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1. Introduction

Whilst small interfering RNA (siRNA, also known as short interfering RNA) has a somewhat
chequered history with regard to its discovery and initial usage, the “mammalian” research
community singularly neither reading nor citing the output from the “plant” research
community, it is now recognised in terms of $bn being invested and spent that RNA interfer‐
ence (RNAi), sequence specific post-transcriptional gene silencing (PTGS) by siRNA, has many
potential therapeutic applications [1] as well as being an important tool in the study of
functional genomics. The site and mechanism of action of siRNA requires that these short
double-stranded nucleic acids are delivered to the cytosol of target cells. Therefore, formula‐
tion is required in a strategy similar to that for gene therapy, although not requiring access to
the nucleus. Efficient medicines design should come with an understanding of the problem at
the molecular level. Our contributions are aimed at the use of non-viral gene therapy and this
Chapter therefore has such a focus.

2. RNA interference

2.1. History and mechanism of RNA interference

siRNA is a double-stranded RNA (dsRNA) typically of 21-25 nucleotides per strand. siRNA
operates as a part of the cellular mechanism called RNAi, which was first noticed in petunia
flowers (Petunia hybrida) which showed reduced pigmentation on the introduction of exoge‐
nous genes that were meant to increase pigmentation [2, 3]. These experiments aimed at
increasing the pigmentation of the petunia flowers by means of introducing additional gene
constructs expressing either chalcone synthase [2, 3] or dihydroflavonol-4-reductase [2].
However, the resultant plants produced completely white flowers and/or flowers with white
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or pale sectors on a pigmented background. The exact mechanism was not identified at the
time and was simply termed co-suppression. The transcription level of the suppressed
chalcone synthase genes in petunia flowers was found to be similar to that of the non-
suppressed genes, and thus the co-suppression must have been at the post-transcriptional level
[4]. Later in 1997, the suppression of chalcone synthase endogene in petunia flowers was
suggested to be related to formation of RNA duplexes by intermolecular pairing of comple‐
mentary sequences between the coding sequence and the 3′-UTR sequence of the transgene
mRNA [5]. Indeed, the seminal contributions the plant RNAi community have made to this
RNAi field are also reflected in the research of Hamilton and Sir David C. Baulcombe in the
Sainsbury Laboratory, Norwich, UK, on PTGS as a nucleotide sequence-specific defence
mechanism that can target both cellular and viral mRNAs with RNA molecules of a uniform
length, ~25 nucleotides [6]. That RNA silencing involves the processing of dsRNA into 21-26
long siRNA to mediate gene suppression (correspondingly complementary to the dsRNA) was
demonstrated in Arabidopsis, “RNA silencing pathways in plants that may also apply in
animals” [7]. That Arabidopsis ARGONAUTE1 RNA-binding protein is an RNA slicer that
selectively recruits microRNAs and siRNAs was shown to be by a key mechanism similar to
but different from that found in animals [8]. In 1998, Fire, Mello and co-workers reported the
reduction or inhibition (hence genetic “interference”) of the expression of the unc-22 gene in
Caenorhabditis elegans by means of dsRNA that is homologous to 742 nucleotides in the targeted
gene [9], a discovery that was awarded the Nobel Prize in medicine or physiology in 2006. The
target gene expresses an abundant although nonessential myofilament protein. Decreasing
unc-22 activity resulted in an increasingly severe twitching phenotype, while complete
inhibition resulted in impaired motility and muscle structural defects. The target gene
inhibition was best achieved with dsRNA, while using the individual sense or anti-sense RNA
strands resulted only in modest silencing. The authors also noticed that only few copies of the
dsRNA are required per cell to initiate a potent and specific response, rejecting the hypothesis
that the mechanism of interaction with target gene mRNA is stoichiometric in nature, and thus
the role of the dsRNA in the interference machinery must be catalytic or amplifying.

Elbashir et  al.  reported in 2001 that sequence-specific gene silencing of endogenous and
heterologous genes with 21 nucleotide siRNA occurs in mammalian cell cultures [10]. The
reporter  genes  coding  for  sea  pansy  (Renilla  reniformis)  and  firefly  (Photinus  pyralis)
luciferases  were  silenced successfully  in  different  cell  lines  including human embryonic
kidney cells (293) and the cervix cancer cells (HeLa cell line, the first human cell line grown
in vitro with success [11]),  as well as the endogenous gene coding for the nuclear enve‐
lope proteins lamin A and lamin C in HeLa cells. The authors used dsRNA of length 21
or 22 nucleotides with 3'-symmetrical  2-nucleotide overhangs on each strand, as dsRNA
with length >30 nucleotides initiates an immune response e.g. inducing interferon synthe‐
sis)  that  leads to  non-specific  mRNA degradation,  which was evident  from non-specific
silencing of luciferase with 50 and 500 nucleotides dsRNA in HeLa S3 cells,  COS-7 cells
(kidney cells of the African green monkey), and NIH/3T3 cells (mouse fibroblasts) [10]. The
RNAi mechanism of action continues to be investigated in detail and reviewed thorough‐
ly  [12-17].  The  RNAi  mechanism  involves  the  incorporation  of  dsRNA  segments  (e.g.
siRNA)  that  have  a  sequence  complementary  to  the  targeted  mRNA in  a  protein  com‐
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plex. This core complex which carries-out mRNA degradation is the RNA induced silencing
complex  (RISC)  [18-20].  The  degradation  process  requires  the  key  argonaute  family  of
proteins,  which  contain  a  domain  with  RNase  H  (endonuclease)  type  of  activity  that
catalyse cleavage of the phosphodiester bonds of the targeted mRNA. RISC assembly and
subsequently  its  function  to  mediate  sequence  specific  mRNA degradation occur  in  the
cytoplasm of the cell [16]. The source of the dsRNA segments incorporated in RISC can be
endogenously processed microRNA (miRNA),  short  hairpin RNA (shRNA),  or  synthetic
siRNA. miRNA is produced from endogenous DNA through the action of RNA polymer‐
ase  II  resulting  in  the  formation  of  non-coding  RNA  called  primary  miRNA  (pri-miR‐
NA), which is processed in the nucleus by a protein complex containing an enzyme known
as Drosha and a dsRNA binding protein cofactor called Pasha (DGCR8). Drosha cleaves
pri-miRNA to produce (pre-miRNA), a dsRNA of 70-90 nucleotides and having a hairpin
loop,  which  binds  to  Exportin  5  protein  and  is  transferred  from  the  nucleus  into  the
cytoplasm. Pre-miRNA is processed by Dicer (RNase III enzyme) in the cytoplasm to give
miRNA, typically of 22 nucleotides in length and having two nucleotide overhangs at the
3'-position [16, 21], shRNA is produced by transcription from an exogenous DNA that is
delivered to the nucleus,  and codes for a hairpin shaped RNA with segments of  length
19-29 nucleotides and loop of 9 nucleotides [22, 23] which can then be processed by Dicer
and incorporated in the RNAi machinery.

Once in the cytoplasm, the processed dsRNA (miRNA, processed shRNA, or  siRNA) is
then incorporated into a protein complex (RISC-loading complex, RLC). In Drosophila  the
RLC is composed of the dsRNA, heterodimer protein DCR2 (Dicer variant)/R2D2, possi‐
bly including the catalytic argonaute proteins as well in this complex. The active RISC is
formed when one of the RNA strands in the complex is cleaved (the passenger strand) and
the strand with the less thermodynamic stable 5'-end (guide/anti-sense strand) remains in
the complex. The mRNA with complementary sequence to the guide strand binds to the
active RISC and is cleaved by the endoribonuclease activity of the argonaute component
of the complex (Figure 1).

2.2. RNA duplex structure

RNA is a polymer of ribonucleotides.  Each RNA nucleotide is composed of one nucleo‐
base,  the monosaccharide pentose ribose,  and one phosphate group.  The nucleobases in
RNA  are  adenine  (purine  base),  guanine  (purine  base),  uracil  (pyrimidine  base),  and
cytosine (pyrimidine base) (Figure 2). A nucleoside is formed when each base is connect‐
ed  via  a  glycosidic  bond  to  the  anomeric  carbon  1'  of  ribose,  thus  when  glycosylated,
adenine, guanine, uracil, and cytosine nucleobases give adenosine, guanosine, uridine, and
cytidine  nucleosides.  Each two nucleosides  are  connected via  a  phosphate  diester  bond
between the 3' of one nucleoside and 5' of the next nucleoside to form the RNA polynucleo‐
tide strand. The main differences in the primary structure of RNA and DNA are that RNA
pentose  is  ribose  while  DNA  pentose  is  2'-deoxyribose,  and  the  RNA  incorporates  the
nucleobase uracil instead of thymine.
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Figure 1. RNAi mechanism in a eukaryotic cell. The source of the antisense strand incorporated in RISC can be miRNA,
processed exogenous long dsRNA, or synthetic siRNA delivered to the cell.
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Figure 2. Nucleobases and pentoses of RNA and DNA.
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Figure 3. siRNA duplex 22-mer targeting the enhanced green fluorescent protein (EGFP) mRNA. The two deoxythymi‐
dine residues at the 3'-end of the sense strand are not shown. Sense strand: 5'-GCAAGCUGACCCUGAAGUUCAUTT-3'
Anti-sense strand: 5'-AUGAACUUCAGGGUCAGCUUGCCG-3' Target DNA sequence: 5'-CGGCAAGCTGACCCTGAAGTT‐
CAT-3'

In order to form an RNA duplex (Figure 3), the strands with complementary nucleotide
sequence bind together by hydrogen bonds. Adenine is bound to uracil with two hydrogen
bonds while guanine is bound to cytosine with three hydrogen bonds, thus forming what is
known as Watson-Crick base pairs. RNA duplexes under normal physiological conditions are
in the form of A-helix. This type of duplex is a right-handed helix [24-26].

The presence of the 2'-hydroxyl group of the ribose and the lack of the methyl group on the
nucleotide uridine (in contrast to the methylated thymidine) results in structural differences
between RNA and DNA, with the 2'-hydroxyl group of RNA being the major cause of the
differences. The sugar phosphate backbone of RNA duplexes is stabilized by the 2'-hydroxyl
in the C3'-endo position, while DNA adopts the C2'-endo position (Figure 4). Thus, the RNA
duplex takes the A-helix form while the DNA helix takes the B-form. The A-helix form is
suggested to have a greater hydration shell, giving RNA duplexes more thermodynamic
stability and more rigidity compared to DNA duplexes [24-26]. RNA A-helix completes one
complete rotation in 11-12 base pair (bp) compared to 10 bp for DNA, with a rise of 2.7 Å per
bp of RNA [27]. The A-helix geometry has been suggested to be the major factor explaining
why dsRNA and not dsDNA is involved in the RNAi machinery [28], where the A-helix
geometry between the guide strand and the complementary target mRNA is essential for the
catalytic activity of the argonaute 2 protein in the RISC.

As a result of the presence of a hydroxyl group in the 2'-position of the ribose in the RNA
backbone, the RNA phosphodiester backbone is more susceptible to hydrolysis by nucleases
compared to the DNA which lacks the 2'-hydroxyl in its 2'-deoxyribose [29]. Incubation of
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siRNA in fetal bovine or human serum at 37 °C resulted in the degradation and partial or
complete loss of activity [30]. When incubated in human plasma at 37 °C, more than 50% of
the unmodified siRNA was degraded within one minute, and practically all siRNA was
completely degraded within 4 hours [31]. Although Ribonuclease A (RNase A, an endoribo‐
nuclease) cleaves single stranded RNA, siRNA degradation in serum was reported to be
mainly due to RNase-like activity[32], which is suggested to occur during transient breaking
of the hydrogen bonds joining the two siRNA strands. In addition to the RNase A family of
enzymes, blood serum contains phosphatases and exoribonucleases which can also affect
degradation of siRNA at nuclease-sensitive sites on both strands [33].

2.3. Therapeutic potential of RNAi based therapies

RNAi based therapies emerged in the period following its discovery in 1998 in plants, and are
promising therapeutic candidates to treat various types of diseases, ranging from age related
macular oedema to respiratory tract infections to various types of cancer [34-36]. In addition
to siRNA based therapies, shRNA [37, 38] and miRNA [39] are potential therapeutic tools.
siRNA based therapeutics are already in phase I and phase II clinical trials; representative
examples of clinical trials involving siRNA are shown in Table 1. The basic concept is the
reduction or inhibition of the expression of a protein that is involved in the pathophysiological
pathway of the target disease (silencing/knocking-down the target gene). This concept is
evident from using Cand5 siRNA targeting the mRNA translating the vascular endothelial
growth factor (VEGF), thus reducing/inhibiting angiogenesis and preventing progression of
wet age related macular oedema (Table 1) [40]. Atu027 siRNA targets the biosynthesis of
protein kinase N3 which plays a role in cancer metastasis [41].
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Figure 4. 3'-endo ribose configuration of RNA (left) vs 2'-endo (right) of 2'-deoxyribose in DNA. Shown is cytidine
(RNA) and deoxycytidine (DNA) with the 3'-hydroxyl phosphorylated. The hydrogen atoms at C2' and C3' are not dis‐
played for clarity.
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siRNA Disease
Vector/

Route
Phase Sponsor

Cand5/

Bevasiranib

Diabetic macular

oedema

None/

Intravitreal
Phase II

Opko Health

(Miami, USA)

Cand5/

Bevasiranib

Age-related macular

degeneration

None/

Intravitreal

Phase II

(Phase III halted)

Opko Health

(Miami, USA)

ALN-RSV01
Respiratory syncytial

virus infection

None/

Intranasal
Phase II

Alnylam Pharmaceuticals

(Cambridge, USA)

CALAA-01 Solid tumour/melanoma

Cyclodextrin

nanoparticles/

Intravenous

Phase I
Calando

(Pasadena, CA, USA)

Atu027
Colorectal cancer

metastasizing to the liver

AtuPlex-

Liposome/

Intravenous

Phase I
Silence Therapeutics

(London, UK)

Two siRNA

against

TGFBI and COX-2

STP705

Wound healing
Nanoparticles/

Intravenous
Phase I

Sirnaomics

(Gaithersburg, MD, USA)

I5NP

Protection from acute

kidney injury after

cardiac bypass surgery

None/

Intravenous
Phase I

Quark Pharmaceuticals

(Fremont, USA)

TKM-080301

Against PLK1 gene

product in patients with

hepatic cancer

Lipid

nanoparticles/

Hepatic intra-

arterial

administration

Phase I
NCI

(Maryland, USA)

Table 1. Representative clinical trials using siRNA (http://clinicaltrials.gov/ct2/home, accessed on 5/8/2012).

The therapeutic application of siRNA requires overcoming several barriers (Figure 5) for its
intracellular delivery and the subsequent functional gene silencing activity [42-44]. Those
barriers are mainly due to siRNA specific characteristics, most important are having a highly
negative charge due to their phosphate backbone (on average 40-50 negative charges per
siRNA), being susceptible to degradation by nucleases, and having relatively large molecular
weight (13-15 kDa) compared to conventional small drug molecules. First, local delivery (such
as intravitreal) is different from intravenous delivery, where the latter will subject the siRNA
to the serum ribonucleases, which results in degrading non-modified siRNA within time
periods that vary from minutes to hours [31]. siRNA injected intravenously in rats was
reported to be cleared rapidly from circulation and accumulates in kidneys within minutes of
injection [45], making it useful only if the target organ is the kidney.

In order to gain access into the cytoplasm where siRNA can exert its biological activity, the
polyribonucleotide must pass first through the interstitial space then through the target cell
membrane. This will be a difficult task, since both the extracellular matrix in many tissue types
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and the cell membrane incorporate negatively charged glycosaminoglycans (e.g. heparan
sulfate) [46]. In addition, cell membranes contain negatively charged phospholipids (e.g.
phosphatidyl serine) therefore the membrane is negatively charged [46, 47]. The net result is
an unfavourable repulsive interaction with naked siRNA. As a result, different strategies are
being developed to overcome the barriers to reproducible and functional siRNA delivery, and
these approaches fall into two general categories. One category is modifying the siRNA, the
other is deploying a vector to protect the siRNA and increase its efficiency of delivery.
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Figure 5. Summary of barriers to successful gene-silencing mediated by siRNA after intravenous injection, whether
delivered naked or incorporated in nanoparticles.

3. Strategies to achieve efficient siRNA delivery and gene silencing

3.1. siRNA modifications

siRNA modifications include those carried out at the ribose residue, at the phosphate back‐
bone, at the RNA nucleotides, the siRNA termini, and/or by conjugation of other molecules to
the siRNA molecule. Modifications to the ribose at the 2'-position are common [48], and include
2'-O-alkylation (e.g. 2'-O-methyl and 2'-O-methylethoxy) modifications. 2'-Fluoro RNA is
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another common modification. Locked nucleic acids (LNAs) have a methylene bridge
connecting the 2'-O to the 4'-C of the ribose unit, locking the sugar in the 3'-endo conformation.
These modifications led to increased ribonuclease resistance [48, 49]. Modifications at the
phosphate backbone include phosphorthioate, boranophosphate, and methylphosphonate
linkages [48, 49] and is reported to increase siRNA stability against various ribonucleases and
phophodiesterases [50]. siRNA nucleotides can be substituted with DNA nucleotides to
increase stability and/or decrease unwanted siRNA off-target effects [51]. Modifications of the
3'-overhangs (usually two nucleotides in length) include incorporating deoxyribonucleotides
to reduce costs and increase stability towards 3-exoribonucleases. The 5'-terminus chemical
phosphorylation of the antisense strand results in higher gene silencing efficiency, while blunt
ended duplexes were reported to be more resistant to exonucleases. The advantages of each
of the aforementioned techniques, other modification strategies, as well as the considerations
related to the degree of modification and its effect on gene silencing efficiency and associated
cytotoxic effects have been reviewed thoroughly [48, 52-54].

The conjugation of drug molecules, aptamers, lipids, polymers, and peptides/proteins to
siRNA could enhance in vivo delivery [55]. The main aims of such conjugations are: to enhance
siRNA stability, increase in vivo half-life, control biodistribution, increase efficiency of
intracellular delivery, while maintaining the gene silencing activity.

One strategy is to increase the hydrophobicity of the siRNA. Cholesterol was conjugated to
the 5'-terminus of siRNA, the cholesterol-siRNA conjugate (chol-siRNA) resulted in better
intracellular delivery compared to unmodified siRNA and retained gene silencing activity in
vitro in β-galactosidase expressing liver cells [56]. When cholesterol was conjugated to the 3'-
terminus of the sense (passenger) strand of siRNA, the conjugate had improved in vivo
pharmacokinetics as the intravenous administration of chol-siRNA in mice resulted in its
distribution and detection in the fat tissues, heart, kidneys, liver, and lungs, even 24 h after
intravenous injection [57]. No significant amounts of unmodified siRNA were detected in the
tissues 24 h after the intravenous injection. Conjugation of siRNA to bile acids and long-chain
fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in
vivo [58]. The medium chain fatty-acid conjugates, namely lauroyl (C12), myristoyl (C14) and
palmitoyl (C16), did not silence the target apolipoprotein B mRNA levels in mouse livers after
intravenous injection. However, siRNA fatty-acid conjugates having long saturated chains,
stearoyl (C18) and docosanoyl (C22), significantly reduced apolipoprotein B mRNA levels.

Cell penetrating peptides (CPPs) are used to facilitate cellular membrane crossing of many
molecules displaying various properties such as antisense oligonucleotides, peptides, and
proteins and are already being tested in vivo [59]. siRNA was conjugated to penetratin and
transportin, to silence luciferase and green fluorescent protein (GFP) in different types of
mammalian cells [60]. However, in vivo lung delivery in mouse of siRNA conjugated to
penetratin and TAT(48-60), targeting p38 MAP kinase mRNA showed that the reduction in
gene expression was peptide induced and the penetratin conjugated siRNA resulted in innate
immunity response [61].

siRNA functioning against the VEGF mRNA was conjugated to poly(ethylene glycol) (PEG,
25 kDa) via a disulfide bond at the 3'-terminus of the sense strand [62]. The siRNA-PEG
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conjugate formed polyelectrolyte complex (PEC) micelles by electrostatic interaction with the
cationic polymer polyethylenimine (PEI). The formed VEGF siRNA-PEG/PEI PEC micelles
showed enhanced stability against nuclease degradation compared to the unmodified siRNA.
These micelles efficiently silenced VEGF gene expression in prostate carcinoma cells (PC-3)
and showed superior VEGF gene silencing compared to VEGF siRNA/PEI complexes in the
presence of serum. PEG conjugation on its own enhanced the stability of the siRNA in serum
containing medium. The prolonged stability of the PEC micelles was suggested to be due to
the presence of PEG chains in the outer micellar shell layer, thus sterically hindering nuclease
access into the siRNA in the micelle core [62]. Targeting molecules such as antibodies [63] and
aptamers (peptides or single stranded DNA or RNA that have selective affinities toward target
proteins) [64] have also been conjugated to siRNA, with the aim of increasing the efficiency of
siRNA delivery to the target tissues.

Conjugating molecules to siRNA requires specific considerations. First, the site of conjugation
(3'- and/or 5'-terminus, on sense and/or antisense strand) should be chosen such that it does
not affect the activity of the siRNA and its ability to be incorporated in the RISC, or its ability
to bind the target mRNA in the correct helix conformation. Second, the conjugated siRNA
might have new properties that were not present in the unmodified parent siRNA. An example
is the in vivo immune response resulting from the penetratin-siRNA conjugate [61]. Third, the
conjugation process is multi-step, and the chemical reaction intermediates and products
require efficient purification in order to meet the specifications of in vivo applications. These
steps need to be repeated for each siRNA under investigation, which can be costly and time
consuming. Thus, although there are clear advantages to synthesize siRNA conjugates, there
are also disadvantages, and conjugation is therefore only one of two valuable approaches in
the toolbox for preparing siRNA based therapies. The other valuable tool is complexation or
incorporating the siRNA in a vector.

3.2. Viral vectors for shRNA delivery

Vectors for RNAi based therapies are either viral or non-viral vectors. Viral vectors (Table
2) are used to deliver genes encoding hairpin RNA structures such as shRNA and miRNA,
which  are  then  processed  by  the  cellular  RNAi  machinery  to  the  functional  silencing
dsRNA [65, 66].

Viral vectors offer two main advantages, the first is the very high efficiency compared to non-
viral vectors [68], which can reach few orders of magnitude more than that achieved with non-
viral vectors, and the second is the potential of long term expression of the delivered RNAi
therapeutic, which is very useful in the treatment of chronic diseases such as HIV infection
and viral hepatitis [69, 70]. Retroviruses are enveloped, single stranded RNA viruses and have
a genome capacity of 7-10 kilobases (kb). They preferentially target dividing cells which limits
their use to mitotic tissues (thus for example excluding brain and neurons). Retroviruses
integrate their DNA in the host genome using an integrase enzyme, which provides the
advantage of stable long term expression of the delivered transgene in the host cell and its
descendants. However, integrating new DNA sequences into host genome carries the risk of
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insertional mutagenesis [68, 71]. shRNA expression cassette delivered by a retroviral vector
was used in rats to silence a RAS oncogene in order to suppress tumour growth [72]. Herpes
virus was used successfully to deliver shRNA targeting exogenous β-galactosidase or endog‐
enous trpv1 gene mRNA in the peripheral neurons in mice by injecting once directly into the
sciatic nerve of the animals [73].

Unlike other retroviruses, lentiviruses can infect dividing as well as differentiated and non-
dividing cells. The lentiviral genome can accommodate 7.5 kb [66], and their genome is
integrated in the host cell genome, lentiviral vectors are generally preferred for long-term
expression of transgenes, and efficient delivery in vivo to the brain, eye, and liver to induce
long-term transgene expression as reported [74]. A lentiviral vector was used to deliver shRNA
targeting Smad3 gene mRNA, and enhanced myogenesis of old and injured muscles [75].

Adenoviruses are non-enveloped viruses, with linear double stranded DNA. They preferably
infect the upper respiratory tract and the ocular tissue. Their genome can accommodate up to
8 kb which can be extended to ≥25 kb in modified viruses that have their viral genes deleted
[68]. These viruses can infect post mitotic cells and thus are good candidates for neurological
diseases. Unless delivering genes that can exist as episomes in host cells, adenoviruses result
only in transient expression of their cargo. However, although the host cells with the episome
can express the delivered genes for the cell life time, these cells will eventually be removed by
the host immune system [68]. shRNA targeting VEGF that was delivered by an adenoviral
vector resulted in potent inhibition of angiogenesis and tumour growth in mice [76].

Retrovirus/

Lentivirus
Adenovirus

Adeno-

associated virus

Herpes

virus

V
ir

al
 v

ec
to

r p
ro

pe
rt

ie
s

Genome ssRNA dsDNA ssDNA dsDNA

Capsid Icosahedral Icosahedral Icosahedral Icosahedral

Envelope Enveloped None None Enveloped

Viral Polymerase Positive Negative Negative Negative

Diameter (nm) 80-130 70-90 18-26 150-200

Genome size (kb) 7-10 38 5 120-200

G
en

e 
th

er
ap

y 
re

la
te

d Infection tropism Dividing*
Dividing/

Non-dividing

Dividing/

Non-dividing

Dividing/

Non-dividing

Virus genome

integration
Integrating Non-integrating Integrating Non-integrating

Transgene

expression
Lasting Transient Lasting Transient

Packaging capacity

(kb)
7-8 8 4.5 >30

* Lentiviral vectors can infect non-dividing cells as their pre-integration complex can traverse the nuclear membrane
pores (NMP), in contrast to retrovirus pre-integration complex which does not traverse NMP, requiring the host-cell
division to integrate the retroviral genome [67].

Table 2. Summary of properties of viral vectors that are commonly used in gene therapy (adapted from http://
www.genetherapynet.com/viral-vectors.html, accessed on 5/8/2012).
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Adeno-associated virus (AAV) is a single stranded DNA non-pathogenic virus that can
accommodate a 4.7 kb genome. They can infect dividing or non-dividing cells. The replication
of AAV requires co-infection with adenovirus. The viral genome integrates into the host cell
genome at a specific location on chromosome 19 [68]. Direct intracerebellar injection in a mouse
model of spinocerebellar ataxia of an AAV vector delivering a cargo expressing shRNA
targeting polyglutamine induced neurodegeneration significantly restored cerebellar mor‐
phology and improved motor coordination in mice [77].

Although highly efficient in delivering their cargo, viral vectors have their disadvantages.
Adenoviral vectors have the disadvantage of triggering a strong immune (adaptive and innate)
response by repeated administration, in addition to target organ immunotoxicity, specially
hepatotoxicity [78-80], which resulted in 1999 in the death of one 18-year-old male who
received high dose of adenovirus that was delivered directly in the hepatic artery in a clinical
gene therapy safety study [81]. Clonal T-cell acute lymphoblastic leukemia caused by inser‐
tional mutagenesis in a gene therapy completed clinical trial involving patients suffering X-
linked severe combined immunodeficiency (SCID-X1) was reported in one out of the 10
patients using a retroviral vector [82]. Integration of the vector genome material in the antisense
orientation 35 kb upstream of the protooncogene (LMO2) caused over expression of the gene
in the leukemic cells. In a similar study, 4 out of 9 patients developed leukemia within 3-6 years
post-treatment mainly due to vector-mediated upregulation of host cellular oncogenes [83,
84]. In addition, immune responses (whether adaptive or innate) of varying degrees depending
on the type of vector, dose, and target organs were reported for lentiviral, adenoviral, adeno-
associated viral vectors [80].

Current research on viral vectors for gene therapy is focussed on approaches such as vector
engineering e.g. modifying the viral capsid or pseuodotyping the envelope, different delivery
strategies, and administration to immune-privileged sites that can tolerate the delivered viral
vectors without responding with an inflammatory response [80, 85]. Other research focusses
on the essential scaling-up process of vector production and increasing the packaging effi‐
ciency of the vectors [85], the processes without which, the wide spread and successful
therapeutic use of the viral vectors will be very difficult to achieve.

3.3. Non-viral vectors

Non-viral vectors for gene and siRNA delivery are an alternative to viral vectors, as they do
not suffer many of the disadvantages of the viral vectors, especially immunogenicity and
tumourigenicity. The non-viral vectors can be classified generally as peptides, polymeric based
vectors, carbohydrate based, and lipid based [86]. CPPs, also known as peptide transduction
domains (PTDs), have shown the ability to cross the cellular membrane despite their relatively
high molecular weight and size (Table 3).

PTDs generally are short amphipathic and/or cationic peptides that can transport many
hydrophilic molecules across the cell membrane. A wide range of molecules including
liposomes [87, 88], peptides, proteins [89], peptide nucleic acids [90] and polynucleotides [91]
are delivered intracellularly using PTDs and they have also been applied in vivo [59, 92, 93].
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It was reported by Frankel and Pabo in 1988 that the HIV-1 derived TAT protein could be taken
up by cells growing in tissue culture [102], and that a small basic region of TAT (48-60) was
essential for uptake by the cells [103]. PTDs include antennapedia homeodomain protein
(Antp, penetratin), mitogen-activated protein (MAP), poly-arginine, transportan, VP22 [59,
92]. Two major pathways are involved in the uptake of PTDs and PTD-cargos: direct translo‐
cation at 4 °C and 37 °C and endocytosis-translocation at 37 °C. These mechanisms depend on
many factors: cargo size, cell line, PTD concentration, and the type of PTD [59, 104, 105]. siRNA
can be conjugated covalently to the CPP or can be complexed with the cationic groups of basic
amino acids that are present in the backbone of the CPP. As a representative example of non-
covalent complexation, CADY [94], which is basic due to its five arginine residues can complex
with the negatively charged siRNA. Another example of non-covalent complexation is the
poly-arginine CPP [98].

PEI (Figure 6) is an efficient, but toxic, plasmid DNA delivery vector. However, as a siRNA
delivery vector PEI is reported to be much less efficient [106, 107]. This decreased efficiency is
due to the dissociation of the siRNA/PEI complex upon interaction with the negatively charged
cell membrane, which is suggested to be because of the short length of siRNA and the
associated weak electrostatic interaction with PEI [108, 109]. Another drawback of PEI is its
relatively high toxicity [110]. Thus, in addition to linear PEI, PEI polymers with a wide range
of molecular weights were developed to increase PEI efficiency and/or decrease toxicity,
although not all PEI are suitable for siRNA delivery [111]. The main advantage of PEI is the
ability of its variety of amino groups to be protonated at lower pH (inside endosomes) leading
to what is known as the “proton-sponge effect” [112], and efficient escape of the nucleic acid
cargo from endosomes.

One approach to enhance siRNA delivery with PEI is increasing the hydrophobicity of PEI by
covalently conjugating alkyl chains [113], where increasing the hydrophobic alkyl chain length
generally improved the stability of the PEI/siRNA complex. In a similar strategy, cholesterol
was conjugated to PEI with decreased toxicity of the conjugates [114]. Low molecular weight
PEI (MW < 5 kDa) is less toxic than the higher molecular weight PEI (≈25 kDa), but less efficient

CPP Sequence of CPP

Type of

association

with siRNA

Target mRNA

CADY GLWRALWRLLRSLWRLLWRA Non-covalent GAPDH, p53 [94]

EB1 LIRLWSHLIHIWFQNRRLKWKKK Non-covalent Luc [95]

MPG GALFLGFLGAAGSTMGAWSQPKKKRKV Non-covalent Luc, GAPDH [96] Oct-3/4 [97]

Poly-arginine RRRRRRRRR Non-covalent VEGF [98]

Penetratin RQIKIWFQNRRMKWKK

Covalent

Covalent

Covalent

Luciferase (Luc), EGFP [60]

SOD1, caspase-3 [99]

Luc, p38 MAP kinase [61, 100]

Transportan LIKKALAALAKLNIKLLYGASNLTWG Covalent Luc, EGFP [100]

TAT GRKKRRQRRRPPQ Covalent EGFP, CDK9 [101]

Table 3. Selected CPPs used for siRNA delivery [59].
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in polynucleotide delivery, thus, cross-linking of the low molecular weight PEI with disulfide
bonds which are cleaved in the reducing environment of the cytoplasm increased the efficiency
of siRNA delivery through the enhanced release of siRNA in the cytoplasm [115].

Chitosan is a biocompatible and biodegradable polysaccharide that is a copolymer of N-acetyl-
D-glucosamine and D-glucosamine. Chitosan has weakly basic properties due to the presence
of the D-glucosamine residue with a pKa value 6.2-7.0. The molecular weight of chitosan affects
the complex stability, size, zeta-potential and in vitro gene knock-down of siRNA/chitosan
nanoparticles [116]. High molecular weight (64.8-170 kDa) chitosan formed stable complexes
with siRNA and resulted in high gene knock-down efficiency in human lung carcinoma
(H1299) cells, while low molecular weight (10 kDa) chitosan could not complex the siRNA into
stable nanoparticles and showed almost no knock-down [117]. The method of association
affects gene silencing efficiency, where chitosan-TPP/siRNA nanoparticles (siRNA entrapped
inside the nanoparticles, and TPP is sodium tripolyphosphate and used as a polyanion to cross-
link with the cationic chitosan groups by electrostatic interactions) showed high siRNA
binding and better gene silencing in vitro compared to siRNA/chitosan particles prepared by
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Figure 6. Representative examples of polyamines used in siRNA delivery either as in lipid conjugates of polyamine al‐
kaloids e.g. spermine and spermidine, or as in polyethylenimine (PEI), a cationic polymer.
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simple complexation and adsorption of siRNA onto chitosan [118]. Although chitosan has
good potential as a non-viral gene delivery vector, widespread use is largely limited by its
poor solubility (because of their pKa, chitosan amino groups are only partially protonated at
the physiological pH 7.4), poor stability of its siRNA complexes at the physiological pH, and
low transfection efficiency. Various strategies have been adopted to overcome these draw‐
backs, such as covalently conjugating PEG to chitosan and binding targeting ligands to enhance
cell specificity [116].

Cyclodextrins (CD) are cyclic oligosaccharides composed of 6, 7, or 8 D-(+)-glucose units,
known as α-CD, β-CD, γ-CD respectively, bound through α-1,4-linkages. Polymers conjugated
to β-CD lack immunogenicity and hence are attractive vectors for polynucleotide delivery. β-
CD have a hydrophilic outer surface and a hydrophobic inner cavity which enable them to
form inclusion complexes. Efficient cellular transfection of siRNA labelled with a fluorescent
tag into human embryonic lung fibroblasts (MRC-5 cells) was observed by siRNA complexes
with the β-CD guanidine derivatized bis-(guanidinium)-tetrakis-(β-cyclodextrin) tetrapod
(having four β-CD units) [119]. The ability of β-CD to form inclusion complexes was used to
develop a siRNA delivery vector. β-CD was covalently bound to a polycationic segment (to
electrostatically bind siRNA), while adamantane-PEG-transferrin (adamantane can fit in the
β-CD cavity) formed an inclusion complex which can enhance the stability of siRNA nano‐
particles in vivo [120]. This system was used to deliver siRNA silencing the EWS-FLI1 gene
thus inhibiting tumour growth in a murine model of metastatic Ewing's sarcoma. The first
experimental siRNA therapeutic to provide targeted delivery in humans was reported by
Davis and co-workers [121]. siRNA was formulated into a nanoparticle (CALAA-01), which
consisted of a cyclodextrin-containing polymer that contains amidine and primary amine
functional groups, a PEG for steric stabilization in the in vivo environment (via inclusion
complexes of β-CD with adamantine-PEG conjugate), and human transferrin (Tf) as the
targeting ligand to binds to the transferrin receptors that are over-expressed on cancer cells.
The siRNA/nanoparticles components self-assembled in the pharmacy. CALAA-01 was
administered intravenously to the first patient with a solid cancer in a phase I clinical trial
(safety study) in May 2008 [121]. Tumour biopsies from patients’ melanoma after treatment
(phase I clinical trial) showed the presence of intracellular nanoparticles. Reductions in the
levels of both the specific mRNA (M2 subunit of ribonucleotide reductase, RRM2) and the
protein (RRM2) were found when compared to levels in pre-dosing tissues. These results
demonstrated that siRNA nanoparticles administered systemically to a human patient can
produce a specific gene knock-down via an RNAi mechanism of action [122]. A recent and
novel approach to the synthesis of cationic or neutral PEGylated amphiphilic β-CD used
copper-catalysed “click” chemistry to modify selectively the secondary 2-hydroxyl group of
the β-CD. The 6-position of these β-CD conjugates was conjugated to a dodecane alkyl chain.
Complexation of cationic β-CD alone with siRNA resulted in good silencing of the luciferase
reporter gene in Caco2 cells in culture. Co-formulation of cationic β-CD with a PEGylated β-
CD and siRNA resulted in lower surface charges and reduced aggregation. The transfection
efficiency of the cationic β-CD vector was lowered by co-formulation with the PEGylated β-
CD, although the siRNA binding was not affected and the surface charge of the complexes did
not reach complete neutrality [123].
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Dendrimers have a central core to which are connected several branched arms in a manner
that can be symmetrical or asymmetrical. During the synthesis of dendrimers, arms (branches)
are added to the core structure. Each addition is called a generation and increases the previous
generation number by one. Due to their unique structure, dendrimers can have a planar,
elliptical, or spherical shape depending on generation number. Among the most widely used
dendrimers are polyamidoamine (PAMAM) and polypropylenimine (PPI) dendrimers [124].
Dendrimers which have positively charged cationic groups on their outer surface are com‐
monly used for polynucleotide delivery. The transfection efficiency of dendrimers increases
with increasing the charge density or generation number [125]. However, dendrimers with
high generation number are generally more cytotoxic compared to dendrimers with low
generation number [126]. Usually the inner space near the core is larger compared to outer
space near the surface due to the lower density of molecules (less number of arms) near the
core, which allow small molecules to be incorporated in the inner space. Owing to the relatively
large molecular weight of polynucleotides, they are usually bound to the surface of cationic
dendrimers and not in the inner space of the dendrimer. Generally, the toxicity of dendrimers
is lower than that of PEI or poly-L-lysine (PLL) [127]. One advantage of dendrimers is that
they have pH buffering capacity (proton-sponge effect), an important feature for endosomal
escape and enhancing the release of polynucleotides [125, 128].

PPI dendrimers with high generation numbers (4 and 5) were more efficient in forming discrete
nanoparticles with siRNA and in gene silencing in human lung cancer (A549) cells than lower
generation dendrimers (2 and 3). Generation 5 PPI dendrimers were more toxic, probably due
to the increased positive charge density per dendrimer, than generation 4 dendrimers [129].
Complex formation between PAMAM dendrimers with an ethylenediamine core and siRNA
as a function of three variables has been reported [130]. The ionic strength of the medium
(without or with 150 mM NaCl), the generation number (4, 5, 6 and 7) and the N/P ratio (ratio
of positively charged amine groups per negative phosphate) were varied. The size of the
complexes depended on the ionic strength of the media, with the strong electrostatic interac‐
tions in medium without NaCl making siRNA/dendrimer complexes smaller than those
obtained in 150 mM NaCl. Both the intracellular delivery and the silencing of EGFP expression
in cell culture was dependent on complex size, with smaller complexes efficiently delivered,
and resulting in the highest silencing of EGFP expression. siRNA complexed with generation
7 dendrimers resulted in the highest silencing of EGFP expression both in human brain tumour
cell line T98G-EGFP (35%) and mouse macrophage cell line J-774-EGFP (45%) cells, in spite of
having lower protection of siRNA against degradation with RNase A, showing the importance
of formulation procedures on the efficiency of transfection [130].

4. Cationic lipids as non-viral vectors for siRNA and DNA delivery

4.1. Gene delivery by cationic lipids

Gene delivery (DNA transfection) with cationic lipids (Figure 7) dates back to 1987 when it
was reported by Felgner et al. [131], and the term “lipofection” was coined. Small unilamellar
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liposomes containing the cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethyl ammo‐
nium chloride (DOTMA) was reported to spontaneously complex DNA completely entrapping
the DNA, and enhanced fusion with the cell membrane in vitro in cell cultures, resulting in
efficient delivery and expression of the delivered DNA. The lipofection was 5-100-fold more
effective than the commonly used transfection techniques at the time by either calcium
phosphate or DEAE-dextran (diethylaminoethyl-dextran), depending on the cell line used
[131]. Cationic lipids have polar and non-polar domains and thus are amphiphilic in nature,
with three general structural domains: (a) a cationic hydrophilic head-group (positively
charged). The head-group can carry a permanent positive charge as in quaternary ammonium
groups, or can be protonated at the physiological pH 7.4, such as primary and secondary amine
groups. There can be one cationic group per lipid molecule (monovalent cationic lipids) or
more than one cationic group per lipid molecule (multivalent cationic lipids); (b) a hydropho‐
bic domain covalently attached by a linker to the cationic head-group. This domain can be in
the form of either alkyl chains (commonly 2 chains) of various chain lengths (with various
oxidation states) or can be a steroid such as cholesterol; (c) the linker between the head-group
and the hydrophobic domain [132, 133]. This linker controls the biodegradation of the cationic
lipid and its stability under different conditions according to the type of chemical bonds (e.g.
ester, ether, or amide). Each domain can be controlled to change a specific character of the
cationic lipid, e.g. using a disulfide functional group as a bioresponsive linker [134] which is
reduced in the intracellular environment by glutathione/glutathione reductase and enhance
biodegradation characters of the lipid and decrease its cytotoxicity.

4.2. The cationic head-group

The cationic head-group’s main function is to bind electrostatically the negatively charged
phosphates of the polynucleotides. The complexes of cationic lipids with polynucleotides such
as DNA and siRNA are called lipoplexes. This requires the presence of a positive charge on
the head-group at the physiological pH 7.4, i.e. the pKa of the head-group is ideally at least
one unit higher than the physiological pH. The most commonly used head-groups contain
nitrogen (e.g. amines or guanidines). However other head-groups, e.g. arsonium and phos‐
phonium have been reported [135]. Arsonium is less toxic than arsenic (III), and in vitro
cytotoxicity evaluation showed that arsonium and phosphonium are surprisingly less toxic
than the ammonium group [135, 136].

One property that can be changed by controlling the type of the head-group is the head-group
cross-sectional area. The greater the difference between the cross-sectional area of the polar
head-group and that of the hydrophobic domain, when the former is designed to be smaller
than the latter, the greater is the ability of the cationic lipid to fuse with the cell membrane and
endosomal membrane and the greater is the release of polynucleotides from their complex
with the cationic lipid due to the decreased structural stability of the lipid assembly [133,
137]. The hydration of the head-group affects its cross-sectional area, thus, the conjugation of
groups which decrease the hydration state (such as hydroxyalkyl groups that form intermo‐
lecular H-bonds) decreases the head-group cross-sectional area.

Thus, gene delivery by DOTMA and DOTAP (1,2-dioleoyloxy-3-(trimethylammonio)-
propane) was enhanced by incorporation of a hydroxyethyl group to yield the lipids DORIE
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(1,2-dioleyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide) and DORI (N-[1-(2,3-
dioleoyloxy)propyl-N-[1-(2-hydroxy)ethyl]-N,N-dimethyl ammonium iodide) respectively
[138, 139]. The head-group cross-sectional area can be also controlled by subtle changes to the
head-group structure. The DC-Chol (3β(N-(N',N'-dimethylaminoethane)carbamoyl)cholester‐
ol) with dimethylamino head-group resulted in more efficient transfection compared to DC-
Chol with diethylamino or diisopropylamino head-groups, probably due to increased steric
repulsion of the head-groups.

The in vitro gene transfer with six non-cholesterol-based cationic lipids (each having two alkyl
chains) with a single guanidinium head-group in Chinese hamster ovary (CHO), COS-1,
MCF-7, A549, and HepG2 cells has been reported [140]. These lipids were able to form
lipoplexes with size-range 200-600 nm and ζ-potential +3.4 to -34 mV. The efficiencies of the
lipids which had an extra quaternized cationic centre were 2-4-fold more than that of the
commercially available reagent Lipofectamine in transfecting COS-1, CHO, A-549, and MCF-7
cells. MTT viability assay in CHO cells showed high (>75%) cell viabilities at the lipid/DNA
charge ratios used. DNase I protection assays showed that the lipids having the extra quater‐
nized centre protected DNA better against enzyme catalysed hydrolysis. These results shed
light on the importance of choosing the type of head-group and number of cationic centres in
designing cationic lipids [140].

A series of cationic cholesterol derivatives were synthesized by covalently attaching the
heterocycles imidazole, piperazine, pyridine, and morpholine groups (the head-groups) to the
parent cholesterol via a biodegradable carbamoyl linker [141]. These lipids were compared
with the parent DC-Chol with the linear amine head-group, and they generally showed better
or comparable transfection efficiency of pCMV-luciferase into human HepG2 cells (a human
liver cancer cell line) in the presence or absence of FCS. The most efficient two of these lipids
were with morpholine and piperazine head-groups, and they gave higher levels of gene
expression in HepG2 and human melanoma cell line (KZ2) which are generally very hard to
transfect with the commonly used reagents e.g. DC-Chol, Lipofectamine, and PEI. In vivo
studies with lipids having morpholine and piperazine head-groups resulted in successful
delivery of the reporter gene to the target cells through intrasplenic injection [141]. Cationic
lipids which have more than one cationic head-group (multivalent cationic lipids) have more
surface charge density than their monovalent (with one head-group) analogues, and they are
generally expected to better bind and complex polynucleotides. Many multivalent cationic
lipids contain a natural occurring polyamine such as spermidine and spermine, which are
believed to interact with the minor groove of B-DNA [142].

The triamine spermidine and the tetramine spermine (Figure 6), and their diamine precursor
putrescine, are organic polycations that are widely but unevenly distributed in both mamma‐
lian and non-mammalian cells and tissues. They have an essential role in controlling DNA,
RNA and protein synthesis during normal and neoplastic growth, in cell differentiation, and
tissue regeneration [143]. These polyamines exhibit many metabolic and neurophysiological
effects in the nervous system, and are important for the developing and mature nervous system
and affect modulation of ionic channels and calcium-dependent transmitter release [143-149].
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Figure 7. Representative examples of cationic lipids used in DNA and siRNA delivery.
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Spermine is incorporated in the cationic polymer polyspermine imidazole-4,5-imine (PSI) and in
dioctadecylamidoglycyl-spermine (DOGS) [150] (Figure 7); spermidine is bound in cholesteryl-
spermidine [151]. The free amine groups of spermine in cholesteryl-spermine conjugates have
different pKa values and provide a buffering effect in the endosomes facilitating the escape of
lipoplex from the endosomes [152]. The length of the linear polyamine attached to the hydropho‐
bic domain and the charge distribution on it affects the transfection efficiency of the cationic lipid
[153]. Addition of amine groups separated by methylene groups to the linear polyamine attach‐
ed to a cholesterol residue did not automatically increase transfection efficiency regardless of the
increased charge density. Molecular modelling simulations suggested that increasing chain
length led to an increased number of folded conformations due to greater flexibility of the
conjugates, which is unfavourable for interaction with DNA [132, 153].

The central tetramethylene motif of spermine was reported to be essential in conferring high
transfection efficiency in a series of cholesterol-polyamine conjugates [152]. It was suggested
that the tetramethylene segment of spermine can bridge between the DNA complementary
strands, while the polyamine with a central trimethylene segment would only bind with the
adjacent phosphates on the same DNA strand. These results point to the importance of the
structure of the polyamine head-group and the relation between its amine groups, and also
point to the fact that increasing efficiency of transfection is not only a matter of increasing the
number of positive charges per head-group.

4.3. The hydrophobic domain

The length, saturation state and type of the hydrophobic chains conjugated to cationic lipids
affect their transfection efficiency [154-156]. Although these factors were studied extensively
for the effect on transfection, and although the majority of studies accepted that the type of
alkyl chains influence the outcome of transfection, it is difficult to set a definitive set of rules
to describe the best type of alkyl chains to be conjugated to the polar head-groups. The
contribution of the alkyl chains (and the hydrophobic domain) to the cationic lipid properties
as a whole is what determines the transfection efficiency of the lipid.

Results obtained with DMRIE (1,2-dimyristyloxypropyl-3-dimethylhydroxyethyl-ammonium
bromide) [157], glycine betaine conjugates [138] with two alkyl chains, alkyl acyl carnitine
esters having chains of length C12 to C18 [158], lactic acid conjugates of N,N-dialkyl amine
group [159], lipids related to DOTAP with two alkyl chains (C12-C18) linked to the head-group
through ether bonds [160], and cationic lipids with different hydroxyethyl or dihydroxypropyl
ammonium backbones and esterified hydrocarbon chains and hydroxyl substituents [161]
showed that a comparison of the cationic lipids based only on the lengths of the two saturated
aliphatic chains led to the observation of the superior transfection efficiency of C14 chains over
the longer C16 and C18 chains [132, 133]. It was proposed that a shorter chain length facilitates
mixing with cellular membranes [138] which is important for endosomal escape [162].

In another set of experiments, we showed the longer chain C18 oleoyl (with one cis-double
bond) to be more efficient than cationic lipids with shorter chain lengths. Varying the chain
length in N4,N9-diacyl spermines from C10 to C18, for plasmid DNA delivery, resulted in us
establishing that the conjugate with C18 oleoyl chains is both more efficient and less toxic than
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the shorter chain conjugates [163]. A series of multivalent Gemini-surfactants with the
hydrophobic chains systematically varied resulted in the conjugates with C18 oleoyl chains to
be better in transfection than the C16 and C14 alkyl chains [164]. Chain saturation was also
shown to affect the efficiency of transfection. The results of studies on a set of cationic triester
phosphatidyl choline derivatives (each having two alkyl chains) show a strong dependence of
their transfection efficiency on the lipid hydrocarbon chain characteristics, where transfection
activity increases with increasing chain unsaturation from fully saturated to having two double
bonds. Transfection efficiency decreased with increasing chain length (increasing the total
number of carbons per lipid molecule ~30-50). Maximum transfection was with monounsatu‐
rated myristoleoyl 14:1 chains [156]. The data obtained from transfection experiments with 20
cationic phosphatidylcholine (PC) derivatives show that hydrocarbon chain variations results
in transfection efficiencies that varies by more than 2 orders of magnitude. The most important
variables were chain saturation state and total number of carbon atoms in the lipid chains.
Transfection increased with decreasing chain length and increasing chain unsaturation. Best
transfection efficiency was found for cationic lipids with monounsaturated (myristoleoyl) 14:1
chains [154]. Higher levels of transfection were also reported with lipids having oleoyl chains
in comparison with stearoyl chains [157, 158]. Unsaturated chains promote lipid fusion
between the lipoplexes and the various cellular membranes, which is essential for delivery and
endosomal escape [133, 154, 165].

Cholesterol derivatives with various cationic head-groups were synthesized to investigate
their efficiency as siRNA delivery vectors. The transfection efficiencies of siRNA lipoplexes
prepared with the cationic cholesterol derivatives DC-Chol, cholesteryl-3β-carboxyamido-
ethylene-N-hydroxyethylamine (OH-Chol), and N-hydroxyethylaminopropane carbamoyl
cholesterol (HAPC) was investigated in human prostate tumour cells that stably express the
luciferase gene (PC-3-Luc). When lipoplexes were prepared in water, HAPC was more
effective in knocking-down luciferase activity than OH-Chol and DC-Chol [166]. The presence
of NaCl while preparing the lipoplexes increased the gene silencing efficiency of luciferase,
while it did not affect efficiency of HAPC. The commercially available transfection reagent,
Lipofectamine 2000 (a cationic lipid liposomal preparation) resulted in strong gene silencing
by siRNA, but exhibited increased toxicity (~40% cell viability), in contrast to OH-Chol, DC-
Chol, and HAPC lipoplexes (~80–100% cell viability). These results indicated that siRNA
lipoplexes prepared with OH-Chol, and HAPC can efficiently suppress gene expression
without increased cytotoxicity [166].

4.4. The linker

The linker is dependent upon the type (hence properties) of the functional group and its length
(number of carbon atoms). The linker has two main functions: (a) to conjugate covalently the
polar head-group to the hydrophobic domain; (b) to control the biodegradability of the cationic
lipid and/or introduce a new property to the cationic lipid, e.g. responding to the intracellular
reducing environment [133, 167]. The most commonly used linker functional groups are:
amide, carbamate, ester, ether, ortho ester, and disulfide.
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Both amides and ester bonds are biodegradable and hence are hypothesized to be less toxic
than other non-biodegradable bonds (e.g. ethers) [168]. Lipids with a pyridinium head-group
(with palmitoyl 16:0 hydrophobic domains and with ester and amide linkers) were used to
prepare liposomes with either DOPE or cholesterol at the cationic lipid/helper-lipid molar ratio
of 1:1. Following transfection of CHO cells with lipoplexes delivering plasmids expressing
EGFP, the cationic lipids having amide linkers significantly increased transfection efficiency
in all liposomal formulations compared to their counterparts having the ester linker [169]. The
high transfection efficiency of lipids with amide linker was suggested to be due to their lower
phase-transition temperature which makes the liposome’s bilayer structure more stable in
aqueous media during the transfection process as well as liposome storage. The phase-
transition temperature of a lipid is the temperature at which there is a change in the lipid’s
physical state from the ordered gel phase (where the hydrocarbon chains are closely packed
and fully extended) to the disordered liquid crystalline phase (where the hydrocarbon chains
are fluid and randomly orientated) [169].

Depending on the structure of the cationic lipid, the linker influence on transfection efficiency
can be more than on cytotoxicity. Cholesterol-based cationic lipids that have different nitro‐
genous heterocyclic head-groups (N-methylimidazole, N-methylmorpholine, and pyridine)
and acid-labile linkers (carbamate, ester, and N,O-acetal ether) were used to transfect human
embryonic kidney 293 (HEK 293) cells with EGFP plasmid [170]. Choosing those linkers was
based on the concept that incorporation of acid-labile bonds in the cationic lipid structure
enhances the release of polynucleotides from the endosomes, therefore increasing the trans‐
fection efficiency [171]. N,O-Acetals are known to undergo hydrolysis in acidic environment
[170, 171]. The results showed that the structure of these lipids only slightly affected their
cytotoxicity but largely changes the efficiency of intracellular accumulation of the polynu‐
cleotides. The lipids having the cationic head-groups pyridine and/or methylimidazole head-
groups with either an ester or a carbamate linker resulted in better transfection efficiency as
compared with the cationic lipids with either the N-methylmorpholine head-groups and/or
an ether linker. The lipid that has a pyridine head-group and a carbamate linker to deliver
EGFP plasmid resulted in comparable transfection efficiency with that achieved with com‐
mercially available Lipofectamine 2000.

Two cleavable cationic lipids having a linear or a cyclic ortho-ester linker between the cationic
head-group and the unsaturated hydrophobic domain (two oleoyl chains) were previously
reported [172]. It is hypothesized that the acidic pH in the endosomes catalyzes the hydrolysis of
the linker group to result in fragmentation products that destabilize the endosomal mem‐
branes. At pH 7.4, the lipids (with DOPE) formed stable lipoplexes with plasmid DNA. Decreas‐
ing the pH enhanced the hydrolysis of the ortho ester linkers which removed the cationic head-
groups and caused lipoplex aggregation. At pH 5.5, the cationic lipid N-[2-methyl-2-(1',2'-
dioleylglyceroxy)dioxolan-4-yl]methyl-N,N,N-trimethylammonium iodide that have a cyclic
ortho-ester linker showed increased pH-sensitivity and caused the permeation of its lipoplexes
to model biomembranes within the time span of endosomal processing before the lysosomal
degradation. This lipid markedly increased gene transfection (~3-50-fold) of the luciferase
reporter protein in monkey kidney fibroblast (CV-1) and human breast cancer (HTB-129) cells in
culture compared to the pH-insensitive control lipid DOTAP lipoplexes [172].
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Transfection with DNA lipoplexes of three thiocholesterol-derived gemini cationic lipids
possessing disulfide linkages incorporated between the cationic head-group and the thiocho‐
lesterol backbone in order to render the lipids biodegradable has been reported [173]. Com‐
paring transfection in a prostate cancer line (PC3AR) and a human keratinocyte cell line
(HaCat) with two commercially available reagents showed comparable or better expression
of GFP in the transfected cells. Cytotoxicity studies showed the nontoxic property of these
lipid-DNA complexes at different N/P ratios used for transfection studies. The rationale behind
this design was to ensure the destabilization of the lipid-polynucleotide lipoplexes in the
cytoplasm after reduction of the disulfide linker by the intracellular glutathione (GSH), which
is the most abundant low molecular weight thiol present in cells and is involved in controlling
cellular redox environment. GSH is found at very high intracellular concentrations and at
comparatively low extracellular concentrations e.g. blood plasma concentrations (2 µM) are
1000-fold less than concentration in erythrocytes (2 mM). This large difference between intra-
and extracellular environments provides a potential mechanism for release of polynucleotides
from lipoplexes of lipids that have a disulfide functional group linker and is now a well-
trodden research path [115, 134, 173].

5. Conclusions and future avenues

In our research, symmetrical and asymmetrical acyl polyamine derivatives (fatty acid amides
of spermine) [152] have been synthesized, characterized, and evaluated as non-viral vectors
for siRNA [163, 174-177]. The intracellular delivery of siRNA and the subsequent sequence
specific gene silencing has been quantified by flow cytometry techniques (FACS analysis)
[163]. The ability of the spermine conjugates to bind siRNA and form nanoparticles has been
investigated and the effect of the complexes of siRNA lipoplexes on the cell viability 48 h post-
transfection has been quantified. Our SAR studies allow the identification of the most efficient
fatty acids in terms of high gene-silencing efficiency and high cell viability [174-178].

Whilst we were completing this Chapter, four interesting papers, each one on a different aspect
of this topic, were published. Langer, Anderson and co-workers at MIT reported on the
delivery of immunostimulatory RNA (isRNA) to Toll-like receptor (TLR)-expressing cells to
drive innate and adaptive immune responses. The specific activation of TLRs has potential for
a variety of therapeutic indications including antiviral immunotherapy and as vaccine
adjuvants. Effective lipidoid-isRNA nanoparticles, when tested in mice, stimulated strong
IFN-α responses following subcutaneous injection, had robust antiviral activity that sup‐
pressed influenza virus replication, and enhanced antiovalbumin humoral and cell-mediated
responses when used as a vaccine adjuvant. Their lipidoid formulations, designed specifically
for the delivery of isRNA to TLRs, were superior to the commonly used N-[1-(2,3-dioleoy‐
loxy)propyl]-N,N,N-trimethylammonium methylsulfate-RNA delivery system and may
provide new tools for the manipulation of TLR responses in vitro and in vivo [179]. This paper
follows after their other recent major contribution on delivering naked siRNA as part of a self-
assembled (due to DNA complementarity) tetrahedral nanoparticle construct considering the
presentation of folate as a cancer targeting ligand [180]. These monodisperse nanoparticles of
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essentially naked DNA, carrying siRNA as the cargo, have a defined size of only a few nm.
They show that at least three folate molecules per nanoparticle are required for optimal
delivery of the siRNA into cells and that gene silencing only occurs when the ligands are
appropriately orientated. In vivo, these naked DNA nanoparticles showed a longer blood
circulation time than the parent siRNA [180]. In another exciting development, Geall and co-
workers at Novartis have also advanced the field of nucleic acid vaccines by taking advantage
of the recent innovations in non-viral systemic delivery of siRNA using lipid nanoparticles
(LNPs) to develop a self-amplifying RNA vaccine. This technology elicited broad, potent, and
protective immune responses, comparable with those achieved by a viral delivery system, but
without the inherent limitations of viral vectors [181]. Even today, a biologically responsive
cationic polymer system based on spermine has been reported for the intracellular delivery of
siRNA [182]. This polyspermine imidazole-4,5-imine (PSI) (Figure 7) carrier is designed to be
hydrolysed at the mildly acidic pH found in the endosome.

It is clear that both ssRNA to activate the immune system and RNAi brought about by siRNA
delivery have high therapeutic potential. The major remaining barrier, that of efficient and
potentially selective delivery to target cells in now being addressed. The non-viral delivery of
siRNA is a major tool in modern functional genomics. Medicines design, the formulation of drugs,
in this case siRNA and plasmid DNA, is an essential requirement for efficient gene therapy.
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