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1. Introduction

One of the crises of contemporary mathematics belongs in part to the subject of the infinite
and infinitesimals [1]. It originates from the barest necessity to develop a rigorous language
for description of observable physical phenomena. It was a time when foundations of inte‐
gral and differential calculi were developed. A theoretical foundation for facilitation of un‐
derstanding of classical mechanics is provided by the concepts of absolute time and space
originally formulated by Sir Isaac Newton [2]. Space is distinct from body. And time passes
uniformly without regard to whether anything happens in the world. For this reason New‐
ton spoke of absolute space and absolute time as of a "container" for all possible objects and
events. The space-time container is absolutely empty until prescribed metric and a reference
frame are introduced. Infinitesimals are main tools of differential calculus [3, 4] within chos‐
en reference frames.

Infinitesimal increment being a cornerstone of theoretical physics has one receptee default
belief, that increment δV tending to zero contains a lot of events to be under consideration.
Probability of detection of a particle within this infinitesimal volume ρ(r→ )δV  is adopted as a
smooth differentiable function with respect to its argument. From experience we know that
for reproducing the probability one needs to accumulate enormous amount of events occur‐
ring within this volume. On the other hand we know, that as δV tends to zero we lose infor‐
mation about amount of the events. What is more, the information becomes uncertain. It
means the infinitesimal increment being applied in physics faces with a conflict of depth of
understanding physical processes on such minuscule scales. This trouble is avoided in quan‐
tum mechanics by proclamation that infinitesimal increments are operators, whereas ob‐
servables are averaged on an ensemble.

© 2013 Sbitnev; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In light of classical views Newton maintained the theory that light was made up of tiny par‐
ticles, corpuscles. They spread through space in accordance with law of classical mechanics.
Christian Huygens (a contemporary of Newton), believed that light was made up of waves
vibrating up and down perpendicularly to direction of the light propagation. It comes into
contradiction with Newtonian idea about corpuscular nature of light. Huygens was a pro‐
claimer of wave mechanics as opposite to classical mechanics [5].

We abstain from allusion to physical vacuum but expand Huygensian idea to its logical
completion. Let us imagine that all Newtonian absolute space is not empty but is populated
everywhere densely by Huygensian vibrators. The vibrators are silent at absence of wave
propagating through. But as soon as a wave front reaches some surface all vibrators on this
surface begin to radiate at a frequency resonant with that of incident wave. From here it fol‐
lows, that in each point of the space there are vibrators with different frequencies ranging
from zero frequency up to infinite. All are silent in absence of an external wave perturbance.
Thus, the infinitesimal volume δV is populated by infinite amount of the vibrators with fre‐
quencies ranging from zero to infinity. They are virtual vibrators facilitating propagation of
waves through space.

Let us return to our days. One believes that besides matter and physical fields there is noth‐
ing more in the universe. Elementary particles are only a building material of "eternal and
indestructible" substance of the cosmos. However we should avow that all observed matter
and physical fields, are not the basis of the world, but they are only a small part of the total
quantum reality. Physical vacuum in this picture constitutes a basic part of this reality. In
particular, modern conception of the physical vacuum covers Huygens's idea perfectly. All
space is fully populated by virtual particle-antiparticle pairs situated on a ground level.
Such a particle-antiparticle pair has zero mass, zero charge, and zero magnetic moment. Fa‐
mous Dirac’ sea (Dirac postulated that the entire universe is entirely filled by particles with
negative energy) is boundless space of electron-positron pairs populated everywhere dense‐
ly - each quantum state possessing a positive energy is accompanied by a corresponding
state with negative energy. Electron has positive mass and positron has the same mass but
negative; electron has negative charge and positron has the same positive charge; when elec‐
tron and positron dance in pair theirs magnetic moments have opposite orientations, so
magnetic moment of the pair is zero.

Let electron and positron of a virtual pair rotate about mass center of this pair. Rotation of
the pairs happens on a Bohr orbit. Energy level of the first Bohr orbit, for example, mv 2/2, is
about 14 eV. Here m is electron mass and v is its velocity (on the first Bohr orbit the velocity
is about 2.188 106 m/s). Energy of the pair remains zero since positron has the same energy
but with negative sign. Quantum fluctuations around this zero energy are as zero oscilla‐
tions of electromagnetic field. Observe that, energy releasing of electron and positron from
vacuum occurs at mc2 = 1.022 MeV. So we see that there are about 7.5 104 Bohr orbits lying
below this energy. That is, there is a vast scope for occupation of different Bohr orbits by the
virtual electron-positron pairs.

A short outline given above is a basis for understanding of interference effects to be descri‐
bed below.
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Ones suppose that random fluctuations of electron-positron pairs take place always. What is
more, these fluctuations are induced by other pairs and by particles traveling through this
random conglomerate. Edward Nelson has described mathematical models [6, 7] represent‐
ing the above random fluctuations as Brownian motions of particles that are subjected by
random impacts from particles populating aether (Nelson's title of a lower environment).
The model is viewed as a Markov process

( ) ( ( ), ) ( )dx t b x t t dt dw t= + (1)

loaded by a Wiener term w with diffusion coefficient equal to ћ/2m, where m is a mass of the
particle and ћ is the reduced Planck constant. In this perspective Nelson has considered two
Markov processes complementary to each other. One is described by forward-difference op‐
erator in the time, here b(x(t),t) is a velocity calculated forward. And other equation is de‐
scribed by backward-difference operator in the time with the velocity b†(x(t),t) calculated
backward. In general b(x(t),t) ≠ b†(x(t),t) [6, 7]. The two complementary processes, by means
of transition to two new variables, real and imaginary, finally lead to emergence of the
Schrödinger equation.

Nelson' vision that aether fluctuations look as Brownian movements of subparticles with ћ/2m
being the diffusion coefficient of the movements, correlates with Feynman's ideas about quan‐
tum fluctuations of virtual particles in vacuum [8]. The Feynman path integral is akin to the
Einstein-Smoluchowski integral equation [9]. The latter computes transition probability densi‐
ty. We shall deal with the modified Feynman path integral loaded by a temperature multi‐
plied by the Boltzmann constant.  At that,  probability amplitude stays as  a  fundamental
mathematical object at all stages of computations. As an example we shall consider emergence
of interference patterns at scattering heavy particles on gratings. The particles are heavy in the
sense that they adjoin to both realms, quantum and classical. They are nanoparticles. Such
nanoparticles have masses about 100 amu and more, as, for example, fullerene molecules [10]
shown in Fig. 1. It is remarkable that there are many experiments with such molecules show‐
ing interference patterns in the near field [11-18]. On the other hand these molecules are so
large, that they behave themselves as classical particles at ordinary conditions.

Figure 1. The fullerene molecule C60 consists of 60 carbon atoms. Its radius is about 700 pm. De Broglie wavelength of
the molecule, λdB, is about 5 pm at a flight velocity v =100 m/s [18]. The molecules are prepared in a thermal emission
gun which has temperature about 1000 K. It means that carbon atoms accomplish thermal fluctuations.
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The article consists of five sections. Sec. 2 introduces a general conception of the path inte‐
gral that describes transitions along paths both of classical and quantum particles. Here we
fulfill expansions in the Taylor series of terms presented in the path integral. Depending on
type of presented parameters we disclose either the Schrödinger equation or diffusion-drift
equation containing extra term, osmotic diffusion. In the end of the section we compute
passing nanoparticles through N-slit grating. Sec. 3 deals with interference patterns from the
N-slit grating. Specifically, we study blurring of the Talbot carpet (an interference pattern
emergent under special conditions imposed on the grating [19, 20]) arising under decoher‐
ence of incident on the grating nanoparticles. In Sec. 4 we find equations for computing the
Bohmian trajectories. Also we compute variance of momenta along the trajectories. These
computations lead to emergence of the uncertainty conditions. In concluding Sec. 5 we sum‐
marize results. For confirmation of existence of the Bohmian trajectories here we mention in‐
terference experiments with single silicon oil droplet [21].

2. Generalized path integral

Let many classical particles occupy a volume V and they move with different velocities in
different directions. Let us imagine that there is a predominant orientation along which en‐
semble of the particles drifts. As a rule, one chooses a small volume δV in order to evaluate
such a drift, Fig. 2. Learning of statistical mechanics begins with assumption that the volume
should contain many particles.

Figure 2. Infinitesimal volume δV contains many particles moving with different velocities having predominant orien‐
tation along blue arrow. The infinitesimal volume δV, as a mental image, is shifted along the same orientation.

The problem is to find transition probabilities that describe transition of the particle ensemble
from one statistical state to another. These transient probabilities can be found through solu‐
tion of the integral Einstein-Smoluchowski equation [9]. This equation in mathematical phys‐
ics is known as Chapman-Kolmogorov [22-24] equation.. This equation looks as follows
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( ) ( ) ( )2 1 2 1, ; , ; , , ; .p r r t p r r t t p r r t dVdt dt+ = +ò
r r r r r r

R
(2)

This equation describes a Markovian process without memory. That is, only previous state
bears information for the next state. Integration here is fulfilled over all a working scene R,
encompassing finite space volume. Infinitesimal volume δV in the integral tends to zero. It
should be noted, however, that this volume should contain as many particles as possible for
getting a satisfactory statistical pattern. One can see that this claim enters in conflict with the
assumption δV → 0.

Next we shall slightly modify approach to this problem. Essential difference from the classi‐
cal probability theory is that instead of the probabilities we shall deal with probability am‐
plitudes. The transition amplitudes can contain also imaginary terms. They bear information
about phase shifts accumulated along paths. In that way, a transition from an initial state q→ 0

to a final state q→ 1 through all intermediate positions q→ x given on a manifold R3 (see Fig. 2) is
represented by the following path integral

3
1 0 1 0( , ; ) ( , ; , ) ( , ; ) .x x xq q t t K q q t t t q q t qy d d y+ = +ò
r r r r r r

R

D (3)

Here function ψ(...) is a probability amplitude. Probability density p(...), in turn, is represent‐
ed by square of modulo of the probability amplitude, namely, p(...)=|ψ(...)|2. Integral kernel
K (q→ 1, q→ x; t + δt , t) represents the transition amplitude from an intermediate state q→ x to a final
state q→ 1. It is called propagator [8, 25, 26]. We suppose that the propagator has the following
standard form

1
( , )1( , ; , ) exp ,x x

x
L q q t

K q q t t t
A

d
d

ì üï ï+ = -í ý
Gï ïî þ

r r&r r
(4)

where denominator Γ under exponent is a complex-valued quantity, i.e., Γ = β+iћ. The both
parameters, β and the reduced Planck constant ћ, have dimensionality of energy multiplied
by time. From here it follows that β = 2kBTδt. Here kB is Boltzmann constant and T is temper‐
ature. So, we can write

B2 .k T tdG = + ih (5)

Factor 2 at the first term is conditioned by the fact that the kernel K relates to transitions of
the probability amplitude ψ, not the probability p. Observe that a fullerene molecular beam
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for interference experiment prepared in a Knudsen cell at T=1070 K [27] spreads further in a
vacuum. That is, fullerene molecules keep this temperature. From here it follows, that ther‐
mal fluctuations of carbon atoms from equilibrium occur at that temperature as the fullerene
molecules propagate further within the vacuum chamber. One can see that at T=1000 K the
term 2kBTδt may be about ћ if δt is about 10-14 s.

Next let us imagine that particles pass through a path length one by one. That is, they do not
collide with each other along the path length. The particles are complex objects, however.
They are nanoparticles. Fullerene molecule, for example, contains 60 carbon atoms, Fig. 1.
Conditionally we can think that the atoms are connected with each other by springs simulat‐
ing elastic vibrations. In this view the Lagrangian L (q→ x, q→̇ x) can be written in the following
form

2
1, ,

,2
1

( ))
( , ) ( ) .

2

N
k x k

x x x k
k

q qmL q q U q
td=

é ù-
ê ú= -
ê úë û

å
r r

r r r& (6)

Here N is amount of atoms, constituent complex molecule, and m is mass of a single atom.
By supposing that there are no quantum permutations between atoms we may expand the
Lagrangian further

2
1, 1 1 ,

,2
1 1

22
1, , 1, ,1 1

,2 2
1 1 1

( )
( , ) ( )

2
( ) ( )( ) ( ) 1 ( ) .

2 2

N N
k x k x x

x x x k
k k

N N N
k x k k x kN x x

N x k
k k k

q q q q q qmL q q U q
t

m q q q q mm U q
t N tt t

d
d d d d

d dd d

= =

= = =

- + - + -
= -

- -- -
= - + -

å å

å å å

r r r r r r
r r r&

r r r rr r r r
r

(7)

Here we admit that q→ x and q→ 1 are coordinates of center of mass of that complex molecule in
intermediate and final positions. And mN = Nm is a mass of the molecule referred to its cen‐
ter of mass. Small deviations δ→ 1,k =(q→ 1−q→ 1,k ) and δ→ x ,k =(q→ x −q→ x ,k ) are due to oscillations of the
kth atoms with respect to the center of mass.

Let us consider the second row in Eq. (7). First of all we note that the term (q→ 1−q→ x) / δt  repre‐
sents a velocity of movement of the center of mass. In such a case the first term is a kinetic
energy of the center of mass. The second term represents product of the center mass velocity
on an averaged velocity of partial oscillations of atoms constituting this molecule. The aver‐
aged velocity we believe vanishes because of conservation of total momentum. The third
term represents a thermal kinetic energy of partial oscillating atoms constituting this molec‐
ular object. This energy is small enough. But it is sufficient to exhibit itself in the Casimir
effect. The last term is a total potential energy U (q→ x)in the point q→ x.
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The path integral (3) contains functions depending only on coordinates q→ 0, q
→

1, q
→

xrelating to
positions of the center of mass. Whereas the Lagrangian (6) gives description for behavior of
each atom constituent the complex molecule. Here we shall suppose that oscillations of all
atoms are noncoherent. And consequently they do not give contribution to interference ef‐
fect on output. We believe that these oscillations provide a thermal noise. And next we shall
replace this oscillating background by a corresponding thermal term. For this reason, we be‐
lieve that along with the reduced Planck constant ћ the parameter 2kBTδt in Eq. (5) can be
different from zero as well.

2.1. Expansion of the path integral

The next step is to expand terms, ingoing into the integral (3), into Taylor series. The wave
function written on the left is expanded up to the first term

1 0 1 0( , ; ) ( , ; ) .q q t t q q t t
t
yy d y d¶

+ » +
¶

r r r r
(8)

As for the terms under the integral, here we preliminarily make some transformations. We
define a small increment

3 3
1 .x xq q qx x= - Þ = -

r r r
D D (9)

The Lagrangian (7) is rewritten, in such a case, in the following view

22
1, , 1, ,

2 2
1 1

( ) ( )1( , ) ( )
2 2

N N
k x k k x kN

x x N x
k k

m mL q q m q
t N tt t

d d d dx x
d dd d= =

- -
= - + -å å

r r r r
r r r& U (10)

Here U (q→ x)is sum of all potentials U (q→ x ,k ) given in the center of mass. Further we shall deal
with the path integral (3) where the kernel K contains the Lagrangian given from Eq. (10).
The under integral function ψ(q→ x, q→ 0; t)=ψ(q→ 1−ξ→ , q→ 0; t)is subjected to expansion into the Tay‐
lor series up to the second terms of the expansion

( ) 2 2
1 0 1 0( , ; ) ( , ; ) , 2q q t q q ty x y y x y x- » - Ñ +Ñ ×
r rr r r r

(11)

The potential energy U (q→ x)=U (q→ 1−ξ→ ) is subjected to expansion into the Taylor series by the
small parameter ξ→ also. Here we restrict themselves by the first two terms of the expansion,
U (q→ 1)− (∇U (q→ 1), ξ→ ).

Taking into account the expressions (8)-(11) and substituting theirs into Eq. (3) we get
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( ) ( )( )

3

22
1, , 1, ,

1 0 2
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( ) ( )
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2 2

( ) ( ( ), ) ( , ; ) , 2

N N
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èî
üö
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144424443 144424443

r rr r r r

R

U U D .x

(12)

First, we consider terms enveloped by braces (a) and (b): (a) here displacement (δ→ 1,k −δ→ x ,k )
divided by δt is a velocity v→ k  of kth atom at its deviation from a steady position relative to
the center of mass. Summation through all deviations of atoms divided by N gives averaged
velocity, v→ , of all atoms with respect to the center of mass. This averaged velocity, as we
mentioned above, vanishes. The velocity can be nonzero only in a case when external forces
push coherently all atoms. This case we do not consider here. (b) this term is a thermal kinet‐
ic energy, TN, of the atoms oscillating about the center of mass. Observe that energy of ther‐
mal fluctuations, TN, is proportional to kBT. Because of its presence in the propagator
intensity of an interference pattern diminishes in general. Further we shall add this term in‐
to the potential energy as some constant component.

In the light of the above observation we rewrite Eq. (12) as follows

{ { ( )

( )( )
3

2

1 0 1 1
( ) ( )

2 2 3
1 0

1( , ; ) exp 1 ( ) ( ( ), )
2

( , ; ) , 2 .

N
N N
a b

m t tq q t t m v T q q
t A t

q q t

y x x d dy d x
d

y y x y x x

æ öì ü¶ ï ïç ÷+ = - - + + + - Ñí ýç ÷¶ G G G Gç ÷ï ïî þè ø

´ - Ñ +Ñ ×

ò
r rr r r r r

rr r
R

U U

D

(13)

Here we have expanded preliminarily exponents to the Taylor series up to the first term of
the expansion. Exception relates to the term exp{ -mN ξ 2/2Γδt} which remains in its original
form. This exponent integrated over all space R 3 results in

3

3 2 3 22
3 2 21 1exp 1 .

2
N

N N

m t tA
A t A m m

p d p dx x
d

ì ü æ ö æ öG Gï ï- - = - = Þ = -ç ÷ ç ÷í ý ç ÷ ç ÷Gï ï è ø è øî þ
ò

R

D (14)

To derive outcomes of integration of terms containing factors (∇ψ, ξ→ ) and ∇2 ψ ⋅ξ 2 / 2 we
mention the following integrals [8]

3 3

2 2
3 2 31 1exp 0 and exp

2 2
N N

N

m m
t

A t A t m
x xx x x x d
d d

ì ü ì ü Gï ï ï ï- = - =í ý í ý
G Gï ï ï ïî þ î þ

ò ò
R R

D D (15)

Advances in Quantum Mechanics190



In the light of this observation let us now solve integral (13) accurate to terms containing δt
not higher the first order:

( )2
1 0 1 0 1

1( , ; ) ( , ; ) ( ) .
2 N

N
q q t t q q t t q T t

t m
yy d y y d y d¶ G

+ = + Ñ + -
¶ G

r r r r r
U (16)

We note that the term (v→ , ∇ψ) here is absent since we consider v→ =0, as was mentioned
above. By reducing from the both sides the function ψ(q→ 1, q→ 0; t) we come to the following dif‐
ferential equation

( )21 0
1 0 1 1 0

( , ; ) 1( , ; ) ( ) ( , ; ).
2 N

N

q q t
q q t q T q q t

t m
y

y y
¶ G

= Ñ + -
¶ G

r r
r r r r r

U (17)

The parameter

B2
2 2 2N N N

k T t
m m m

dG
= + i h

(18)

is seen to be as a complex-valued diffusion coefficient consisting of real and imaginary
parts.

2.1.1. Temperature is zero

Let kBTδt = 0. It means that Γ = iћ. Also TN = 0. One can see that Eq. (17) is reduced to

2
1 0

1 0 1 1 0
( , ; )

( , ; ) ( ) ( , ; ).
2 N

q q t
q q t q q q t

t m
y

y y
¶

= - D +
¶

i
r r

r r r r rhh U (19)

It is the Schrödinger equation.

2.1.2. Temperature is not zero

Let kBTδt >> ћ. We can suppose that Γ = kBTδt. Eq. (17) takes a form

( )11 0
1 0 1 0

( )( , ; )
( , ; ) ( , ; ).

2
N

N

q Tq q t
D q q t q q t

t m D
y

y y
-¶

= D +
¶

rr r
r r r rU

(20)

Here
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B

N

k T t
D

m
d

= (21)

is the diffusion coefficient. The coefficient has dimensionality of [length2 time-1]. It is a factor
of proportionality representing amount of substance diffusing across a unit area in a unit
time - concentration gradient in unit time.

We can see that Eq. (20) deals with the amplitude function ψ, not a concentration. However,
a measurable function is ρ=|ψ|2 - concentration having dimensionality of [(amount of sub‐
stance) length-3]. Let us multiply Eq. (20) from the left by 2ψ. First we note that the combina‐
tion 2ψ Δψ =2ψ∇ψ −1ψ∇ψ =2(ψ∇ψ −1)(ψ∇ψ) + 2∇ (ψ∇ψ) results in
− (1 / 2)(∇ ln(ρ)⋅∇ρ) + Δρ. As a result we come to a diffusion-drift equation describing dif‐
fusion in a space loaded by a potential field (U (q→ 1)−TN ):

( ) 1( ( ) )
ln( ),

2 2
N

N

q TD D
t m D
r r r r r

-¶
+ Ñ Ñ = D +

¶

r
U

(22)

Extra term (D / 2)∇ ln(ρ) in this diffusion-drift equation is a velocity of outflow of the particles
from volume populated by much more number of particles than in adjacent volume. The term
− ln(ρ) is entropy of a particle ensemble. From here it follows that ∇ ln(ρ) describes inflow of
the particles to a region where the entropy is small. Observe that the velocity

ln( )u D Dr r
r
Ñ

= = Ñ
r

(23)

is an osmotic velocity required of the particle to counteract osmotic effects [6]. Namely,
imagine a suspension of many Brownian particles within a physical volume acted on by an
external, virtual in general, force. This force is balanced by an osmotic pressure force of the
suspension [6]:

B .K k T r
r
Ñ

=
r

(24)

From here it is seen, that the osmotic pressure force arises always when density difference
exists and especially when the density tends to zero. And vice-versa, the force disappears in
extra-dense media with spatially homogeneous distribution of particles. As states the sec‐
ond law of thermodynamics spontaneous processes happen with increasing entropy. The
osmosis evolves spontaneously because it leads to increase of disorder, i.e., with increase of
entropy. When the entropy gradient becomes zero the system achieves equilibrium, osmotic
forces vanish.
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Due to appearance of the term (D / 2)∇ ln(ρ) in Eq. (22) the diffusion equation becomes nonlin‐
ear. It is interesting to note, running ahead, that this osmotic term reveals many common with
the quantum potential, which is show further. Observe that the both expressions contain the
term ∇ρ / ρ =∇ ln(ρ) relating to gradient of the quantum entropy SQ = − ln(ρ) / 2 [28].

Reduction to PDEs, Eq. (19) and Eq. (22), was done with aim to show that the both quantum
and classical realms adjoin with each other much more closely, than it could seem with the
first glance. Further we shall return to the integral path paradigm [8] and calculate patterns
arising after passing particles through gratings. We shall combine quantum and classical
realms by introducing the complex-valued parameter Γ = 2kBTδt + iћ.

2.2. Paths through N-slit grating

Computation of a passing particle through a grating is based on the path integral technique [8].
We begin with writing the path integral that describes passing the particle through a slit made
in an opaque screen that is situated perpendicularly to axis z, Fig. 3. For this reason we need to
describe a movement of the particle from a source to the screen and its possible deflection at
passing through the slit, see Fig. 4. At that we need to evaluate all possible deflections.

Figure 3. Interferometry from one grating G0 situated transversely to a particle beam emitted from a distributed
source.

We believe, that before the screen and after it, the particle (fullerene molecule, for example)
moves as a free particle. Its Lagrangian, rewritten from Eq. (17), describes its deflection from
a straight path in the following form

2
( , ) .

2N N N
xL m m x v T= - +
& r& (25)

The first term relates to movement of the center of mass of the molecule. So that mN is mass
of the molecule and ẋ is its transversal velocity, i.e., the velocity lies in transversal direction
to the axis z. The second term is conditioned by collective fluctuations of atoms constituent
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this molecule. This term is nonzero when atoms have predominant fluctuations along axis x.
For the sake of simplicity we admit that v→  is constant. The third term is a constant and comes
from Eq. (17). It can be introduced into the normalization factor. For that reason we shall ig‐
nore this term in the following computations. A longitudinal momentum, pz, is much greater
than its transverse component [16, 17, 29] and we believe it is constant also. By translating a
particle's position on a small distance δx = (xb - xa)<< 1 for a small time δt = (tb - ta)<< 1 we
find that a weight factor of such a translation has the following form

Figure 4. Passage of a particle along path (zs,xs) → (z0,x0) → (z1,x1) through a screen containing one slit with a width
equal to 2b0. Divergence angle of particles incident on the slit, α, tends to zero as the source is removed to infinity.
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The particles flying to the grating slit along a ray α, Fig. 4, pass through the slit within a
range from x0-b0 to x0+b0 with high probability. The path integral in that case reads

0
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Integral kernel (propagator) for the particle freely flying is as follows [8, 26]

1 2 2
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(28)

Here v(a,b) = (xb – xa)/(tb – tb) is a velocity of the molecule on a segment from xa to xb. And v is
an average velocity of collective deflection of atoms constituent the molecule. It was defined
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in Eq. (12). We shall believe that the ratio v/v (a,b) is small enough. We can define a new renor‐
malized mass {m}N = mN (1 - v/v(a,b)) and further we shall deal with this mass.

2.2.1. Passing of a particle through slit

By substituting the kernel (28) into the integral (27) we obtain the following detailed form

0

0
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The integral is computed within a finite interval [-b0,+b0]. Observe, that the integrating can
be broadened from -∞ to +∞. But in this case we need to load the integral by the step func‐
tion equal to unit within the finite interval [-b0,+b0] and it vanishes outside of the interval.
The step function, that simulate a single slit, can be approximated by the following a set of
the Gaussian functions [30]
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Here parameter b is a half-width of the slit, real η > 0 is a tuning parameter, and K takes inte‐
ger values. At K = 1 this form-factor degenerates to a single Gaussian function. And at K → ∞
this function tends to an infinite collection of the Kronecker deltas which fill everywhere
densely the step function. We rewrite Eq. (29) with inserting this form-factor
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We do not write parameters η and K in the Gaussian form-factor and for the sake of simplic‐
ity further we shall consider they equal to 1. That is, for simulating the slit we select a single
Gaussian function.

2.2.2. Definition of new working parameters

First we replace the flight times τ0 and τ1 by flight distances (z0-zs) and (z1-z0), see Fig. 4. This
replacement reads

0 0

1 1 0
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t
ì = -ï
í = -ïî

(32)
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where vz is a particle velocity along the axis z.

There is, however, one more parameter of time that is represented in definition of the co‐
efficient Γ= 2kBTδt  + iћ.  It is a small time increment δt.  The parameter δt  first appears in
the path integral (3) as the time increment along a path. In accordance with the uncertain‐
ty principle δt should be more or equal to the ratio of ћ, Planck constant, to energy of oc‐
curring events. In a case of a flying particle through vacuum it can be minimal energy of
vacuum fluctuations  (it  is  about  energy  of  the  first  Bohr  orbit  of  electron-positron  pair
that is about 14 eV). Evaluation gives δt  ~ 2.8 10-16  s. From here it follows, that 2kBTδt  is
less than ћ  on about one order at T  = 1000 K (almost temperature of fullerene evapora‐
tion from the Knudsen cell [27]).

Emergence of the term 2kBTδt can be induced by existence of quantum drag [31] owing to
different conditions for quantum fluctuations both inside of the fullerene molecule and out‐
side what can induce weak Casimir forces. Because of the weak Casimir force the quantum
drag does not lead to decoherence at least in the near zone. However further we shall see
that a weak washing out of the Talbot interference pattern is due to existence of this term.

Let us divide the parameter Γ by {m}N vz

B2
.

{ } { } { }N z N z N z

k T
t

m v m v m v
dG

= + i h
(33)

Here pz = {m}N vz is a particle momentum along axis z. We can define the de Broglie wave‐
length λdB = h/pz where h = 2πћ is the Planck constant. Let us also define a length δT =
4πkBTδt/({m}N vz). In this view we can rewrite Eq. (33) as follows

dB 1 .
{ } 2 2 2

T

N zm v
ld

p p p
G

= + = Li (34)

The length δT tends to zero as T → 0. At T = 1000 K and at adopted δt = 2.8 10-16 s we have δT

≈ 0.4 pm. On the other hand, the de Broglie wavelength, λdB, evaluated for the fullerene mol‐
ecule moving with the velocity vz =100 m/s is about 5 pm [18]. So, we can see that the length
δT is less of the de Broglie wavelength on about one order and smaller. A signification of the
length δT is that it determines decoherence of a particle beam. Decoherence of flying parti‐
cles occurs the quickly, the larger δT. Observe that the length δT has a close relation with the
coherence width - a main parameter in the generalized Gaussian Schell-model [32, 33].

3. Wave function behind the grating

Wave function from one slit after integration over ξ0 from -∞ to +∞ has the following view [28]
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Here argument of ψ-function contains apart x also z in order to emphasize that we carry out
observation in the point (z,x), see Fig. 4. The factor (2/π)1/2 comes from (30). Parameters Ξ0

and Σ0 read
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In order to simplify records here we omit subscript 1 at x and z - an observation point that is
situated after the slit.

Let us consider that an opaque screen contains N0 slits spaced through equal distance, d,
from each other. Numeration of the slits is given as it is shown in Fig. 3, n0 = 0,1,2, …, N0 – 1.
Sum of all wave functions (35), each of which calculates outcome from an individual slit,
gives a total effect in the point (z,x) where a detector is placed:
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Probability density in the vicinity of the observation point (x,z) reads

0 0( , ) ( , , , , ) ( , , , , ) .s sp x z x z d x x z d x= Y L Y L (38)

Calculation of the wave function (37) is fulfilled for the grating containing N0 = 32 slits. Dis‐
tance between slits is d = 105λdB. So at λdB = 5 pm the distance is equal to 500 nm. Require‐
ment λdB << d and N0 tending to infinity together with a condition that the particle beam is
paraxial, that is, xs = 0 and zs → -∞, provides emergence in the near-field of an interference
pattern, named Talbot carpet [19,20]. Here a spacing along interference patterns is measured
in the Talbot length

2

T
dB

2 ,dz
l

= (39)

which is a convenient natural length at representation of interference patterns. Since we re‐
strict themselves by finite N0 we have a defective carpet, which progressively collapses as a
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spacing from the slit increases. Fig. 5 shows the Talbot carpet, being perfect in the vicinity of
the grating slit; it is destroyed progressively with increasing zT. As for the Talbot carpet we
have the following observation. We see that in a cross-section z = zT/2 image reproduces ra‐
diation of the slits but phase-shifted by half period between them. At z = zT radiation of the
slits is reproduced again on the same positions where the slits are placed. And so forth.

Evaluation of sizes of the interference pattern is given by ratio of the Talbot length to a
length of the slit grating. In our case the Talbot length is zT = 0.1 m. And length of the slit
grating is about N0d = 1.6 10-5 m. From here we find that the ratio is 6250. It means that the
interference pattern shown in Fig. 5 represents itself a very narrow strip.

Figure 5. Interference pattern in the near field. It is shown only the central part of the grating containing N0 = 32 slits,
λdB = 5 pm, d = 500 nm, and δT = 0. In the upper part of the figure a set of the Bohmian trajectories, looking like on
zigzag curves, drawn in dark blue color is shown.

Zigzag curves, drawn in the upper part of Fig. 5 by dark blue color, show Bohmian trajecto‐
ries that start from the slit No. 15. One can see that particles prefer to move between nodes
having positive interference effect and avoid empty lacunas. However the above we noted,
that the ratio of the Talbot length to the length of the grating is about 6250 >> 1. It means that
really the Bohmian trajectories look almost as straight lines slightly divergent apart. Zigzag-
like behavior of the trajectories is almost invisible. Such an almost feebly marked zigzag-like
behavior may be induced by fluctuations of virtual particles escorting the real particle.

As soon as we add the term kBTδt different from zero (T > 0 K) we observe blurring the inter‐
ference pattern. The blurring is the stronger, the larger kBTδt. For comparison see Figs. 6 and
7. Here instead of kBTδt we write a more convenient parameter, the coherence length δT. This
length characterizes a dispersed divergence from initially tuned the de Broglie wavelength.
Such a disperse medium can be due to quantum drag on the vacuum fluctuations. Here the
Bohmian trajectories are not shown, since because of the thermal term kBTδt > 0 a Brownian
like scattering of the trajectories arises. This scattering we shall discuss later on.
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Figure 6. Blurred interference pattern in the near field. It is shown only the central part of the grating containing N0 =
32 slits; d = 500 nm, δT = 0.04 pm << λdB = 5 pm.

Figure 7. Blurred interference pattern in the near field. It is shown only the central part of the grating containing N0 =
32 slits; d = 500 nm, δT = 0.4 pm < λdB = 5 pm.

Figure 8. Destroyed interference pattern because of large δT = 4 pm ~ λdB = 5 pm. N0 = 32 slits, d = 500 nm.
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We may think that the technical vacuum can be not perfect. It causes additional scattering of
particles on residual gases. Because of this additional scattering the interference pattern can
be destroyed entirely, as shown in Fig. 8.

Now let us draw dependence of the probability density p(x, z) as a function of x at fixed z. In
other words, we calculate interference fringes in a cross-section of the interference patterns
at z = zT/2 for different values of the length δT. Such a cross-section is chosen because a self
image of the slit grating appears phase-shifted by half period of the grating. For that reason
we should see the interference fringes spaced between the slit sources of radiation.

Fig. 9 shows three characteristic patterns of the interference fringes. In Fig. 9(a) almost ideal
interference fringes are shown obtained at δT < λdB. Fig. 9(b) shows interference fringes ob‐
tained at δT ~ λdB. It is instructive to compare these interference fringes with those that have
been measured in experiments [14, 34]. And Fig. 9(c) shows disappearance of interference
fringes because of strong scattering of the particles on residual gases in vacuum, δT > λdB.

Figure 9. Interference fringes in cross-section of the density distribution pattern by the Talbot half-length, z = zT/2,
(the fringes are drawn in red): (a) δT = 0.4 pm, almost coherent beam; (b) δT = 4 pm, weak coherence; (c) δT = 40 pm,
entirely noncoherent beam. Cyan strips show luminosity of slits. The grating consists of N0 = 9 slits. Collapse of the
interference pattern on edges of the grating is due to its finite length. Therefore visibility of the interference fringes is
evaluated only for 5 central slits.
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Disappearance of interference fringes is numerically evaluated by calculating a characteristic
called visibility [14, 34]. The fringe visibility [27] is represented as a ratio of difference be‐
tween maximal and minimal intensities of the fringes to their sum:

max min

max min
.

P P
V

P P
-

=
+ (40)

Evaluation of Pmax and Pmin is shown in Fig. 9(b). As follows from the figure, the evaluations
are fulfilled in a central region of the grating. That is, edges of the grating have to be left far
off from the measured zone. The visibility V as a function of the parameter δT is shown in
Fig. 10. One can see that crossover from almost perfect interference fringes, V = 1, up to their
absence, V = 0, begins near δT. ~ λdB. Transition from almost coherent particle beam to inco‐
herent is a cause of such a crossover [30].

Figure 10. Visibility of interference fringes as a function of the parameter δT ranging from 0.1 to 40 pm. Wavelength
of a matter wave is λdB = 5 pm.

4. Bohmian trajectories and variance of momenta and positions along
paths

Here we repeat computations of David Bohm [35] which lead to the Hamiltoton-Jacobi
equation loaded by the quantum potential and, as consequence, to finding Bohmian trajecto‐
ries. But instead of the Schrödinger equation we choose Eq. (17) that contains complex-val‐
ued parameter Γ=β+iћ:
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Here β = 2kBTδt (in particular, the diffusion coefficient reads D = β/2mN) and V =U (q→ 1)−TN .
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Further we apply polar representation of the wave function, ψ = R exp{iS/ћ}. It leads to ob‐
taining two equations for real and imaginary parts that deal with real-valued functions R
and S. The function R is the amplitude of the wave function and S/ћ is its phase. After series
of computations, aim of which is to put together real and imaginary terms, we obtain the
following equations
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Firstly, we can see that at β = 0 Eq. (42) reduces to the modified Hamilton-Jacobi equation
due to loaded the quantum potential that is enveloped here by brace (b). And Eq. (43) re‐
duces to the continuity equation. These equations read
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Terms enveloped by braces (a), (b), and (c) are the kinetic energy of the particle, the quan‐
tum potential, and the right part is a kernel of the continuity equation (45), respectively. In
particular, the term 2∇R / R =∇ ln(R 2) relates to the osmotic velocity, see Eq. (23). Eqs. (44)
and (45) are the same equations obtained by Bohm [35]. From historical viewpoint it should
be noted that the same equations were published by Madelung1 in 1926 [36].

Momentum of the particle reads

,Np m v S= = Ñ
r r

(46)

where v→  is its current velocity. The de Broglie equation relates the momentum p to the wave‐
length λdB = h/p, where h = 2πћ is the Planck constant. Now, as soon as we found the current
velocity

1 My attention to the Madelung' article was drawn by Prof. M. Berry.
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positions of the particle in each current time beginning from the grating' slits up to a detec‐
tor is calculated by the following formula

( ) ( ) ( ) .r t t r t v t td d+ = +
r r r

(48)

Here t is a current time that starts from t=0 on a slit source and δt is an arbitrarily small in‐
crement of time. Some calculated trajectories of particles, the Bohmian trajectories, are
shown in upper part of Fig. 5. It should be noted that the Bohmian trajectories follow from
exact solutions of Eqs. (44)-(45). These equations give a rule for finding geodesic trajectories
and secants of equal phases, S/ћ, at given boundary conditions. The geodesic trajectories
point to tendency of the particle migration along paths. And the secant surfaces describe a
coherence of all the passing particles created on a single source.

In case of β >> ћ we have the following two equations
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Here we take into consideration that in the first equation we may replace
(∇S / ℏ)2 =4π 2 / λdB

2 . In the second equation we may replace the term ∇S  by mN v→  as follows

from Eq. (46). We notice also, that 2R −1∇R =2∇ ln(R)=∇ ln(ρ). And β/2mN =D is the diffu‐
sion coefficient. Now we may rewrite Eqs. (49)-(50) as follows
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Here u→ = D∇ ln(ρ) is the osmotic velocity defined in Eq. (23). We got the two diffusion equa‐
tions coupled with each other through sources. Namely, this coupling is provided due to the
de Broglie wavelength and the osmotic velocity which can change with time. These diffu‐
sion equations cardinally differ from Eqs. (44)-(45). Because of diffusive nature of these sup‐
plementary parts blurring of interference patterns occurs. It leads to degeneration of the
Bohmian trajectories to Brownian ones.

4.1. Dispersion of trajectories and the uncertainty principle

As for the Bohmian trajectories there is a problem concerning their possible existence. As
follows from Eqs. (46) and (48) in each moment of time there are definite values of the mo‐
mentum and the coordinate of a particle moving along the Bohmian trajectory. This state‐
ment enters in conflict with the uncertainty principle.

Here we try to retrace emergence of the uncertainty principle stemming from standard
probability-theoretical computations of expectation value and variance of a particle momen‐
tum. We adopt a wave function in the polar representation

{ }exp ,R SY = i h (53)

where R = (ρ)1/2 is the amplitude of the wave function (ρ =R2 = <Ψ|Ψ> is the probability den‐
sity) and S/ћ is its phase. Momentum operator p̂ = − iℏ∇and corresponding velocity opera‐
tor v̂ = − i(ℏ / m)∇are kinetic operators in quantum mechanics. Here m is mass of the particle.
Expectation value of the velocity operator reads

( )1 1 .S
m m

= Y - Ñ Y = Ñ + Ñ
Y Y

i i
r h hVg QS (54)

The velocity V g is seen to be complex-valued. Here SQ = − ln(R)= − ln(ρ) / 2 is the quantum
entropy [28] and (ћ/2m) is the quantum diffusion coefficient [6, 7]. Therefore its imaginary
part is a quantum osmotic velocity

( / ) ( / 2 ) ln( ).Q Qu m S m r= - Ñ = Ñ
r h h (55)

It is instructive to compare this velocity with the classical osmotic velocity given in Eq. (23).
As can see the osmotic velocity stems from gradient of entropy that evaluates degree of or‐
der and disorder on a quantum level, likely of vacuum fluctuations.

Real part of Eq. (54) gives the current velocity v→  defined by Eq. (47). It should be noted that
because of existence of imaginary unit in definition of the momentum operator, real part of
Eq. (54) is taken as the current velocity. Whereas imaginary unit is absent in Eq. (47). There‐
fore at computing the current velocity by Eq. (47) we take imaginary part.
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Let us now calculate variance of the velocity V g. This computation reads
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Terms over bracket (d) kill each other as follows from Eq. (54). It is reasonable in the per‐
spective to multiply Var(V g) by m/2
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So, this expression has a dimensionality of energy. The first term to be computed represents
the following result
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Here the term enveloped by bracket (a) is a kinetic energy of the particle, the term envel‐
oped by bracket (b) with negative sign added is the quantum potential Q, and the term en‐
veloped by bracket (c) comes from the continuity equation. See for comparison Eqs. (44) and
(45). We rewrite the quantum potential as follows
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As for the second term in Eq. (57) we have i(ℏ / 2)∇V
→

g = i(ℏ / 2m)ΔS − (ℏ2 / 2m)ΔSQ. It is fol‐
lows from computation by Eq. (54). As a result, the expression (57) takes the following view

2
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One can see that the variance consists of real and imaginary parts. Observe that the right
side is represented through square of gradient of the complexified action [28], namely
(∇ (S + iℏSQ))2 / 2m. We shall not consider here the imaginary part. Instead we shall consider
the real part of this expression. It reads
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m
2 Re(Var(Vg))=

1
2m (∇S)2−ℏ( ℏ

2m (∇SQ)2). (61)

The first term in this expression represents kinetic energy, E, of the particle. The second
term, stemming from the quantum potential, contains under braces a term having dimen‐
sionality of inverse time, that is, of frequency

ωQ =
ℏ

2m (∇SQ)2 (62)

This frequency multiplied by ћ represents an energy binding a particle with vacuum fluctu‐
ations. This energy, as follows from Eq. (61), is equal to the particle mass multiplied by
squared the osmotic velocity (55) and divided by 2. It is an osmotic kinetic energy. In the
light of the above said we rewrite Eq. (61) in the following way

m
2 Re(Var(Vg))= E −ℏωQ ≥ 0. (63)

Let we have two Bohmian trajectories. Along one trajectory we have E1 - ћωQ,1, and along
other trajectory we have a perturbed value E2 - ћωQ,2. Subtracting one from other we have

δE −ℏδωQ ≥ 0. (64)

One can suppose that emergence of the second trajectory was conditioned by a perturbation
of the particle moving along the first trajectory. If it is so, then emergence of the second tra‐
jectory stems from an operation of measurement of some parameters of the particle. One can
think that duration of the measurement is about δt = 1/δωQ. From here we find

δEδt ≥ ℏ (65)

Now let us return to Eq. (48) and rewrite it in the following view

δr→ (t)=v→ 1(t)δt ≥ v→ 1(t)ℏ / δE . (66)

The initial Bohmian trajectory is marked here by subscript 1. Observe that
δE =m(v2

2−v1
2) / 2≈m v→ 1δv→ . Here we have calculated v2

2 =(v→ 1 + δv→ )2≈v1
2 + 2v→ 1δv→ . Substituting

computations of δE into Eq. (66) we obtain finally
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δ p→ δr→ ≥ ℏ (67)

Here we take into account δ p→ =mδv→ .

5. Concluding remarks

Each nanoparticle incident on a slit grating passes only through a single slit. Its path runs
along a Bohmian trajectory which is represented as an optimal path for the nanoparticle mi‐
grating from a source to a detector. Unfortunately, the Bohmian trajectory can not be observ‐
able since a serious obstacle for the observation comes from the uncertainty principle. In
other words, an attempt to measure any attribute of the nanoparticle, be it position or orien‐
tation, i.e., the particle momentum, leads to destroying information relating to future history
of the nanoparticle. What is more, any collision of the nanoparticle with a foreign particle
destroys the Bohmian trajectory which could give a real contribution to the interference pat‐
tern. It relates closely with quality of vacuum. In the case of a bad vacuum such collisions
will occur frequently. They lead to destruction of the Bohmian trajectories. Actually, they
degenerate to Brownian trajectories.

Excellent article [21] of Couder & Fort with droplets gives, however, a clear hint of what
happens when the nanoparticle passes through a single grating slit. In the light of this hint
we may admit that the particle “bouncing at moving through vacuum” generates a wave at
each bounce. So, a holistic quantum mechanical object is the particle + wave. Here the wave
to be generated by the particle plays a role of the pilot-wave first formulated by Lui de Bro‐
glie and later developed by Bohm [37]. It is interesting to note in this context, that the pilot-
waves have many common with Huygens waves [5].

A particle passing through vacuum generates waves with wavelength that is inversely pro‐
portional to its momentum (it follows from the de Broglie formula, λ = h/p, where h is
Planck's constant). One can guess that a role of the vacuum in the experiment of Couder &
Fort takes upon itself a silicon oil surface with subcritical Faraday ripples activated on it
[21]. Observe that pattern of the ripples is changed in the vicinity of extraneous bodies im‐
mersed in the oil which simulate grating slits. Interference of the ripples with waves gener‐
ated by the bouncing droplets provides optimal paths for the droplets traveling through the
slits and further. As a result we may observe an interference pattern emergent depending on
amount of slits in the grating and distance between them.

Now we may suppose that the subcritical Faraday ripples on the silicon oil surface simulate
vacuum fluctuations. Consequently, the vacuum fluctuations change their own pattern near
the slit grating depending on amount of slits and distance between them. We may imagine
that the particle passing through vacuum (bouncing through, Fig. 11) initiates waves which
interfere with the vacuum fluctuations. As a result of such an interference the particle moves
along an optimal path - along the Bohmian trajectory. Mathematically the bounce is imitated
by an exponential term exp{iS/ћ}, where the angle S/ћ parametrizes the group of rotation
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given on a circle of unit radius. So, the path along which the particle moves is scaled by this
unitary group, U(1), due to the exponential mapping of the phase S/ћ on the circle.

Figure 11. Bouncing a nanoparticle at moving through vacuum. Vertical dotted sinusoidal curves depict exchange by
energy ΔE with vacuum virtual particle-antiparticle pairs over period of about Δt=ћ/ΔE.

In conclusion it would be like to remember remarkable reflection of Paul Dirac. In 1933 Paul
Dirac drew attention to a special role of the action S in quantum mechanics [38] - it can ex‐
hibit itself in expressions through exp{iS/ћ}. In 1945 he emphasized once again, that the clas‐
sical and quantum mechanics have many general points of crossing [39]. In particular, he
had written in this article: "We can use the formal probability to set up a quantum picture
rather close to the classical picture in which the coordinates q of a dynamical system have
definite values at any time. We take a number of times t1, t2, t3, … following closely one after
another and set up the formal probability for the q's at each of these times lying within
specified small ranges, this being permissible since the q's at any time all commutate. We
then get a formal probability for the trajectory of the system in quantum mechanics lying
within certain limits. This enables us to speak of some trajectories being improbable and oth‐
ers being likely."
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