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1. Introduction

Currently, atrial fibrillation (AF) guidelines are intended to assist physicians in clinical
decision making by describing a range of generally acceptable approaches for the diagnosis
and management of AF. However, these guidelines provide no recommendations that takes
into account other aspects of the arrhythmia related with its computational analysis. For
example, the proper application of spectral analysis, how to quantify different AF patterns
in terms of organization, or how to deal with ventricular contamination before AF analysis
are some aspects that could provide an improved scenario to the physician in the search of
useful clinical information [1].

Both in surface and invasive recordings of AF the presence of ventricular activity has to
be considered as a contaminant signal which has to be removed. In this respect, the
proper analysis and characterization of AF from ECG recordings requires the extraction
or cancellation of the signal components associated to ventricular activity, that is, the QRS
complex and the T wave. Unfortunately, a number of facts hinder this operation [2]. Firstly,
the atrial activity presents in the ECG much lower amplitude, in some cases well under the
noise level, than its ventricular counterpart. Additionally, both phenomena possess spectral
distributions notably overlapped, rendering linear filtering solutions unsuccessful. Within
this context, several methods have been proposed to deal with this problem during last
years. They go from a simple average beat subtraction [3], to the most advanced adaptive
methods based on multidimensional signal processing [4] that will be detailed Section § 2.

From a clinical point of view, the estimation of the dominant atrial frequency (DAF), i.e., the
repetition rate of the fibrillatory waves, is an important goal in the analysis of ECG recordings
in AF. By comparing endocardial electrograms with ECGs, it has been established that the
ECG-based AF frequency estimate can be used as an index of the atrial cycle length [5].
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AF recordings with low DAF are more likely to terminate spontaneously and to respond
better to antiarrhythmic drugs or cardioversion, whereas high DAF is more often associated
with persistence to therapy [6]. The likelihood of successful pharmacological cardioversion
is higher when the DAF is below 6 Hz [7]. Moreover, the risk of early AF recurrence is higher
for patients with higher DAF [8] and, therefore, the DAF may be taken into consideration
when selecting candidates for cardioversion. Section § 3 will provide to the reader basic
concepts and recent advances in DAF estimation, as well as more elaborated techniques like
time-frequency analysis or spectral modeling.

On the other hand, organization deals with strategies to quantify the repetitiveness of the AF
signal pattern, thus providing very useful clinical information on the arrhythmia state. This
relevant concept will be addressed in Section § 4, where the most important methods will be
described [9, 10]. AF organization has demonstrated its clinical usefulness because indices
of organization have been related to the electrophysiological mechanisms sustaining AF, or
may be useful in the evaluation of strategies for AF treatment, such as catheter ablation or
electrical cardioversion [11].

2. Atrial activity extraction

This section describes the most widely used methods to separate atrial from ventricular
activities, both on surface and invasive recordings, grouped by they core way of operation.
Mathematical notation or equations have been avoided in the interest of readability. Anyway,
the reader could find detailed explanations in the corresponding references. Firstly, the
methods based on the generation of an average beat, able to represent approximately each
individual beat, are detailed. Within these methods, the main idea is to subtract the average
beat from every single beat. Next, other group of methods take profit of physiological
observations such as atrial and ventricular activities being uncoupled and originated from
independent electrical sources. This fact allows the application of signal separation methods
to dissociate atrial from ventricular activities, that will be addressed later.

2.1. Average Beat Subtraction methods

The average beat subtraction (ABS) based method was firstly presented by Slocum et al. [3]
and still remains as the most widely used on the surface ECG [12, 13]. The ABS methodology
takes advantage of the lack of a fixed relationship between atrial and ventricular activities
and the consistent morphology of the QRST complexes [3]. In this method, fiducial points
from ventricular complexes are detected and aligned [14]. Next, an average beat is generated
where the window length is determined by the minimum or mean R-R interval. The window
was aligned such that 30% of it preceded the fiducial point and 70% followed it [15]. A
template of average beats was constructed and subtracted from the original signal, resulting
in the atrial activity with subtracted ventricular activity.

The use of an adaptive template in conjunction with the correct alignment of every QRS
complex, both in time and space, has proven to be very effective through the spatiotemporal
QRST cancellation [16]. Since ABS is performed in individual leads, it becomes sensitive
to alterations in the electrical axis, which are manifested as large QRS-related residuals.
However, the effect of such alterations can be suppressed by using the spatiotemporal QRST
cancellation in which the average beats of adjacent leads are mathematically combined with
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Figure 1. Relevant time instants used by the ASVC algorithm. The points s; and e; are the start and end points of the i-th QRST
complex which is represented by x;, respectively. The points os; and oe; define the zones, at the beginning and the end of the
i-th QRST complex, that will be processed to avoid sudden transitions after ventricular cancellation [13].

the average beat of the analyzed lead in order to optimize cancellation [16]. Other authors
have proposed the idea of processing separately the QRS complex and the T wave [17]. This is
because the depolarization waveform changes notably as a function of the heart rate, whereas
the repolarization waveform remains almost unchanged.

Finally, the most recently ABS method is based on adaptive singular value cancellation
(ASVC) of the ventricular activity [13]. Given that the ECG signal presents a high degree
of temporal redundancy which could be exploited for ventricular activity cancellation, the
ASVC method detected all the R waves making use of the Pan and Tompkins technique [14].
Next, the starting and ending points of each QRS complex were detected and the complexes
were aligned using their R peak timing. Figure 1 depicts the fiducial points and relevant
time instants described herein. Once all the beats were temporally aligned, their eigenvector
sequence was obtained by singular value decomposition (SVD). In this way, the highest
variance provided the eigenvector considered as the representative ventricular activity [13].
Thereby, this activity was used as the primary cancellation template. Next the template
was adapted to each QRST width and height and was temporally aligned with each R
peak in the ECG. Finally, the customized template for each beat was subtracted from every
QRST complex and the atrial activity estimation inside the complex was obtained. This
SVD-based method provided a more accurate ventricular activity representation adapted to
each individual beat and, as a consequence, a higher quality AA extraction in a wide variety
of AF recordings [13].

As an illustration on how the ABS-based methods can behave, Figure 2 plots the comparison
between the simple ABS method introduced in [3] and the ASVC method presented in [13].
As can be observed, ventricular residua use to be present in the extracted AA, specially
for the simple ABS method in (c). In fact, this is the main reason justifying the permanent
optimization of atrial activity extraction methods during last years.
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Figure 2. Example of a real ECG segment in AF with irregular QRST shape and the illustration on how the ABS-based method
are able to cancel out ventricular activity. (a) ECG ready for ventricular activity cancellation. (b) Atrial activity signal provided by
ASVC [13]. (c) Atrial activity signal provided by ABS [3].

2.2. Signal separation methods

Other recently proposed alternative consist of applying signal separation algorithms, which
are able to use the multi-lead information provided by the ECG to obtain a unified atrial
activity. They can be based on principal component analysis (PCA) [18] or blind source
separation (BSS) [4]. These methodologies have been compared in a joint study proving their
coincident results in the estimation of AF spectra on the surface ECG [19]. One common
drawback to the ABS-based methods is that they are mainly thought to be applied over single
lead ECGs. In other words, the application of ABS cancellation techniques to different ECG
leads would involve the obtention of an equal number of different atrial activities as well.
Consequently, they do not make use of the information included in every lead in an unified
way. On the contrary, BSS techniques perform a multi-lead statistical analysis by exploiting
the spatial diversity that multiple spatially-separated electrodes may introduce [4, 20].

The blind source separation consists in recovering a set of source signals from the observation
of linear mixtures of the sources [21]. The term blind emphasizes that nothing is known about
the source signals or the mixing structure, the only hypothesis being the source mutual
independence [22]. To achieve the source separation, a linear transformation is sought
such that the components of the output signal vector become statistically independent, thus
representing an estimate of the sources except for (perhaps) scaling and permutation, which
are considered as admissible indeterminacies [22]. Some authors have proposed the use of
PCA to solve the mixing model between atrial and ventricular activity in AF [23]. However,
it is important to remark that the success of PCA relies heavily on the orthogonality of
the sources. But, in general, there is no reason why bioelectrical sources of the heart
should be spatially orthogonal to one another in the ECG. This orthogonality condition
can only be forced through appropriate electrode placement, as previously emphasized in
the context of the fetal ECG extraction problem [24] and the cancellation of artifacts in the
electroencephalogram [25].
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Figure 3. Input and result of the BSS separation process applied to an ECG of atrial fibrillation. (a) 12-lead ECG segment from
a patient in AF. The multi-lead information will be used by BSS to yield a unified atrial activity. (b) Estimated sources obtained
via BSS and reordered from lower to higher kurtosis value. The unified atrial activity is contained in source #1 [4].
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When BSS is applied to an ECG in AF, a set of different sources can be observed as illustrated
in Figure 3. Consequently a crucial step in BSS-based atrial activity extraction is to identify
the sources(s) which contains atrial activity. The first algorithm proposed for this purpose
made use of a kurtosis-based reordering of the components, relying on the assumption
that sub-Gaussian sources are associated with atrial activity, approximately Gaussian ones
with various types of noise and artifacts, whereas super-Gaussian sources are associated
with ventricular activity [4]. Since information on kurtosis alone is insufficient for accurate
identification of the atrial component, kurtosis reordering was combined with power spectral
analysis of the sub-Gaussian components to detect when a dominant spectral peak, reflecting
atrial rate, was present or not. It is commonly accepted that atrial rate is reflected by a peak
whose frequency is confined to the interval 3-9 Hz [4]. In this respect Figure 4 shows the
power spectral density associated to the separated sources with lower kurtosis in Figure 3.
As can be appreciated, source #1 is the one representing the typical spectrum of an atrial
activity.
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Figure 4. Power spectral densities from several BSS-estimated sources of Fig. 3. After kurtosis-based reordering only five
sources have subgaussian kurtosis, and the one with lowest kurtosis (source #1) presents a power spectral density typically
associated with the atrial activity in AF episodes [4].

Another approach to atrial component identification was later presented in [20], where
kurtosis reordering and spectral analysis are supplemented with another technique with
which ventricular components are excluded from further processing and only components
with possible atrial activity are retained. Since the kurtosis of the ventricular components
is usually very high, they can be excluded with a simple threshold test. It was found that
a threshold of about 1.5 retained components with atrial activity, but excluded components
with QRS complexes. The block diagram of this technique is represented in Figure 5.

The nonventricular components, i.e., atrial activity, noise, and artifacts, with kurtosis close
to zero, are separated using second-order blind identification (SOBI). This technique aims
at separating a mixture of uncorrelated sources with different spectral content through
second-order statistical analysis which also takes into consideration the source temporal
information [20].

2.3. Specific methods for invasive recordings

In the same way as with surface ECG recordings, other relevant point of view to understand
the pathophysiological mechanisms of AF is the analysis and interpretation of atrial
electrograms (AEG), which are recordings obtained on the atrial surface. More precise and
successful therapies can be developed through this analysis, like guided radio-frequency
ablation [26], analysis of antiarrhythmic drug effects [27] or performance improvement of
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Figure 5. Block diagram of the BSS method, implemented by independent component analysis (ICA), and SOBI for atrial activity
extraction in multi-lead ECGs of AF. It can be observed that components whose kurtosis exceed 1.5 are excluded from the SOBI
stage [20].
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atrial implantable cardioverter-defibrillators [28]. Within this context, ABS (or a similar
methodology) has been applied to the AEG in order to discriminate sinus rhythm from
AF [15], to measure AF organization [9] and synchronization [29] and to monitor the effects
of ablation procedures and antiarrhythmic drugs [30].

However, ABS tends to distort the resulting atrial signal when the AEG under analysis
corresponds to a well organized AF, as Figure 6 shows. Observe in Fig. 6.a that the atrial
rhythm is well organized and uncoupled with the ventricular rhythm. The AEG shows
ventricular depolarization contamination and the remaining three signals are the resultant
atrial activity after applying ventricular reduction with the corresponding algorithm.
Observe how ABS can modify the atrial waveform within the atrial segments. In contrast,
Fig. 6.b shows a disorganized AF episode. In this case, thanks to the irregularity of the atrial
signal, ABS performs better, preserving the atrial waveform and reducing ventricular peaks.

Because of the aforementioned problems with ABS, alternative methods have been
introduced in the literature [31]. Firstly, adaptive ventricular cancellation (AVC) can be
considered. This method is based on an adaptive filter that operates on the reference
channel to produce an estimate of the interference, which is then subtracted from the main
channel [32]. In this case the main channel was the recorded AEG containing both atrial
and ventricular components. On the other hand, the reference channel was lead II from the
standard surface ECG. The motivation to select this lead was based on the large ventricular
amplitude that can be observed on it, and the precise time alignment existing between the
QRS complex of lead II and the AEG [12, 33]. The resulting atrial activity provided by the
AVC method can be observed in Figure 6 for two different types of AF recordings.

The last approach introduced to deal with AA extraction from the AEG has been based also
in BSS through the use of independent component analysis (ICA) [31]. This is because in
the context of AF patients, atrial and ventricular activities can be considered as decoupled
electrical processes that appear mixed at the electrode output [4]. Therefore, it should be
possible to dissociate atrial from ventricular activity in one AEG lead by using the proper
reference signal which, in this case, has been the surface standard lead II by the same reasons
as with AVC. In this case, the dimension is 2 x 2 where the observations are composed of the
AEG and lead II, and the sources are the atrial and ventricular components to be dissociated.
The FastICA algorithm was preferred to perform the ICA process due to its fast convergence
and robust performance, previously demonstrated in a variety of different applications [34].
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Figure 6. (a) From top to bottom, Lead Il of an organized AF ECG shown for reference, the corresponding epicardial atrial
electrogram (AEG), result of ventricular reduction with average beat subtraction (ABS), adaptive ventricular cancellation (AVC)
and independent component analysis (ICA). (b) This panel plots the same information as panel (a) for a disorganized AF ECG.
Note how ABS does not distort the resulting signal in this latter case [31].

The results provided by ICA in separating the atrial activity from ventricular contamination
in AEGs are considered as better than those provided by ABS or AVC regarding how the
atrial waveforms are preserved and the amount of ventricular residue removed [31], see
Figure 6.

3. Frequency analysis of AF

When an atrial activity signal is available after QRST cancellation, the power spectral analysis
door can be opened for the purpose of locating the dominant atrial frequency. This will be
the first aspect to be addressed in this section. However, it is well known that the fibrillatory
waves present time-dependent properties that may be blurred through a basic spectral
analysis. As a consequence, when more detailed information and robust spectral estimation
are needed, time-frequency analysis may be the way to go. In this respect, concepts like the
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spectral profile or the spectral modeling have proven to be efficient techniques that will be
detailed by the end of this section.

3.1. Power spectral analysis

The computation of power spectral analysis on the atrial activity signal is the most common
approach to determine the DAF [7]. Basically, the technique consist of locating the largest
spectral peak within the power spectrum. The spectrum is usually defined as the discrete
Fourier transform of the autocorrelation function of the signal. In this case, the signal is
the atrial activity which is divided into shorter, overlapping segments, where each segment
is subjected to proper windowing, e.g., using commonly the Welch’s method [35]. Finally,
the desired power spectrum is obtained by averaging the power spectra of the respective
segments.

Primarily there exist two ways to compute the power spectral density of a discrete signal.
First, estimate its autocorrelation function and then take its Fourier transform. Second,
compute the Fourier transform of the signal and, next, square its magnitude to obtain the
periodogram. Normally, the second way is the most commonly applied because of the great
computational efficiency of the fast Fourier transform algorithm [36].

Depending on prior information about the signal, spectral estimation can be divided into two
categories: nonparametric and parametric approaches. Nonparametric approaches explicitly
estimate the autocorrelation function or the power spectral density of the process without any
prior information. On the other hand, parametric approaches assume that the underlying
random process has a certain structure, for example, an autoregressive (AR) model, which
can be described using a small number of parameters and estimate the parameters of the
model [37]. A widely used nonparametric estimation approach is the periodogram, which
is based on the fast Fourier transform (FFT). A common parametric technique is maximum
entropy spectral estimation, which involves fitting the observed signal to an AR model [36].

The raw periodogram is not a statistically stable spectral estimate since there is not much
averaging on its computation. In fact, the periodogram is computed from a finite-length
observed sequence that is sharply truncated. This sharp truncation effectively spreads the
original signal spectrum into other frequencies, which is called spectral leakage [37]. The
spectral leakage problem can be reduced by multiplying the finite sequence by a windowing
function before the FFT computation, which reduces the sequence values gradually rather
than abruptly. In order to reduce the periodogram variance, averaging can be applied.
This modified algorithm is called Welch’s method, which is the most widely used in
nonparametric spectral estimation [35]. In order to increase the number of segments being
averaged in a finite-length sequence, the sequence can be segmented with overlap; for
example, 50% overlap can duplicate the number of segments of the same length [35]. Segment
length can be considered as the most important parameter in AF spectral analysis since
it determines the estimation accuracy of the DAF by restricting spectral resolution. It is
advisable that the segment length is chosen to be at least a few seconds so as to produce an
acceptable variance of the power spectrum [1, 2].

With respect to the surface ECG lead selection for AF power spectral analysis, this lead
use to be V1. This is because lead V1 contains the fibrillatory waves with largest amplitude
and, therefore, the associated DAF peak will be the largest in this lead [12]. As an example of
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Figure 7. Example of AF power spectral analysis. (a) Surface ECG lead V1 from a patient in AF ready to be analyzed. (b) Atrial
activity extracted from lead V1. (c) Atrial activity power spectral density. (d) and (e) Right and left atrium invasive recording
PSDs of a different patient in which a notable frequency contrast between both atria was observed. (f) Surface lead V1 PSD of
the patient in (d) and (e) proving how power spectral analysis can be useful in the study of AF [7].

power spectral analysis of AF, Figure 7 plots several situations related to this analysis. Firstly,
the left panel shows the traditional procedure for AF spectral analysis, where the original
ECG in AF is presented in Fig. 7.a. Next, the extracted atrial activity after QRST cancellation
can be observed in Fig. 7.b. Finally, the power spectrum associated to that activity is shown in
Fig. 7.c. In this example, the atrial activity signal was downsampled to 100Hz and processed
with a Hamming window [38]. Next, a 1024-point FFT was applied and the PSD was
displayed by computing the squared magnitude of each sample frequency. Remark that
the frequency axis use to be traditionally expressed in Hz but, in some studies, clinicians
prefer to express the fibrillatory frequencies in beats per minute (BPM). Furthermore, the
right panel of Fig. 7 shows how AF power spectral analysis of the surface ECG is able to
show the difference in the right and left atrial frequency. Hence, Fig. 7.d shows the right
atrium invasive recording PSD, whereas Fig. 7.e plots the left atrium PSD. Finally, Fig. 7.f
shows the PSD associated to the analysis of surface lead V1 from the same patient [1].

3.2. Time-frequency analysis

As demonstrated previously, power spectral analysis reflects the average signal behavior
during the analyzed time interval, the robust location of the DAF being the main goal
with clinical interest. However, this analysis may not be able to characterize temporal
variations in the DAF. From an electrophysiological point of view, there are solid reasons
to believe that the atrial fibrillatory waves have time-dependent properties, since they reflect
complex patterns of electrical activation wavefronts. Therefore, it is advisable to employ
time-frequency analysis in order to track variations in AF frequency when more detailed
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Figure 8. Spectrogram of a one minute atrial activity signal computed with a 128 point FFT using a 2.5 seconds window
length. Surface leads V1 to V3 are shown for comparison [39].

information is needed [39]. The DAF is known to be influenced by autonomic modulation
and its variations over time have been studied in terms of the effects of parasympathetic and
sympathetic stimulation as well as with respect to circadian rhythm. It has been shown that
AF frequency decreases during the night and increases in the morning [40].

The simplest way to apply time-frequency analysis to AF recordings consists of dividing
the continuous-time atrial signal into short, consecutive and overlapping segments. Next,
each of the segments will be subjected to spectral analysis. The resulting series of spectra
reflects the time-varying nature of the signal [36, 39]. The most common approach to
time-frequency analysis is the nonparametric, i.e., Fourier-based spectral analysis applied to
each AF segment. This operation is known as the short-time Fourier transform (STFT) [41].
In this approach, the definition of the Fourier transform is modified so that a sliding time
window defines each time segment to be analyzed. As a result, a two-dimensional function
will be obtained in which the resolution in time and frequency will always have to be a
trade-off compromise between both domains [37]. In the same way as with the periodogram,
the spectrogram of a signal can be obtained by computing the squared magnitude of
the STFT [41], thus making it possible to get a PSD representation of the signal in the
time-frequency domain. An example on how an AF spectrogram looks like is shown in
Figure 8, where three surface ECG leads are shown for comparison. As can be appreciated,
the DAF trend presents great similarities but, also, some differences between leads. However,
remark that the spectrogram frequency resolution cannot be better because of the time
window length selected.

Because of the conflicting requirements between time and frequency resolution needed to be
satisfied by the STFT, other techniques for time-frequency analysis have been proposed [42].
Basically, while the STFT depends linearly on the signal, these new techniques depend
quadratically, thus providing much better resolution. One of the most successfully applied
time-frequency distribution to AF recordings is the cross Wigner-Ville distribution (XWVD).
Its selection was considered primarily because of its excellent noise performance for signals
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Figure 9. Cross Wigner-Ville distribution of the same atrial activity signal presented in Fig. 8. As shown, frequency resolution
has been improved notably [39].

that are long compared to the window length [43], but also because it reflected precisely
the variations in the DAF [39]. In order to illustrate how the XWVD is able to improve
time-frequency analysis in AF, Figure 9 shows the same analyzed lead as in Fig. 8 but, this
time, computed via the XWVD. As can be observed, frequency resolution has been improved
notably, thus allowing to follow subtle changes in the DAF that would remain masked under
STFT analysis [39].
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Figure 10. Block diagram of the spectral profile method for time-frequency analysis of atrial signals. Each new time slice, the
time-frequency distribution is aligned to the spectral profile in order to find estimates of the frequency and amplitude. The
spectral profile is then parameterized and updated [44].

3.3. The spectral profile

The aforementioned spectral analysis techniques had the limitation of only considering the
fundamental spectral peak of the atrial activity, but its harmonics have not been put under
consideration. However, harmonics could improve DAF estimation and, furthermore, their
pattern may be of clinical interest [45]. To alleviate this problem the spectral profile has
been proposed [44], its block diagram being depicted in Figure 10. Its main idea is to
obtain a time-frequency distribution of successive short segments from the atrial signal.
Next, the distribution is decomposed into a spectral profile and a number of parameters
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Figure 11. lllustration of the spectral profile technique for three one-minute recordings of atrial fibrillation. The left panel
shows the logarithmic time-frequency distribution of the atrial signals. The middle panel shows the spectral profile in solid thick
line, the conventional magnitude power spectrum in solid thin line and the fitted spectral line model in dashed line. Finally, the
DAF trend is shown in the right panel.(a) Spectral profile for a rather organized AF. (b) Similar to (a) but with notably larger DAF
variations. (c) A noisy case with a very high DAF together with a large trend variation [44].

able to describe variations in the DAF as well as in the fibrillatory waves morphology are
extracted. Hence, each spectrum is modeled as a frequency-shifted and amplitude-scaled
version of the spectral profile. The transformation to the frequency domain is performed
by using a nonuniform discrete-time Fourier transform with a logarithmic frequency scale.
This particular scale allows for two spectra to be matched by shifting, even though they have
different fundamental frequencies and related harmonics [44].

The spectral profile is dynamically updated from previous spectra, which are matched to
each new spectrum using weighted least squares estimation. The frequency shift needed
to achieve optimal matching then yields a measure on instantaneous fibrillatory rate and
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Figure 12. Spectral profile of different atrial signals (dashed line) and the corrected spectral profile obtained by spectral
modeling applying the exclusion criteria (solid line). (a) and (b) atrial activity signals with a considerable amount of QRS residua.
(c) and (d) atrial activities without noise contamination [46].

is trended as a function of time. An important feature of this approach is that, due to the
alignment procedure, the peaks of the spectral profile become more prominent than the
corresponding peaks of the conventional power spectrum. As a result, the spectral profile
lends itself much better to analysis of the harmonics whose amplitudes reflect the shape of
the fibrillatory waveforms and are related with AF organization [44].

Three different examples of the spectral profile technique are shown in Figure 11. Firstly,
Fig. 11.a shows the results of a rather organized case of atrial fibrillation, with a DAF of
about 6 Hz and a variation within 5-7 Hz. The high degree of organization in the signal
is reflected in the presence of two harmonics in the spectral profile (thick solid line in the
middle panel). Comparing the spectral profile to the magnitude spectrum (thin solid line),
it is evident that the fundamental peak of the former spectrum is narrower and that its
harmonics are much more easily discerned. Such a behavior is, of course, expected since
the spectral profile represents an average of spectra from successive signal intervals where
each individual spectrum, prior to averaging, has been shifted such that the fundamental is
optimally aligned to the fundamental frequency of the spectral profile [44]. The example in
Fig. 11.b has a DAF of about 7 Hz with a relatively large variation and one harmonic. Finally,
Fig. 11.c presents a much more disorganized atrial activity, with a DAF around 8.5 Hz and
lack of harmonic behavior. As can be appreciated in the three examples, the spectral profile
notably improves DAF and harmonics estimation, specially in the presence of noisy signals.

3.4. Improved spectral estimation

A drawback of the spectral profile-based method is its lack of control of what goes into
the spectral profile: a spectrum reflecting large QRS residuals is just as influential as a
spectrum reflecting clear atrial activity. Although the spectral profile has a slow adaptation
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rate, making it less sensitive to single noisy segments, a short sequence of bad segments
causes the spectral profile to lose its structure, and thus, the frequency estimates become
incorrect. Furthermore, once the spectral profile has lost its structure, the recovery time until
the frequency estimates are valid again becomes unacceptably long, even if the segments
have an harmonic structure.

Unfortunately, there are clinical situations in which sequences of noisy segments are
common, e.g., during stress testing and ambulatory monitoring and, accordingly, the spectral
profile is bound to become corrupt. Therefore, an improved spectral profile method has been
proposed able to test the spectrum of each data segment before entering the spectral profile
update [46]. A model defined by a superimposition of Gaussian functions, which represent
the peaks of the fundamental and harmonics of the AF spectrum, has been proposed (see
Fig. 12). These parameters are used to decide whether a new spectrum should be included
in the spectral profile or not. The parameters are descriptors of the spectrum and designed
so as to verify if a spectrum exhibits the typical harmonic pattern of AF, i.e., a fundamental
component and, possibly, few harmonics [46].

Finally, a recently presented approach to improve AF spectral estimation is to use a hidden
Markov model (HMM) to enhance noise robustness when tracking the DAF. With a HMM,
short-time frequency estimates that differ significantly from the frequency trend can be
detected and excluded or replaced by estimates based on adjacent frequencies [47]. A Markov
model consists of a finite number of states with predefined state transition probabilities [48].
Based on the observed state sequence, the Viterbi algorithm retrieves the optimal sequence
by exploiting the state transition matrix, incorporating knowledge of AF characteristics, and
the observation matrix, incorporating knowledge of the frequency estimation method and
signal-to-noise ratio [47].

4. Arrhythmia organization

During last years several methods to estimate the degree of AF organization have been
presented. Primarily, organization estimation was introduced making use of invasive
recordings, in which the atrial signal is of notably higher amplitude. However, in recent
years, new methods have emerged in the estimation of organization from surface recordings,
thus been able to provide clinical useful information through very cheap procedures. The
next subsections will describe some of the most recent and extended methods to estimate
atrial fibrillation organization.

4.1. Invasive organization methods

The observation that some degree of organization is present during AF has motivated many
investigators to develop algorithms quantifying this degree of organization. Nevertheless,
the term organization is ambiguous, because of the lack of a standard and common definition
within the context of AF. As a consequence, several methods have been proposed to quantify
different aspects of AF organization, which are related to different electrophysiological
properties or AF mechanisms [49]. According to the number of endocardial recording places
involved in the analysis, single-site measurements [50, 51] provide information on the local
electrical activity of specific atrial areas, while multi-site algorithms [52-54] introduce the
concept of spatial coordination between different regions.
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Figure 13. Analysis of the local activation waves for AF episodes with different complexity class. From top to bottom, bipolar
electrograms of type |, type Il, and type Il AF following Wells classification. Filled triangles indicate the time of local activation
waves detection. On the right panels, superposition of the normalized activation times obtained from the signals of the left
panels [9].

Regarding single-site measurements, Wells et al. [55] published one of the earliest studies
examining relative differences in atrial fibrillation electrograms. From right atrial bipolar
electrograms after open-heart surgery, Wells classified atrial fibrillation recordings into four
categories based on the discreteness of the electrograms and the stability of the baseline.
However, the greatest weakness of this method is its subjectivity because it requires manual
interpretation and over-reading of the epicardial recordings. Nonetheless, later works
have implemented automated methods based on these criteria [56]. In this case, the
method was based on comparing diverse features of the parameters describing the dynamic,
morphological and spectral properties of intraatrial bipolar electrograms during AF. Next, by
making use of that parameters an algorithm was designed for automated AF classification.

On the other hand, organization has also been used in the frequency domain. Given that
the AF waveform can be effectively analyzed in the frequency domain, as described in
Section § 3, some authors have hypothesized that analysis of the spectra of short segments of
an interatrial electrogram during AF would show a correlation of the variance of the signal
and the amplitude of harmonic peaks with defibrillation efficacy [51]. Furthermore, the same
authors hypothesized that the spatiotemporal organization of AF would vary over time and
tried to determine the optimal sampling window to optimize defibrillation predictability.

Nonlinear analysis has also been used to evaluate single-site AF electrograms. In this respect
one of the first works specifically applied to atrial fibrillation electrograms was introduced by
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Hoekstra et al. [57]. They analyzed epicardial mapping data obtained from atrial fibrillation
patients undergoing surgical correction of an accessory pathway. The nonlinear applied
techniques were correlation dimension and correlation entropy on the epicardial signals. It
was found that these measures discriminated between the various types of electrograms as
defined by Wells, thus suggesting that nonlinear dynamics plays a relevant role in atrial
fibrillation and can also be used to quantify AF organization.

Finally, one interesting work quantifying AF organization from single-site measurements
was introduced by Faes et al. [9] and relied on wave morphology similarity. The algorithm
quantified the regularity of an atrial electrogram by measuring the extent of repetitiveness
over time of its consecutive activation waves. Since the analysis was focused on the shape
of the waveforms occurring in correspondence to the local activations of the atrial tissue, the
morphology of the atrial activations was the element by which the algorithm differentiated
among various degrees of AF organization. As an example, Figure 13 plots the local
activation waves associated to three different AF episodes with different complexity. As can
be seen, the method is able to generate a pattern which, later, can be quantified following
the organization criteria. The same team introduced an automatic organization estimation
method based on features extraction, selection and classification of the AF patterns [58].

With respect to multi-site measurements, this viewpoint would imply that activity at one
site should be judged in relation to the activity at another site. ~Furthermore, when
distances between the recording sites are known, and especially when more than two sites
are used to compute the organization, spatial organization concepts are also incorporated
into these measures [11]. One interesting comparison of methods for estimating AF
synchronization between two atrial sites was published by Sih et al. [53]. In this study,
after filtering and scaling short segments (300 ms) of atrial fibrillation, the electrograms
were passed through two parallel linear adaptive filters, as shown in Figure 14. One way
of interpreting an adaptive filter is that it attempts to predict one electrogram through
linear filtering of a second electrogram. If the two electrograms are linearly related, then
the prediction process would theoretically be perfect. However, if there are non-linearities
between the electrograms, the adaptive filter would yield a prediction error. This algorithm
defines organization according to the prediction errors from the parallel adaptive filters.
The algorithm was theoretically extensible to account for non-linear relationships between
electrograms by simply altering the nature of the adaptive filters. This group used the
algorithm to quantify organization differences between acute and chronic models of atrial
fibrillation [59].

Other works have quantified AF organization between two different atrial sites making use
of nonlinear techniques. In this way, Censi et al. [60] quantified the duration of stable
recurrence patterns through the use of recurrent plots as well as a measure of entropy in
the recurrence plots. The authors suggested that there may exist nonlinear relationships
between electrograms from the right versus the left atrium that would otherwise be missed
by algorithms relying on linear analyses.

Finally, cardiac mapping tools have brought a wealth of information to cardiac
electrophysiology, where the concept of a combined spatial and temporal organization is
most easily realized. Within this context, the concept of coupling between several endocardial
signal has been introduced. In this respect a two-dimensional analysis by evaluating the
simultaneous presence of morphological similarity in two endocardial signals, in order
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Figure 14. Example of a multi-site AF organization method based on the application of adaptive filtering to the electrograms
under study. If there are nonlinearities between the two electrograms, the adaptive filters would yield a concrete prediction
error, thus allowing to quantify the degree of synchronization between the electrograms [53].

to quantify their degree of coupling has been introduced [49]. The method considers
the atrial activation times on every recording place and estimates the cross-probability of
finding similar local activation waves between the considered recordings places, as shown
in Figure 15. On the other hand, Mainardi et al. [54] introduced a comparative study for
the analysis among atrial electrical activities in different sites during AF. They characterized
the properties of pairs between atrial signals making use of a linear parameter obtained
from the cross-correlation function and by a nonlinear association estimator. Furthermore,
they also studied synchronization through the application of an index based on the corrected
cross-conditional entropy [61]. The most recent advances in the study of propagation patterns
in AF have been introduced by Richter and co-workers. They investigated propagation
patterns in intracardiac signals using a approach based on partial directed coherence, which
evaluated directional coupling between multiple signals in the frequency domain [62].
Furthermore, the same team recently presented an improvement in propagation pattern
analysis based on sparse modeling through the use of the partial directed coherence function
derived from fitting a multivariate autoregresive model to the observed signal [63].
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Figure 15. Example of regularity and coupling indices obtained for endocardial signals recorded by a multipolar basket catheter
in the human right atrium during AF. (a) Schematic representation of the internal surface of the right atrium with the position
of the sites of bipolar signal acquisition. (b) Endocardial recordings taken during AF, from the four electrodes placed in the
postero-lateral wall along with the detected activation times (circles). The regularity index (p) associated with the four signals
and the coupling (x) between pairs of signals recorded on adjacent sites are indicated [49].

4.2. Surface organization methods

From a clinical point of view, the assessment of AF organization from the standard surface
ECG would be very interesting, because it can be easily and cheaply obtained and could avoid
the risks associated to invasive procedures [12]. However, only few indirect non-invasive AF
organization estimates from this recording have been proposed in the literature. Firstly, the
DAEF, which has been described in Section § 3. Its inverse has been directly related to atrial
refractoriness [64] and, hence, to atrial cycle length [5]. Moreover, it has been suggested
that the DAF is directly related to the number of simultaneous wavelets [65]. On the other
hand, the second way to get a non-invasive estimate of AF organization has been based on
a nonlinear regularity index, such as sample entropy [66]. This index has been proposed
to estimate the amount of repetitive patterns existing in the fibrillatory waves from the
fundamental waveform of the atrial activity signal, which have been named as main atrial
wave (MAW) in the literature. Through the application of sample entropy to the MAW, it has
been possible to predict a number of AF-reated events. For example, the onset of paroxysmal
AF, its spontaneous termination, its time course from the beginning up to the end of the
episode or the outcome of electrical cardioversion in persistent AF [10].

Obviously, the drawback of non-invasive organization estimation is the lack of strict accuracy
in the process, given that both sample entropy and DAF are only able to assess fibrillatory
waves regularity indirectly. However they have been recently validated by comparison with
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Figure 16. Delineation of the fibrillatory waves for typical 4 second segments corresponding to (a) type I, (b) type Il and (c) type
Il AF episodes, respectively. For each segment, the ECG and atrial activity, after QRST cancellation, are displayed. The upper
black circles mark the maximum associated to each activation, whereas lower gray circles indicate their boundaries [70].

invasive recordings [67]. On the other hand, an additional disadvantage of these estimators is
that the proper DAF identification in the AA spectral content, computed via the fast Fourier
transform, depends significantly on the analyzed segment length, because it determines the
spectral resolution [68]. It is advisable that segment length is chosen to be, at least, several
seconds for an appropriate DAF identification and to produce an acceptable variance of the
frequency estimate [69]. On the other hand, although AF organization could be successfully
estimated by analyzing a segment as short as 1 second with sample entropy, the proper MAW
obtention depends on an adequate DAF computation [10]. Thereby, it could be considered
that the two aforesaid estimators can only yield an average AF organization assessment, thus
blurring the possible information carried by each single activation.

One solution to the aforementioned limitations has been recently proposed which is
able to quantify directly and in short-time AF organization from the surface ECG. The
method quantifies every single fibrillatory wave regularity by measuring how repetitive
its morphology is along onward atrial activations [70]. Basically, the atrial activity was
delineated through mathematical morphology operators [71]. A combination of erosion and
dilation operations was applied to the atrial activity with two structuring elements. The
first one was adapted to the fibrillatory waves by an even triangular shape with duration
proportional to the DAF. The second was designed as a rectangular shape of length larger to
the DAF to suppress the drift between atrial cycles [70]. Finally, the resulting impulsive
signal was used to extract atrial activations by peak detection [70]. An example of the
potential applications offered by this method, able to work from the surface ECG, is shown
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in Figure 16 where several recordings and the corresponding delineation result have been
plotted. As can be observed, the method is able to provide precise and automatic fibrillatory
waves delineation, making it possible to quantify non-invasively AF organization in short
time.

5. Conclusions

The recent advances in signal analysis and processing have provided powerful solutions
for the improved knowledge of atrial fibrillation. In this respect, intensive research has
been carried out to separate atrial activity from ventricular activity in the ECG and invasive
recordings. Furthermore, the proper extraction of an atrial signal has opened the possibilities
of developing advanced analysis techniques to gain as much information as possible on
the fibrillatory waves. Within this context, relevant information, like the atrial fibrillatory
frequency or arrhythmia organization, have been reliably assessed from surface and invasive
recordings using digital signal processing methods.

Acknowledgements

This work was supported by projects TEC2010-20633 from the Spanish Ministry of Science
and Innovation and PPII11-0194-8121 from Junta de Comunidades de Castilla-La Mancha.

Author details

José Joaquin Rietal* and Raul Alcaraz?

* Address all correspondence to: jjrieta@upv.es

!Biomedical Synergy, Electronic Engineering Department, Universidad Politécnica de
Valencia, Gandia, Spain

2Innovation in Bioengineering Research Group, University of Castilla-La Mancha, Cuenca,
Spain

References

[1] Andreas Bollmann, Daniela Husser, Luca Mainardi, Federico Lombardi, Philip Langley,
Alan Murray, José Joaquin Rieta, José Millet, S. Bertil Olsson, Martin Stridh, and
Leif Sornmo. Analysis of surface electrocardiograms in atrial fibrillation: Techniques,
research, and clinical applications. Europace, 8(11):911-926, Nov 2006.

[2] Leif S6rnmo, Martin Stridh, Daniela Husser, Andreas Bollmann, and S Bertil Olsson.
Analysis of atrial fibrillation: from electrocardiogram signal processing to clinical
management. Philos Transact A Math Phys Eng Sci, 367(1887):235-53, Jan 2009.

[3] J Slocum, E Byrom, L McCarthy, A Sahakian, and S Swiryn. Computer detection of
atrioventricular dissociation from surface electrocardiograms during wide qrs complex
tachycardias. Circulation, 72(5):1028-1036, 1985.

175



176  Atrial Fibrillation - Mechanisms and Treatment

[4] José Joaquin Rieta, Francisco Castells, César Sanchez, Vicente Zarzoso, and José Millet.
Atrial activity extraction for atrial fibrillation analysis using blind source separation.
IEEE Trans Biomed Eng, 51(7):1176-1186, Jul 2004.

[5] M. Holm, S. Pehrson, M. Ingemansson, L. Sérnmo, R. Johansson, L. Sandhall,
M. Sunemark, B. Smideberg, C. Olsson, and S. B. Olsson. Non-invasive assessment
of the atrial cycle length during atrial fibrillation in man: Introducing, validating and
illustrating a new ECG method. Cardiovasc Res, 38(1):69-81, Apr 1998.

[6] Shinichi Niwano, Takeshi Sasaki, Sayaka Kurokawa, Michiro Kiryu, Hidehira Fukaya,
Yuko Hatakeyama, Hiroe Niwano, Akira Fujiki, and Tohru Izumi. Predicting the
efficacy of antiarrhythmic agents for interrupting persistent atrial fibrillation according
to spectral analysis of the fibrillation waves on the surface ecg. Circ J, 73(7):1210-8, Jul
2009.

[7] A. Bollmann, N. K. Kanuru, K. K. McTeague, P. E. Walter, D. B. DeLurgio, and
J. J. Langberg. Frequency analysis of human atrial fibrillation using the surface
electrocardiogram and its response to ibutilide. Am | Cardiol, 81(12):1439-1445, Jun
1998.

[8] JJ Langberg, ] C Burnette, and K K McTeague. Spectral analysis of the electrocardiogram
predicts recurrence of atrial fibrillation after cardioversion. ] Electrocardiol, 31
Suppl:80-4, 1998.

[9] Luca Faes, Giandomenico Nollo, Renzo Antolini, Fiorenzo Gaita, and Flavia Ravelli.
A method for quantifying atrial fibrillation organization based on wave-morphology
similarity. IEEE Trans Biomed Eng, 49(12 Pt 2):1504-1513, Dec 2002.

[10] Raul Alcaraz and Jose Joaquin Rieta. A review on sample entropy applications for
the non-invasive analysis of atrial fibrillation electrocardiograms. Biomed Signal Process
Control, 5:1-14, 2010.

[11] HJ Sih. Measures of organization during atrial fibrillation. Annali dell’Istituto superiore
di sanita, 37(3):361-9, 01 2001.

[12] Simona Petrutiu, Jason Ng, Grace M Nijm, Haitham Al-Angari, Steven Swiryn, and
Alan V Sahakian. Atrial fibrillation and waveform characterization. A time domain
perspective in the surface ECG. IEEE Eng Med Biol Mag, 25(6):24-30, 2006.

[13] Ratl Alcaraz and José Joaquin Rieta.  Adaptive singular value cancellation of
ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiol Meas,
29(12):1351-1369, Oct 2008.

[14] J. Pan and W. J. Tompkins. A real-time QRS detection algorithm. IEEE Trans Biomed Eng,
32(3):230-236, Mar 1985.

[15] S. Shkurovich, A. V. Sahakian, and S. Swiryn. Detection of atrial activity from
high-voltage leads of implantable ventricular defibrillators using a cancellation
technique. IEEE Trans Biomed Eng, 45(2):229-234, Feb 1998.

[16] M. Stridh and L. Sérnmo. Spatiotemporal QRST cancellation techniques for analysis of
atrial fibrillation. IEEE Trans Biomed Eng, 48(1):105-111, Jan 2001.



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[28]

[29]

[30]

Applications of Signal Analysis to Atrial Fibrillation
http://dx.doi.org/10.5772/54199

Mathieu Lemay, Jean-Marc Vesin, Adriaan van Oosterom, Vincent Jacquemet, and Lukas
Kappenberger. Cancellation of ventricular activity in the ECG: Evaluation of novel and
existing methods. IEEE Trans Biomed Eng, 54(3):542-546, Mar 2007.

D. Raine, P. Langley, A. Murray, S. S. Furniss, and J. P. Bourke. Surface atrial frequency
analysis in patients with atrial fibrillation: Assessing the effects of linear left atrial
ablation. Journal of Cardiovascular Electrophysiology, 16(8):838-844, 2005.

Philip Langley, José Joaquin Rieta, Martin Stridh, José Millet, Leif Sornmo, and Alan
Murray. Comparison of atrial signal extraction algorithms in 12-lead ECGs with atrial
fibrillation. IEEE Trans Biomed Eng, 53(2):343-346, Feb 2006.

F Castells, ] ] Rieta, ] Millet, and V Zarzoso. Spatiotemporal blind source separation
approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Transactions on
Biomedical Engineering, 52(2):258-267, 2005.

P. Comon. Independent component analysis, a new concept?  Signal Processing,
36(3):287-314, 1994.

J. E. Cardoso. Blind signal separation: Statistical principles. Proceedings of the IEEE,
86(10):2009-2025, 1998.

P. Langley, J. P. Bourke, and A. Murray. Frequency analysis of atrial fibrillation. In Conf
Proc IEEE Comput Cardiol, volume 27, pages 65-68, Los Alamitos, CA, 2000. IEEE.

V. Zarzoso and A. K. Nandi. Noninvasive fetal electrocardiogram extraction: blind
separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng, 48(1):12-18, 2001.

T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. ]J. McKeown, V. Iragui, and T. J.
Sejnowski. Removing electroencephalographic artifacts by blind source separation.
Psychophysiology, 37(2):163-178, 2000.

K Nademanee, ] McKenzie, E Kosar, M Schwab, B Sunsaneewitayakul, T Vasavakul,
C Khunnawat, and T Ngarmukos. @A new approach for catheter ablation of
atrial fibrillation: mapping of the electrophysiologic substrate. | Am Coll Cardiol,
43(11):2054-2056, 2004.

Z Shan, PH Van Der Voort, Y Blaauw, M Duytschaever, and MA Allessie. Fractionation
of electrograms and linking of activation during pharmacologic cardioversion of
persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol., 15(5):572-580, 2004.

DJ Dosdall and RE Ideker. Intracardiac atrial defibrillation. Heart Rhythm, 4(3):551-56,
2007.

M. Mase, L. Faes, R. Antolini, M. Scaglione, and F. Ravelli. Quantification of
synchronization during atrial fibrillation by shannon entropy: validation in patients
and computer model of atrial arrhythmias. Physiological Measurement, 26(6):911-923,
Dec 2005.

RP Houben and MA Allessie. Processing of intracardiac electrograms in atrial
fibrillation. diagnosis of electropathological substrate of af. IEEE Engineering in Medicine
and Biology Magazine, 25(6):40-51, 2006.

177



178  Atrial Fibrillation - Mechanisms and Treatment

[31] Jose Joaquin Rieta and Fernando Hornero. Comparative study of methods for
ventricular activity cancellation in atrial electrograms of atrial fibrillation. Physiol Meas,
28(8):925-936, 2007.

[32] B. Widrow, J. R. Glover, ]J. M. McCool, and et al. Adaptive noise cancelling: Principles
and applications. Proceedings of the IEEE, 63(12):1692-1716, 1975.

[33] J. Malmivuo and R. Plonsey. Bioelectromagnetism: Principles and Applications of Bioelectric
and Biomagnetic Fields. Oxford University Press, 1995.

[34] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley &
Sons, Inc., 2001.

[35] P. D. Welch. Use of Fast Fourier Transform for estimation of power spectra: A method
based on time averaging over short modified periodograms. IEEE Trans. Audio and
Electroacustics, 15(2):70-73, 1967.

[36] Dimitris G Manolakis, Vinay K Ingle, and Stephen M Kogon. Statistical and adaptive
signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing.
Artech House, Boston, 2005.

[37] Mohamed Najim. Modeling, estimation and optimal filtering in signal processing. Digital
signal and image processing series. J. Wiley & Sons, London, 2008.

[38] R. W Hamming. Digital filters. Prentice-Hall signal processing series. Prentice-Hall,
Englewood Cliffs, N.J., 1977.

[39] M. Stridh, L. Sérnmo, C. J. Meurling, and S. B. Olsson. Characterization of atrial
fibrillation using the surface ECG: Time-dependent spectral properties. IEEE Trans
Biomed Eng, 48(1):19-27, Jan 2001.

[40] Frida Sandberg, Andreas Bollmann, Daniela Husser, Martin Stridh, and Leif Sérnmo.
Circadian variation in dominant atrial fibrillation frequency in persistent atrial
fibrillation. Physiol Meas, 31(4):531-42, Apr 2010.

[41] Antonia Papandreou-Suppappola. Applications in time-frequency signal processing. CRC
Press, Boca Raton, 2003.

[42] Leon Cohen. Time-frequency analysis. Prentice Hall PTR, Englewood Cliffs, N.J, 1995.

[43] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal. ii.
algorithms and applications. Proceedings of the IEEE, 80(4):540 568, apr 1992.

[44] Martin Stridh, Leif Sérnmo, Carl J Meurling, and S. Bertil Olsson. Sequential
characterization of atrial tachyarrhythmias based on ECG time-frequency analysis. IEEE
Trans Biomed Eng, 51(1):100-114, Jan 2004.

[45] T H Everett, 4th, ] R Moorman, L C Kok, ] G Akar, and D E Haines. Assessment of global
atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation,
103(23):2857-61, Jun 2001.



Applications of Signal Analysis to Atrial Fibrillation
http://dx.doi.org/10.5772/54199

[46] Valentina D A Corino, Luca T Mainardi, Martin Stridh, and Leif S6rnmo. Improved
time—frequency analysis of atrial fibrillation signals using spectral modeling. IEEE Trans
Biomed Eng, 55(12):2723-30, Dec 2008.

[47] Frida Sandberg, Martin Stridh, and Leif Sornmo. Frequency tracking of atrial fibrillation
using hidden markov models. IEEE Trans Biomed Eng, 55(2 Pt 1):502-11, Feb 2008.

[48] Benjamin Schuster-Bockler and Alex Bateman. An introduction to hidden markov
models. Curr Protoc Bioinformatics, Appendix 3:Appendix 3A, Jun 2007.

[49] L Faes and F Ravelli. A morphology-based approach to the evaluation of atrial
fibrillation organization. Engineering in Medicine and Biology Magazine, IEEE, 26(4):59-67,
2007.

[50] V Barbaro, P Bartolini, G Calcagnini, F Censi, S Morelli, and A Michelucci. Mapping the
organization of atrial fibrillation with basket catheters. part i: Validation of a real-time
algorithm. Pacing and clinical electrophysiology : PACE, 24(7):1082-8, 07 2001.

[51] T H Everett, 4th, L C Kok, R H Vaughn, ] R Moorman, and D E Haines.
Frequency domain algorithm for quantifying atrial fibrillation organization to increase
defibrillation efficacy. IEEE Trans Biomed Eng, 48(9):969-78, Sep 2001.

[52] GW Botteron and JM Smith. A technique for measurement of the extent of spatial
organization of atrial activation during atrial fibrillation in the intact human heart. IEEE
transactions on bio-medical engineering, 42(6):579-86, 06 1995.

[63] H. J. Sih, D. P. Zipes, E. ]J. Berbari, and J. E. Olgin. A high-temporal resolution
algorithm for quantifying organization during atrial fibrillation. IEEE Trans Biomed Eng,
46(4):440-450, Apr 1999.

[54] Luca T Mainardi, Valentina D A Corino, Leonida Lombardi, Claudio Tondo, Massimo
Mantica, Federico Lombardi, and Sergio Cerutti. Linear and nonlinear coupling between

atrial signals. Three methods for the analysis of the relationships among atrial electrical
activities in different sites. IEEE Eng Med Biol Mag, 25(6):63-70, 2006.

[55] J.L. Wells, R.B. Karp, N.T. Kouchoukos, WA MacLean, TN James, and AL Waldo.
Characterization of atrial fibrillation in man: studies following open heart surgery.
Pacing and Clinical Electrophysiology (PACE), 1(4):426—-438, 1978.

[56] V Barbaro, P Bartolini, G Calcagnini, S Morelli, A Michelucci, and G Gensini.
Automated classification of human atrial fibrillation from intraatrial electrograms.
Pacing and clinical electrophysiology : PACE, 23(2):192-202, 02 2000.

[57] B P Hoekstra, C G Diks, M A Allessie, and ] DeGoede. Nonlinear analysis of epicardial
atrial electrograms of electrically induced atrial fibrillation in man. ] Cardiovasc
Electrophysiol, 6(6):419—40, Jun 1995.

[58] G Nollo, M Marconcini, L Faes, F Bovolo, F Ravelli, and L Bruzzone. An automatic
system for the analysis and classification of human atrial fibrillation patterns from
intracardiac electrograms. IEEE Transactions on Biomedical Engineering, 55(9):2275, 2008.

179



180 Atrial Fibrillation - Mechanisms and Treatment

[59]

[60]

[61]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

H. J. Sih, D. P. Zipes, E. ]J. Berbari, D. E. Adams, and J. E. Olgin. Differences in
organization between acute and chronic atrial fibrillation in dogs. | Am Coll Cardiol,
36(3):924-931, Sep 2000.

F Censi, V Barbaro, P Bartolini, G Calcagnini, A Michelucci, G F Gensini, and
S Cerutti. Recurrent patterns of atrial depolarization during atrial fibrillation assessed
by recurrence plot quantification. Ann Biomed Eng, 28(1):61-70, Jan 2000.

L T Mainardi, A Porta, G Calcagnini, P Bartolini, A Michelucci, and S Cerutti. Linear
and non-linear analysis of atrial signals and local activation period series during
atrial-fibrillation episodes. Med Biol Eng Comput, 39(2):249-54, Mar 2001.

U Richter, L Faes, A Cristoforetti, M Mase, F Ravelli, M Stridh, and L Sornmo. A
novel approach to propagation pattern analysis in intracardiac atrial fibrillation signals.
Annals of biomedical engineering, 08 2010.

U Richter, L Faes, F Ravelli, and L Sornmo. Propagation pattern analysis during
atrial fibrillation based on sparse modeling. IEEE transactions on bio-medical engineering,
59(5):1319-28, 05 2012.

A. Capucci, M. Biffi, G. Boriani, F. Ravelli, G. Nollo, P. Sabbatani, C. Orsi, and
B. Magnani. Dynamic electrophysiological behavior of human atria during paroxysmal
atrial fibrillation. Circulation, 92(5):1193-1202, Sep 1995.

A. Bollmann, K. Sonne, H. D. Esperer, 1. Toepffer, J. J. Langberg, and H. U. Klein.
Non-invasive assessment of fibrillatory activity in patients with paroxysmal and
persistent atrial fibrillation using the holter ECG. Cardiovasc Res, 44(1):60-66, Oct 1999.

J. S. Richman and ]. R. Moorman. Physiological time-series analysis using approximate
entropy and sample entropy. Am | Physiol Heart Circ Physiol, 278(6):H2039-H2049, Jun
2000.

Raul Alcaraz, Fernando Hornero, and José ] Rieta. Assessment of non-invasive time
and frequency atrial fibrillation organization markers with unipolar atrial electrograms.
Physiol Meas, 32(1):99-114, Jan 2011.

Jason Ng and Jeffrey ] Goldberger. Understanding and interpreting dominant frequency
analysis of AF electrograms. | Cardiovasc Electrophysiol, 18(6):680-5, Jun 2007.

Jason Ng, Alan H Kadish, and Jeffrey ] Goldberger. Technical considerations for
dominant frequency analysis. | Cardiovasc Electrophysiol, 18(7):757-64, Jul 2007.

Raudl Alcaraz, Fernando Hornero, Arturo Martinez, and José ] Rieta. Short-time
regularity assessment of fibrillatory waves from the surface ecg in atrial fibrillation.
Physiol Meas, 33(6):969-84, Jun 2012.

P Maragos. Morphological filters—part I: Their set-theoretic analysis and relations to
linear shift-invariant filters. IEEE Transactions on Acoustics, Speech and Signal Processing,
35(8):1153 — 1169, 1987.



