarization-independ-
ent visible-frequency carpet invisibility cloak. Optics Letters, , 36, 2059-2061.

Fischer, ], & Wegener, M. optical laser lithography beyond the diffraction limit. Laser
& Photonics Reviews, DOIlpor.201100046.

Fischer, ], & Wegener, M. (2012b). Ultrafast Polymerization Inhibition by Stimulated
Emission Depletion for Three-dimensional Nanolithography. Advanced Materials, , 24,
OP65-0OP69.

Formanek, F, Takeyasu, N, Tanaka, T, Chiyoda, K, Ishikawa, A, & Kawata, S. (2006).
Three-dimensional fabrication of metallic nanostructures over large areas by two-
photon polymerization. Optics Express, , 14, 800-809.

Goeppert-mayer, M. (1931). Uber Elementarakte mit zwei Quantenspriingen, Annal-
en der Physik, , 401, 273-294.

Gonsalves, K. E, Wang, M, Lee, C. T, Yueh, W, Tapia-tapia, M, Batina, N, & Hender-
son, C. L. (2009). Novel chemically amplified resists incorporating anionic photoacid
generator functional groups for sub-50-nm half-pitch lithograph. J. Mater. Chem.
March 2009), , 19, 2797-2802.

Grotjohann, T, Testa, I, Leutenegger, M, Bock, H, Urban, N. T, Lavoie-cardinal, F,
Willig, K. I, Eggeling, C, Jakobs, S, & Hell, S. W. (2011). Diffraction-unlimited all-opti-
cal imaging and writing with a photochromic GFP. Nature, , 478, 204-208.

Harke, B, Bianchini, P, Brandi, F, & Diaspro, A. (2012). Photopolymerization Inhibi-
tion Dynamics for Sub-Diffraction Direct Laser Writing Lithography. Chemical Physi-
cal Chemistry, , 13, 1429-1434.

57



58 Updatesin Advanced Lithography

[29]

[30]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Haske, W, Chen, V. W, Hales, ]. M, Dong, W. T, Barlow, S, Marder, S. R, & Perry, ]J.
W. (2007). nm feature sizes using visible wavelength 3-D multiphoton lithography.
Optics Express, , 15, 3426-3436.

He, G. S, Tan, L. S, Zheng, Q, & Prasad, P. N. (2008). Multiphoton absorbing materi-
als: Molecular designs, characterizations, and applications. Chemical Reviews, , 108,
1245-1330.

Hell, S. W, & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimu-
lated emission: stimulated emission depletion fluorescence microscopy. Optics Let-
ters, , 19, 780-782.

Henzie, |, Barton, J. E, Stender, C. L, & Odom, T. W. (2006). Large-area nanoscale pat-
terning: chemistry meets fabrication. Accounts of Chemical Research, January 2006), ,
39(4), 249-257.

Im, S. G, Kim, B. S, Tenhaeff, W. E, Hammond, P. T, & Gleason, K. K. (2009). A direct-
ly patternable click-active polymer film via initiated chemical vapor deposition
(iCVD). Thin Solid Films. January 2009), , 517(12), 3606-3611.

lIosin, M, Scheul, T, Nizak, C, Stephan, O, Astilean, S, & Baldeck, P. (2011). Laser mi-
crostructuration of three-dimensional enzyme reactors in microfluidic channels. Mi-
crofluidics and Nanofluidics, , 10, 685-690.

Jin, M, Malval, J. P, Versace, D. L, Morlet-savary, F, Chaumeil, H, Defoin, A, Allonas,
X, & Fouassier, J. P. (2008). Two-photon absorption and polymerization ability of in-
tramolecular energy transfer based photoinitiating systems. Chemical Communica-
tions, , 48, 6540-6542.

Kaiser, W, & Garrett, C. G. B. (1961). Two-photon excitation in CaF,:Eu*". Physical Re-
view Letters, , 7, 229-232.

Kato, J, Takeyasu, N, Adachi, Y, Sun, H. B, & Kawata, S. (2005). Multiple-spot paral-
lel processing for laser micronanofabrication. Applied Physics Letters, , 86

Kawata, S, Sun, H. B, Tanaka, T, & Takada, K. (2001). Finer features for functional mi-
crodevices- Micromachines can be created with higher resolution using two-photon
absorption. Nature, , 412, 697-698.

Klar, T. A, & Hell, S. W. (1999). Subdiffraction resolution in far-field fluorescence mi-
croscopy. Optics Letters, , 24, 954-956.

Klein, F, Richter, B, Striebel, T, Franz, C. M, Von Freymann, G, Wegener, M, & Bast-
meyer, M. (2011). Two-Component Polymer Scaffolds for Controlled Three-Dimen-
sional Cell Culture. Advanced Materials, , 23, 1341-1345.

Kodama, H. (1981). Automatic Method for fabricating a 3-dimensional plastic model
with photo-hardening polymer. Rev. Sci. Instrum., , 52, 1770-1773.



[42]

[43]

[45]

[47]

[48]

[49]

[51]

[53]

Recent Advances in Two-Photon Stereolithography
http://dx.doi.org/10.5772/56165

Kovacs, G. T. A, Maluf, N. I, & Petersen, K. E. (1998). Bulk micromachining of silicon.
Proceeding of the IEEE , 86, 1536-1551.

Kumi, G, Yanez, C. O, Belfield, K. D, & Fourkas, J. T. (2010). High-speed multiphoton
absorption polymerization: fabrication of microfluidic channels with arbitrary cross-
sections and high aspect ratios. Lab on a Chip, , 10, 1057-1060.

LaFrattaC. N.; Baldacchini, T.; Farrer, R. A.; Fourkas, J. T.; Teich, M. C.; Saleh, B. E.
A.; Naughton, M. J. ((2004). Replication of two-photon-polymerized structures with
extremely high aspect ratios and large overhangs. Journal of Physical Chemistry B, ,
108, 11256-11258.

LaFrattaC. N. ; Li, L. J.; Fourkas, J. T. ((2006). Soft-lithographic replication of 3D mi-
crostructures with closed loops. Proceedings of the National Academy of Sciences of the
United States of America, , 103, 8589-8594.

Lee, J-H, Singer, J. P, & Thomas, E. L. (2012). Micro-/Nanostructured Mechanical
Metamaterials. Advanced Materials, , 24, 4782-4810.

Lewis, J. A, & Gratson, G. M. (2004). Direct Writing in Three Dimensions. Materials
Today, , 7, 32-39.

Li, C, Luo, L, Wang, S, Huang, W, Gong, Q, Yang, Y, & Feng, S. (2001). Two-photon
microstructure-polymerization initiated by a coumarin derivative/iodonium salt sys-
tem. Chemical Physics Letters, , 340, 444.

Li, X, Zhao, Y, Wu, ], Shi, M, & Wu, F. (2007). Two-photon photopolymerization us-
ing novel asymmetric ketocoumarin derivatives. Journal of Photochemistry and Photobi-
ology A: Chemistry, , 190, 22-28.

Li, L. J, Gattass, R. R, Gershgoren, E, Hwang, H, & Fourkas, ]. T. (2009). Achieving
lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization.
Science , 324, 910-913.

Lu, Y, Hasegawa, F, Goto, T, Ohkuma, S, Fukuhara, S, Kawazu, Y, Totani, K, Yama-
shita, T, & Watanabe, T. (2004). Highly sensitive measurement in two-photon absorp-
tion cross section and investigation of the mechanism of two-photon-induced
polymerization. Journal of Luminescence, , 110, 1-10.

Lu, W. E, Dong, X. Z, Chen, W. Q, Zhao, Z. S, & Duan, X. M. (2011). Novel photoini-
tiator with a radical quenching moiety for confining radical diffusion in two-photon
induced photopolymerization. Journal of Materials Chemistry, , 21, 5650-5659.

Malval, J. P, Jin, M, Morlet-savary, F, Chaumeil, H, Defoin, A, Soppera, O, Scheul, T,
Bouriau, M, & Baldeck, P. L. (2011). Enhancement of the Two-Photon Initiating Effi-
ciency of a Thioxanthone Derivative through a Chevron-Shaped Architecture. Chem-
istry of Materials, , 23, 3411-3420.

59



60 Updates in Advanced Lithography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Martineau, C, Anemian, R, Andraud, C. W, Bouriau, I, & Baldeck, M. P. L. ((2000).
Efficient initiators for two-photon induced polymerization in the visible range. Chem-
ical Physics Letters, , 362, 291-295.

Maruo, S, Nakamura, O, & Kawata, S. (1997). Three-dimensional microfabrication
with two-photon-absorbed photopolymerization. Optics Letters, , 22, 132-134.

Maruo, S, & Ikuta, K. (2002). Submicron stereolithography for the production of free-
ly movable mechanisms by using single-photon polymerization. Sensors and Actua-
tors, A: Physical, A100, , 70-76.

Maruo, S, & Inoue, H. (2006). Optically driven micropump produced by three-di-
mensional two-photon microfabrication. Applied Physics Letters, , 89, 144101.

Mcleod, R. R, Kowalski, B. A, & Cole, M. C. (2010). Two-color photo-initiation/inhibi-
tion lithography. Proceeding of the SPIE, , 7591, 759102-759107.

Moore, G. E. (1965). Cramming More Components Onto Integrated Circuits. Electron-
ics, April 1965), , 38(8), 114-117.

Ovsianikov, A, Viertl, ], Chichkov, B, & Oubaha, M. MacCraith, B.; Sakellari, L.; Gia-
koumaki, A.; Gray, D.; Vamvakaki, M.; Farsari, M.; Fotakis, C. ((2008). Ultra-Low
Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfab-
rication. ACS Nano, , 2, 2257-2262.

Pao, Y-H, & Rentzepis, P. M. (1965). Laser-induced production of free radicals in or-
ganic compounds. Applied Physics Letters, , 6, 93-95.

Park, S. H, Yang, D. Y, & Lee, K. S. (2009). Two-photon stereolithography for realiz-
ing ultraprecise three-dimensional nano/microdevices. Laser & Photonics Reviews, , 3,
1-11.

Passinger, S, Saifullah, M. S. M, Reinhardt, C, Subramanian, K. R. V, Chichkov, B.
N, & Welland, M. E. (2007). Direct 3D Patterning of TiO2 Using Femtosecond Laser
Pulses. Advanced Materials, , 19, 1218-1221.

Quake, S. R, & Scherer, A. (2000). From Micro- to Nanofabrication with Soft Materi-
als. Science, , 290, 1536-1540.

Reyes, D. R, lossifidis, D, Auroux, P, & Manz, A. A. ((2002). Micro total analysis sys-
tems. 1. Introduction, theory, and technology. Analytical Chemistry, , 74, 2623-2636.

Ridaoui, H, Wieder, F, Ponche, A, & Soppera, O. (2010). Direct ArF laser photopat-
terning of metal oxide nanostructures prepared by the sol-gel route. Nanotechnology,
January 2010), , 21(6), 065303.

Rill, M. S, Plet, C, Thiel, M, Staude, I, Von Freymann, G, Linden, S, & Wegener, M.
(2008). Photonic metamaterials by direct laser writing and silver chemical vapour
deposition. Nature Materials, , 7, 543-546.



[68]

[69]

[71]

[72]

[73]

[75]

[77]

Recent Advances in Two-Photon Stereolithography
http://dx.doi.org/10.5772/56165

Ritschdorff, E. T, Nielson, R, & Shear, J. B. (2012). Multi-focal multiphoton lithogra-
phy. Lab on a Chip, , 12, 867-871.

Rittweger, E, Han, K. Y, Irvine, S. E, Eggeling, C, & Hell, S. W. (2009). STED micro-
scopy reveals crystal colour centres with nanometric resolution. Nature Photonics, , 3,
144-147.

Rumi, M, Ehrlich, J. E, Heikal, A, Perry, J. W, Barlow, S, Hu, Z. Y, Mccord-maughon,
D, Parker, T. C, Rockel, H, Thayumanavan, S, Marder, S. R, Beljonne, D, & Bredas, ]J.
L. (2000). Structure-property relationships for two-photon absorbing chromophores:
Bis-donor diphenylpolyene and bis(styryl)benzene derivatives. Journal of the Ameri-
can Chemical Society, , 122, 9500-9510.

Sakellari, I, Kabouraki, E, Gray, D, Purlys, V, Fotakis, C, Pikulin, A, Bityurin, N,
Vamvakaki, M, & Farsari, M. (2012). Diffusion-Assisted High-Resolution Direct Fem-
tosecond Laser Writing. ACS Nano, , 6, 2302-2311.

Scott, T. F, Kowalski, B. A, Sullivan, A. C, Bowman, C. N, & Mcleod, R. R. (2009).
Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Pho-
tolithography. Science, , 324, 913-919.

Shevchenko, E. V, Talapin, D. V, Rogach, A. L, Kornowski, A, Haase, M, & Weller, H.
(2002). Colloidal synthesis and self-Assembly of CoPt; nanocrystals. Journal of the
American Chemical Society, , 104, 11480-11485.

Shukla, S, Vidal, X, Furlani, E. P, Swihart, M. T, Kim, K. T, Yoon, Y. K, Urbas, A, &
Prasad, P. N. (2011). Subwavelength Direct Laser Patterning of Conductive Gold
Nanostructures by Simultaneous Photopolymerization and Photoreduction. ACS
Nano, , 5, 1947-1957.

Soppera, O, Croutxe-barghorn, C, & Lougnot, D. J. (2001). New insights into photoin-
duced processes in hybrid sol-gel glasses containing modified titanium alkoxides.
New Journal of Chemistry, , 25, 1006-1014.

Spangenberg, A, Malval, J. P, Akdas-kilig, H, Fillaut, ]J. L, Stehlin, F, Hobeika, N,
Morlet-savary, F, & Soppera, O. (2012). Enhancement of Two-Photon Initiating Effi-
ciency of a 4,4’-Diaminostyryl-2,2’-bipyridine Derivative Promoted by Complexation
with Silver lons. Macromolecules, , 45, 1262-1268.

Steidl, L, Jhaveri, S. ], Ayothi, R, Sha, ], Mcmullen, J. D, Ng, S. Y. C, Zipfel, W. R, Zen-
tel, R, & Ober, C. K. (2009). Non-ionic photo-acid generators for applications in two-
photon lithography. Journal of Materials Chemistry, , 19, 505.

Stocker, M. P, Li, L. ], Gattass, R. R, & Fourkas, J. T. (2010). Multiphoton photoresists
giving nanoscale resolution that is inversely dependent on exposure time. Nature
Chemistry, , 3, 223-227.

61



62

Updates in Advanced Lithography

[79]

[82]

[83]
[84]

[88]

[89]

[90]

Sun, H. B, & Kawata, S. (2003). Two-photon laser precision microfabrication and its
applications to micro-nano devices and systems. Journal of Lightwave Technology, ,
21, 624-633.

Sun, H. B, Tanaka, T, & Kawata, S. (2002). Three-dimensional focal spots related to
two-photon excitation. Applied Physics Letters, , 80, 3673-3675.

Sun, Q, Juodkazis, S, Murazawa, N, Mizeikis, V, & Misawa, H. (2010). Freestanding
and movable photonic microstructures fabricated by photopolymerization with fem-
tosecond laser pulses. Journal of Micromechanics and Microengineering, , 20, 035004.

Takada, K, Sun, H-B, & Kawata, S. (2005). Improved spatial resolution and surface
roughness in photopolymerization-based laser nanowriting. Applied Physics Letters, ,
86, 071122.

Vienna (2012. http://amt.tuwien.ac.at/projekte/2pp/.

Wang, I, Bouriau, M, Baldeck, P. L, Martineau, C, & Andraud, C. (2002). Three-di-
mensional microfabrication by two-photon-initiated polymerization with a low-cost
microlaser. Optics Letters, , 27, 1348-1350.

West, ], Becker, M, Tombrink, S, & Manz, A. (2008). Micro total analysis systems: Lat-
est achievements. Analytical Chemistry, , 80, 4403-4419.

Wolf, T. J. A, Fischer, ], Wegener, M, & Unterreiner, A-N. (2011). Pump-probe spec-
troscopy on photoinitiators for stimulated-emission-depletion optical lithography.
Optics Letters, , 36, 3188-3190.

Wu, E, Strickler, J. H, Harrell, W. R, & Webb, W. W. (1992). Two-photon lithography
for microelectronic application. Proc. SPIE , 1674, 776-782.

Xia, Y, & Whitesides, G. M. (1998). Soft Lithography. Angewandte Chemie International
Edition, , 37, 550-575.

Xia, R, Malval, J. P, Jin, M, Spangenberg, A, Wan, D, Pu, H, Vergote, T, Morlet-sava-
ry, F, Chaumeil, H, Baldeck, P, Poizat, O, & Soppera, O. (2012). Enhancement of Acid
Photogeneration Through a Para-to-Meta Substitution Strategy in a Sulfonium-based
Alkoxystilbene Designed for Two-Photon Polymerization. Chemistry of Materials, , 24,
237-244.

Xing, J. F, Dong, X. Z, Chen, W. Q, Duan, X. M, Takeyasu, N, Tanaka, T, & Kawata, S.
(2007). Improving spatial resolution of two-photon microfabrication by using photoi-
nitiator with high initiating efficiency. Applied Physics Letters, , 90, 131106.

Yanez, C. O, Andrade, C. D, & Belfield, K. D. (2009). Characterization of novel sulfo-
nium photoacid generators and their microwave-assisted synthesis. Chemical Commu-
nication, , 7, 827.



Recent Advances in Two-Photon Stereolithography 63
http://dx.doi.org/10.5772/56165

[92] Zhang, X, Yu, X. Q, Sun, Y, Wu, Y, Feng, Y, Tao, X, & Jiang, M. (2005). Synthesis and
nonlinear optical properties of a new D-mt-A two-photon photopolymerization initia-
tor. Material Letters, , 59, 3485-3488.

[93] Zhou, W, Kuebler, S. M, Braun, K. L, Yu, T, Cammack, J. K, Ober, C. K, Perry, ]. W, &
Marder, S. R. (2002). An efficient two-photon-generated photoacid applied to posi-
tive-tone 3D microfabrication. Science, , 296, 1106.



ntechOpen

ntechOpen



