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1. Introduction

Atherosclerosis has been formerly considered as a lipid-mediated disease. It has long been
assumed that atherogenesis could be simply explained by lipid accumulation in the vessel
wall leading to endothelial dysfunction with adverse vascular wall remodelling. However,
over the last decade, a number of studies have clearly demonstrated that lipids are not the
whole story in the pathogenesis of atherosclerosis. Accumulating evidence has shown that
inflammation and the immune system play a major role in the initiation, progression and
destabilization of atheromata [1,2,3,4]. Mainly innate immunity pathways have long been
believed to contribute to atherogenesis, and special attention has been given to macrophag-
es, because these effector cells are important for intracellular lipid accumulation and foam
cell formation [5]. Yet, although macrophages constitute the largest cell population, other
immune cell subsets, namely dendritic cells (DCs) and T cells, can also be found within athe-
rosclerotic plaques and seem to participate in immune responses during atherogenesis.

DCs are the pacemakers of the immune system. These professional antigen-presenting cells
play a key role in inducing adaptive immune responses on the one hand, and are critically
involved in promoting and maintaining immune tolerance on the other [6]. They originate
from hematopoietic stem cells in the bone marrow and circulate as precursors in the blood
stream, taking residence in target tissues at sites of potential antigen entry. Within blood
vessels [7] and other tissues, they give rise to immature interstitial DCs that act as sentinels,
which continuously and efficiently sample the antigenic content of their microenvironment.
In the steady state, immature DCs capture harmless self-antigens in the absence of inflam-
matory signals. They might enter the regional lymph nodes to present the self-antigen to na-
ive or resting T cells, which will be deleted by apoptosis, silenced by the induction of anergy
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or primed to become regulatory T cells [8]. In contrast, when infection and tissue damage
occur, immature DCs take up antigens in the presence of inflammatory signals, which
evokes activation and functional transformation into mature DCs. Meanwhile, they exit the
non-lymphoid tissues to migrate via afferent lymph vessels to lymphoid tissues, where they
completely mature. Mature DCs present short peptide fragments, which are bound to the
surface molecules CD1 or major histocompatibility complex (MHC)-I or MHC-II. Conse-
quently, they activate (naive) T and B lymphocytes that recognize the presented antigen [9].
Morphological changes occur as well during the DC life cycle: DC precursors are often
small, round-shaped cells that turn into larger cells with an irregular (star-like) shape and
cytoplasmic protrusions (dendrites) as the cell matures, while migrating DCs are also called
veiled cells, as they possess large cytoplasmic 'veils' rather than dendrites [10].

Following the first observation of DCs in human arteries in 1995 [11], numerous studies sug-
gest that these cells presumably play a crucial role in directing innate or adaptive immunity
against altered self-antigens present in atherosclerosis. Localization of DCs nearby vasa
vasorum allows monitoring of the major access pathways to the vessel wall and screening of
the tissue environment for the appearance of exogenous and endogenous stressors [12].
Once sufficiently activated, DCs in the arterial wall might present the (modified auto-) anti-
gens, such as oxidized epitopes on apoptotic cells, oxidized low density lipoproteins
(oxLDL) or heat shock proteins (Hsp) to T cells and initiate inflammatory responses.

2. (Auto-)antigens implicated in atherogenesis and their effects on DCs

Many (auto-)antigens are involved in atherogenesis, both endogenous and exogenous. Here,
we summarize some of the best-studied endogenous self-antigens in relation to DC function.

2.1. Oxidized low density lipoprotein (oxLDL)

OxLDL is one of the best-studied antigens in atherogenesis. It is considered as a ‘neoanti-
gen’, i.e. a self-antigen that has the potential to provoke an auto-immune response upon
modification, but that is tolerated by the immune system in its normal (unmodified) form
[13]. It has already been shown that oxLDL can induce differentiation of monocytes into
phenotypically abnormal cells, when it is added to monocytes during the early stages of dif-
ferentiation [14]. These cells have functional characteristics of DCs, such as decreased endo-
cytosis capacity, increased ability to stimulate T cell proliferation and secretion of IL-12, but
not IL-10. These findings were consistent with our own study (unpublished data), which
showed that monocytes differentiated (at least partly) into DCs, when they were incubated
with oxLDL. This was evidenced by a pronounced decrease in the expression of CD14, a
typical monocyte/macrophage marker, and increased expression of CD1a, which is mainly
expressed on cortical thymocytes and DCs, and CCR-6, a receptor for CCL20 that is ex-
pressed by resting T cells and DCs (figure 1).
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Figure 1. Effects of oxLDL on monocyte differentiation. Expression of CD14, CCR-6 and CD1a after 24h incubation of
monocytes with 10 pg/mL oxLDL or 50 ug/mL oxLDL points to differentiation to a phenotype with characteristics of
DCs (N=3). ***P<0.001, *P<0.05 versus control, Repeated Measures ANOVA and Dunnett’s post-hoc test.

Apart from the induction of monocyte differentiation into DCs, oxLDL can also activate
DCs, as demonstrated by several in vitro studies. After 24h incubation with high concentra-
tions of oxLDL (50 pg/mL), expression of activation markers CD40, CD80 and CD83 was sig-

nificantly upregulated (figure 2), and endocytotic capacity was significantly reduced (figure

3; own unpublished data).
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Figure 2. Effects of oxLDL on maturation of monocyte-derived DCs. Expression of maturation markers CD40, CD80 and
CD83 after 24h incubation of immature monocyte-derived DCs with 10 pg/mL or 50 pg/mL oxLDL (N=4). Black bars
represent the positive control for DC maturation, monocyte-derived DCs stimulated with lipopolysaccharide (LPS; 0.1
pg/mL). ***P<0.001, **P<0.01, *P<0.05 versus control, Repeated Measures ANOVA and Dunnett’s post-hoc test.
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Figure 3. Effects of oxLDL on endocytotic capacity of monocyte-derived DCs. Decreased endocytotic capacity of mono-
cyte-derived DCs 24h after stimulation with oxLDL (10 ug/mL or 50 pg/mL) or the positive control LPS (0.1 pg/mL)
provides functional evidence of DC maturation (N=5). *P<0.05, Repeated Measures ANOVA, Dunnett’s post-hoc test.

Cell morphology pointed to DC maturation as well: oxLDL-stimulated monocyte-derived
DCs became more elongated and were arranged in clusters, when compared to unstimulat-
ed monocyte-derived DCs. The arrangement in clusters was also more pronounced when
cells were stimulated with 50 pg/mL oxLDL as compared to cells stimulated with the lower
concentration of oxLDL (10 pg/mL) (figure 4; own unpublished data). Alderman et al. [15]
compared the effects of mildly, moderately and highly oxidized LDL and reported a signifi-
cant upregulation of DC activation markers, including HLA-DR, CD40 and CD86 when cells
were incubated with highly oxidized LDL. Furthermore, highly oxidized LDL increased DC-
induced T cell proliferation. However, high concentrations of highly oxidized LDL (100
pug/mL) inhibited DC function through increased DC apoptosis [15]. In contrast, another
study demonstrated that oxXLDL did not trigger maturation of immature DCs [14]. This
seems to be a discrepancy, but can easily be explained by a concentration-dependent effect
of oxLDL. Perrin-Cocon and colleagues [14] varied the oxLDL concentrations between
2.5-10.0 pg/mL, which could have been insufficient to obtain monocyte-derived DC matura-
tion. Also Zaguri et al. [16] observed no effect of 10 ug/mL oxLDL on CD86, CD83, and
CCR-7 expression on DCs, whereas all those activation markers were upregulated with
higher concentrations of oxLDL (50-100 pg/mL). Finally, Nickel et al. [17] reported matura-
tion and differentiation of DCs by 10 pug/mL, but he investigated other phenotypic out-
comes, such as the expression of scavenger receptors LOX1 and CD36, the mannose receptor

CD205 and the activation of the nuclear factor kappa B (NF-kB) pathway.
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Figure 4. Effects of oxLDL on morphology of monocyte-derived DCs. Representative micrographs of immature, mono-
cyte-derived DC cultures after 24h incubation with medium (A), 0.1 pg/mL lipopolysaccharide (LPS; positive control for
DC maturation; B), 10 ug/mL oxLDL (C), or 50 pug/mL oxLDL (D). Phase contrast light microscopy, magnification: 10x
(A, D), 20x (B, Q).

2.2. Beta2-Glycoprotein I

Beta2-glycoprotein I (32-GPI) is a plasma protein involved in the haemostatic system that
has been detected in carotid atherosclerotic lesions [18]. A previous study in mice showed
that the transfer of lymphocytes obtained from B2-GPI-immunized LDLr” mice into synge-
neic mice resulted in larger fatty streaks within the recipients compared with mice that re-
ceived lymphocytes from control mice [19]. From that study, it appeared that T cells specific
for 32-GPI are able to increase atherosclerosis, suggesting that 32-GP1I is a target auto-anti-
gen in atherosclerosis [19].

In vitro studies have demonstrated that oxidative modification of 32-GPI, either spontane-
ously or induced by treatment with hydrogen peroxide, rendered the self-antigen able to in-
duce an autoimmune response. Oxidized 2-GPI caused DC maturation, indicated by
increased expression of CD80, CD86, CD83 and HLA-DR [20]. In addition, the interaction
between oxidized P2-GPI and DCs led to enhanced secretion of IL-12, IL-13, IL-6, IL-8,
TNFa and IL-10. DCs stimulated with oxidized p2-GPI showed increased allostimulatory
ability and induced T-helper (Th)1 polarization [20]. Also, glucose-modified 32-GPI caused
phenotypic and functional maturation of iDCs, by activation of the p38 MAPK, ERK and
NF-kB pathways. However, DCs stimulated with glucose-modified 32-GPI primed naive T
cells toward a Th2 polarization [21].
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2.3. Heat shock proteins

Another category of auto-antigens that have been implicated in atherosclerosis are the
stress-induced heat shock proteins (HSPs) [22]. HSPs are responsible for the repair or degra-
dation of denatured proteins and, by maintaining protein conformation, they enhance the
cell’s ability to survive under conditions of metabolic or oxidative stress [23]. The mRNA ex-
pression level of several HSPs, including HSP40 and HSP70, has been shown to be signifi-
cantly increased in carotid endarterectomy specimens as compared to healthy arteries [24].
HSP70 seems to be homogenously distributed throughout the intima and media in healthy
aortas, and a strong increase in its immunostaining intensity is observed in aortic athero-
sclerotic plaques [25]. They appear to stimulate an immune response leading to the develop-
ment and progression of atherosclerosis [26]. A number of studies indicate that HSPs are
associated with DC function and might trigger DC activation and maturation. DCs seem to
overexpress HSP70 in atherosclerotic plaques and the latter protein is presumably an impor-
tant trigger for DC activation [27]. Gp96 (of the HSP90 family) and HSP70 have indeed been
shown to stimulate bone marrow-derived DCs in vitro to secrete cytokines [28] and to ex-
press antigen-presenting (MHC II) and costimulatory molecules (B7.2) [29]. However, To-
dryk and colleagues [30] reported that HSP70 targets immature DCs to make them
significantly more able to capture antigens. The presence of HSP70 inhibited DC maturation
induced by tumour cell lysates from parental B16 cells and maintained the DC precursor
population in a more poorly differentiated phenotype. Thus, there is still controversy on
whether HSPs activate DCs or keep them in an immature state, and data are lacking to ro-
bustly support a conclusion.

3. Survival of DCs in oxidative stress environments

Atherosclerosis is a disease that is associated with strong oxidative stress, and the creation
of neo-epitopes is one of the consequences of this situation. As mentioned in section 2, the
presence of reactive oxygen species (ROS) in atherosclerotic plaques may lead to the forma-
tion of oxLDL and oxidized (32-GPL which might affect DC phenotype and function. Indeed,
oxidative stress has been shown to alter the capacity of antigen-presenting cells to process
antigens and to initiate a primary T-cell response. In this respect, it is interesting to unravel
whether DCs show phenotypic adaptations in order to function under oxidative stress situa-
tions. In a recent study, we demonstrated that DCs appear to be resistant to the detrimental
effects of oxidative stress. We showed by confocal live cell imaging that monocyte-derived
DCs, which were generated as described earlier [31], were better capable of neutralizing
ROS induced by tertiary-butylhydroperoxide (tert-BHP) in comparison to their precursor
monocytes [31]. Tert-BHP was selected to induce ROS because it acutely evokes oxidative
stress, resulting in cell toxicity [32]. Decomposition of tert-BHP to alkoxyl or peroxyl radicals
accelerates lipid peroxidation chain reactions [33]. By means of a neutral red viability assay,
we observed that tert-BHP induced significant and rapid cell death in both monocytes and
DCs. Yet, monocyte-derived DCs were more resistant to tert-BHP-induced cell death than
their precursor cells [31]. A PCR profiler array specific for oxidative stress and antioxidant-
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related pathways revealed an upregulation of several important antioxidant genes during
differentiation of monocytes into DCs, including catalase, peroxiredoxin 2 (PRDX2) and glu-
tathione peroxidase 3 (GPX3). Catalase encodes the enzyme that catalyses the decomposi-
tion of hydrogen peroxide to water and oxygen. GPX3 and PRDX2 are genes encoding
enzymes that can detoxify hydrogen peroxide and lipid hydroperoxides [34,35]. However,
PRDX2 is more efficient in neutralizing hydrogen peroxide than catalase or GPXs [36,37].
Immunoblotting or immunohistochemistry showed that the upregulated transcription of
PRDX2 and GPX3 was translated in a significant increase at the protein level. Especially
PRDX2 appears to be an important factor in the neutralization of ROS induced by tert-BHP
[31]. Previously, and in accordance with our recent findings, two studies that used different
detection methods reported high expression of antioxidant enzymes in monocyte-derived
DCs. A functional study indicated indirectly that monocyte-derived DCs might show en-
hanced activity of catalase [38]. A proteomic analysis showed higher expression of superox-
ide dismutase (SOD)2, PRDX1 and PRDX2 in monocyte-derived DCs when compared to
precursor monocytes [39]. The latter study also stated that DCs were more resistant than
monocytes to apoptosis induced by high amounts of oxLDL [39]. It is conceivable that the
good survival skills of monocyte-derived DCs in oxidative stress environments are crucial in
atherosclerotic plaques, enabling these professional antigen-presenting cells to exert their
function(s).

4. DC subtypes in mice and men

As discussed above, DCs process and present self and foreign antigens to T cells and are
therefore important inducers of adaptive immune responses. However, ‘the” DC does not
exist, as DCs comprise a network of subsets that are phenotypically, functionally, and de-
velopmentally distinct [40,41]. It is essential to understand the diversity in DC subtypes to
target DCs for immunomodulating therapies. Most studies on DC subsets have been per-
formed in mice, because lymphoid tissue is easier to obtain from mice than from humans.
Mature mouse DCs are identified based on their expression of the integrin alpha X chain
CDl1l1c, the costimulatory molecules CD40, CD80 and CD86, and high surface levels of the
antigen-presenting molecule MHC II [42,43,40]. The T cell markers CD4 and CD8 (in the
form of a aa-homodimer) are also expressed on mouse DCs, and can be used to distin-
guish different subtypes [44]. In general, three DC subsets can be characterized in mouse
lymphoid tissue (table 1): 1) CD8«a* CD4 DCs; 2) CD8x CD4" DCs; and 3) CD8a CD4
DCs [44]. The CD8a* CD4 DCs are mainly localized in the T cell areas of lymphoid or-
gans, whereas the CD8x~ CD4" DCs are found in the marginal zones. Yet, upon
stimulation by microbial products, such as lipopolysaccharide, the latter can also migrate
to the T cell zones [45,46]. Other markers that can be used to further subdivide mouse DC
subsets include the integrin alpha M chain CD11b and the endocytosis receptor CD205
(DEC205). The CD8a* CD4 DCs are also CD205" CD11b" and they are mainly present in
the thymus, and at moderate levels in lymph nodes [40]. Lymph nodes further contain, in
contrast to spleen, CD8«x~ CD4  CD11b* CD205™¢ DCs which are considered as the mature
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form of tissue interstitial DCs [40,42,43] (table 1). Another DC subtype, which is langer-
insh CD11b* CD8a'™ CD205Me", is only found in skin-draining lymph nodes and consid-
ered as the mature form of epidermal Langerhans cells. These cells are also positive for
MHC II and CD40, CD80 and CD86, suggesting that they are fully activated [42].

The numerous DC subtypes in mouse lymphoid organs are all able to present antigens to T
cells, however, they differ in other aspects of DC-T cell communication [40]. CD8«a* DCs
mainly induce Th1/Th17-polarizing cytokine responses in CD4" effector T cells, whereas
CD8a DCs are able to induce Th2-biased cytokine responses [47,48,49,50]. CD8a" DCs also
seem to be specialized for the uptake and cross-presentation of exogenous antigens on MHC
I and consequently stimulate CD8* cytotoxic T cells, whereas CD8a DCs mainly stimulate
CD4" T helper cells [51,52].

MOUSE HUMAN

cDGCs lymphoid organ- ~ CD8a* CD4 CD205* CD11b" lineage  HLA-DR* CD11c* CD1b/c*
resident cDC CD8a CD4* lineage HLA-DR* CD11¢* CD 141+
CD8a  CD4  CD205™¢ CD11b* lineage HLA-DR* CD11c* CD16*
circulating cDC CD8a CD11b* CD11chigh CD1c¢t CD11c*
CD8a* CD205+* CD11c¢t CD141+ CD11c* XCR1*
pDCs lymphoid organ- CD11c CD304*
resident pDC
circulating pDC PDCA-1*CD11c* CD11b CD303*CD304+ CD123*

Activated Costimulatory CD40 CD80 CD86

(mature) DCs  molecules

Activation CD83

molecules

¢DC = conventional dendritic cell, pDC = plasmacytoid dendritic cell

lineage = cocktail of CD3, CD14, CD16, CD19, CD20, CD56; CD1c =BDCA-1; CD303 = BDCA-2; CD141 = BDCA-3; CD304
=BDCA-4

BDCA = blood dendritic cell antigen

Table 1. Markers used for characterization of DC subtypes in mice and men

It has to be noticed that the association between mouse and human DC subsets remains elu-
sive, making translation of the above-mentioned findings difficult. One of the major barriers
in comparing mouse and human DC subsets is the lack of CD8a expression on human DCs
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[53]. As a result, it remains unclear which subtype represents the human equivalent of ma-
ture mouse CD8a" DCs. Another important barrier is that most human studies are per-
formed on blood, due to the limited availability of human spleen tissue. Moreover, human
blood DCs are mainly immature and heterogeneous in their expression of a range of mark-
ers. It might be that part of the heterogeneity reflects differences in the maturation or activa-
tion state of DCs, rather than that they all represent separate sub-lineages. Yet, one subtype
that is similar to its mouse counterpart is the human Langerhans cell, which expresses CD1a
and langerin and is characterized by the presence of Birbeck granules [40].

In human blood, the first made classification is often the distinction between plasmacytoid
(p)DCs, and myeloid or conventional DCs (cDCs) (table 1). Freshly isolated pDCs resemble
plasma cells and have a morphology typical of that of large, round cells with a diffuse nucleus
and few dendrites. These type I IFN-producing cells (IPCs) are specialized in innate antiviral
immune responses by producing copious amounts of type I interferons. pDCs express CD303
(blood dendritic cell antigen (BDCA) 2), CD304 (BDCA 4) and CD123 (IL 3Ra), whereas cDCs
are characterized by their expression of CD1c (BDCA 1) and CD11c [54] (table 1). In addition,
pDCs and c¢DCs also express different sets of Toll-like receptors (TLRs). In brief, pDCs express
mainly TLR7 and TLRY, whereas cDCs exhibit strong expression of TLR1, TLR2, TLR3, TLR4,
and TLR8. Accordingly, pDCs mainly recognize viral components with subsequent produc-
tion of a large amount of IFN-a. In contrast cDCs recognize bacterial components and produce
pro-inflammatory cytokines such as IL-12p70, TNF-a, and IL-6 [54,7].

Furthermore, cDCs and pDCs also differ in migration behaviour. Generally it is assumed
that myeloid (m)DCs are the conventional DCs that infiltrate peripheral tissues, while pDCs
migrate directly from the blood into lymphoid organs [54]. Finally, a small third population
of blood DCs expressing CD11c and BDCA-3 (CD141) but not BDCA-1, CD123 or BDCA-2
can be distinguished (table 1). Of particular importance is their superior antigen cross-pre-
sentation capacity and expression of the XC chemokine receptor 1 (XCR1), suggesting that
they represent the human counterpart of mouse CD8a* DCs. They emerge as a distinctive
myeloid DC subset that is characterized by high expression of TLR3, production of IL-12
and IFN-, and a superior capacity to induce T helper-1 cell responses, when compared to
BDCA-1* mDCs [54,7].

Only in a few recent studies, human DCs have been isolated from lymphoid tissues, which
allow direct comparison with mouse DC subtypes. Mittag and colleagues [41] identified
four DC subsets in human spleen that resemble DCs found in human blood. These include
three cDC subtypes and one pDC subtype (table 1). The cDCs are all negative for lineage
markers and positive for HLA-DR and CD11c, and they differ in their expression of CD1b/c
(= BDCA-1), CD141 (= BDCA-3) and CD16. The pDCs express high levels of CD304 (=
BDCA-4), but not CD11c [41]. Moreover, the hallmark functions of mouse CD8a* DC sub-
sets, which include IL-12p70 secretion and cross-presentation, appeared to be not restricted
to the equivalent human CD141* ¢cDCs as thought earlier, but shared by CD1b/c* and CD16*
DC subsets [41].
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5. Discriminating between DCs and macrophages

It has become clear that DCs, especially DCs from myeloid origin, are very heterogeneous,
representing several subtypes with a common origin, but different anatomical locations
(lymphoid organs vs. non-lymphoid organs), function and phenotype. Moreover, there is al-
so a very close relationship between myeloid DCs and macrophages (figure 5).

The distinction of the differences between macrophages and the heterogeneous family of
DCs is notoriously difficult and complicated by the plasticity of both cell types [55]. Mono-
cytes that exit the blood and enter tissues under inflammatory conditions can differentiate to
macrophages, but also to DCs that share several phenotypic features and functions, making
it difficult to unambiguously define macrophages and DCs as individual entities [56]. In ad-
dition, resting peripheral monocytes, obtained from mouse peritoneal cavity lavage, repre-
sent an immature population, capable of further differentiation along either the dendritic or
the macrophage pathway, depending on the type of stimuli (cytokines, growth factors) they
receive [10]. Furthermore, many DC subsets are not clearly defined and it is absolutely nec-
essary to bear in mind that different groups use different methods to identify and character-
ize DCs [57]. Often, the starting populations are preselected based on randomly defined
expression levels of markers that were believed to be specific for either DCs or macrophag-
es, but are in fact expressed by both [58] (figure 5).

Macrophage
De phag

Dendritic cells Macrophages
Surface markers Species
CDl1lc X X mouse, human
F4/80 x X mouse
CD11b X X mouse, human
MHCII X X mouse, human
BDCA-1 XX human
CDe8 X XX mouse, human
DC-SIGN XX human
Functional characteristics
T cell stimulation X X
Naive T cell stimulation =
Antigen presentation XX X
Phagocytosis x xx
Cytotoxicity X X
Tissue sentinel role X X
Migration XX X

Figure 5. Functional characteristics and surface markers of DCs and macrophages. Increasing evidence demonstrates an
enormous overlap between what is considered a 'macrophage' and a ‘DC'. Abbreviations: MHC Il, major histocompatibil-
ity complex class Il BDCA-1, blood dendritic-cell antigen-1, DC-SIGN, dendfritic cell-specific ICAM-3-grabbing non-integrin.

Consequently, confusion in distinguishing between macrophages and DCs has been — at
least in part — caused by the use of nonspecific cell surface markers, such as CD11c. In addi-
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tion, the number of DC and macrophage subpopulations that can be defined is an exponen-
tial function of the number of markers that has been examined [59]. Moreover, since each
gene/protein has its own intrinsic expression level, the heterogeneity is really unlimited [60].
CD11c, a commonly used DC marker, was already known to be expressed by most tissue
macrophages before the use of CD11c-reporter transgenes as markers of DCs, and of CD11c-
DTR mice to “selectively” deplete them [59,61]. Other markers that have been used to track
macrophages and DCs in mice include F4/80, CD11b and MHC II, but they have also turned
out to be nonspecific [57]. Too little attention has been paid to the expression of antimicrobi-
al effector molecules, such as lysozyme, which is highly secreted by monocytes and macro-
phages, but only weakly expressed, if at all, by DCs [62]. Part of the confusion may also
result from the flexibility and plasticity of macrophages and from the presence of resident
and migratory activated DCs in the same organ [63].

The confusion could be possibly resolved if the appropriate reflections are considered [57].
For example, the correctness of CD11c to identify DCs depends on the anatomical site in
question. In the spleen and lymph nodes, mononuclear phagocytes with high expression
levels of CD11c — though not those with low or intermediate CD11c — appear to be DCs rath-
er than macrophages. Accumulating evidence confirms that spleen and lymph node DCs are
functionally different from macrophages, do not originate from differentiating monocytes,
and share fewer characteristics with monocytes than macrophages [64,65,66]. However, in
the lung, high levels of CD11c are expressed on macrophages [67,68], and there are many
other anatomical locations apart from the lymphoid organs where macrophages are CD11c-
positive. It has been proposed many times that the same set of markers that allows us to dis-
criminate between DCs and macrophages in lymphoid organs, can also be used in non-
lymphoid organs, but it has become clear that this assumption is not correct.

Recent in vivo experiments in mice have increased our understanding of the development
and functions of DC and macrophage subsets [69,70,71]. However, despite this progress in
mice, corresponding human subsets are yet to be characterized. Until now, there is no mor-
phologic or protein marker of macrophages or DCs which is unambiguous. Moreover, a sin-
gle set of markers cannot be assumed to apply to all stages of cell differentiation and
activation. In conclusion, there is insufficient knowledge to make definitive claims about
any marker combination, particularly in non-lymphoid compartments.

If the distinction between DCs and macrophages cannot be made based on morphological
features, can it be based on function? Several criteria to define DCs include the property of
DCs to localize in the T cell zone of lymphoid organs where they can stimulate T cells, as
well as their ability to migrate and carry antigen [72,73]. In contrast, macrophages are best
defined by their phagocytic activity and are generally considered as tissue-resident cells.
However, recent studies show that macrophages can also migrate and that Langerhans cells
(i.e. DCs from the skin and mucosa that carry large Birbeck granules) are not important for T
cell priming [74]. In addition, some macrophage subtypes, such as microglia, show only
poor phagocytic capacity [57]. Taken together, there is no good functional criterion to define
macrophages and monocyte-derived DCs (figure 5), since they represent not just two differ-
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ent cell populations, but various cell subtypes. As they are derived from a common precur-
sor, it is really hard to fully identify macrophages and DCs as two separate entities.

6. Pro-and anti-atherogenic properties of various DC subtypes

We and others discovered a profoundly altered circulating DC compartment in patients
with coronary artery disease (CAD), the clinical manifestation of atherosclerosis, as com-
pared to healthy donors [75,76,77,78,79,80]. In 2006, we reported for the first time a decrease
in circulating DC precursors (BDCA-1* mDCs, BDCA-2* pDCs) in CAD patients by flow cy-
tometry. CAD was determined by angiography and defined as more than 50% stenosis in
one or more coronary arteries [77]. In parallel, Yilmaz et al. [79] found a marked reduction in
mDC precursors in CAD patients, though the decline in pDCs was less pronounced. Next,
we studied whether the lower blood DC counts in CAD patients were related to the extent
of atherosclerosis (one- versus three-vessel disease) or type (stable versus unstable angina
pectoris) of CAD. Again, we observed significantly lower relative and absolute numbers of
pDCs and mDCs in patients with coronary atherosclerosis [78]. Interestingly, the overall lin-
eage-negative HLA-DR-positive blood DCs, which also include other blood DCs (such as
BDCA-3*) or more mature blood DCs, confirmed the decline of BDCA* DC precursors. How-
ever, the counts of circulating DCs dropped to the same extent in three groups of CAD pa-
tients, irrespective of the number (one or three) of affected arteries or the type (stable or
unstable) of angina [78]. Consistent with our results, Yilmaz and colleagues [79] reported no
differences between clinically stable or unstable CAD. Yet, in a later and more extended
study with a cohort of 290 patients, in which a more refined “CAD score’ was used to classi-
ty patients, they found that the numbers of pDCs, mDCs, and total DCs decreased when the
extent of coronary atherosclerosis increased [80].

Besides flow cytometric studies, we performed immunohistochemical analyses demon-
strating increased intimal DC counts with evolving plaque stages, in close relationship
with lesional T cells [81]. These findings strongly suggest that blood DCs migrate from
the circulation to the atherosclerotic lesion, possibly attracted by chemokines produced by
the inflammatory infiltrate in the plaque, and subsequently stimulate T cell proliferation
[7]. However, it is unlikely that accumulation of DC into a single tissue site is responsi-
ble for the major changes in the number of circulating DCs in CAD [12]. Possibly, DCs
may leave the blood to migrate into lymphoid tissues in response to systemic inflammato-
ry activation, which redirects trafficking and compartmentalization of antigen-presenting
DCs as well as lymphocytes. Indeed, it has been mentioned that DC numbers of lymph
nodes attached to atherosclerotic wall segments exceed those in lymph nodes attached to
non-atherosclerotic arteries [7]. The declined circulating DC numbers in atherosclerosis
might also be the result of impaired differentiation from bone marrow progenitors. Inter-
estingly, we recently showed that plasma FIt3 ligand (FIt3L) concentrations were reduced
in CAD patients [75]. FIt3L is a major cytokine involved in both pDC and mDC develop-
ment from haematopoietic stem cells and their release from the bone marrow [82,83,84].
As plasma FIt3L correlated with blood DC counts, the reduced blood DCs in CAD might
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be caused by impaired DC differentiation from bone marrow progenitors. Until now, it
remains unclear why plasma FIt3L levels are lowered in CAD. Other possible explana-
tions for the decrease of circulating DC subsets in CAD patients include DC activation re-
sulting in enhanced migration or in loss of subset markers, drug-induced changes, or
increased DC turnover, and are reviewed elsewhere [7].

The finding that blood DCs are decreased in CAD patients and that atherosclerotic arteries
display a marked increase in the number of DCs suggest the involvement of DCs in the
pathogenesis of atherosclerosis. Yet, the exact role of DCs in atherogenesis has not been fully
clarified. Moreover, increasing evidence points to different behaviour of DC subsets in the
initiation and progression of the disease. We have recently demonstrated in vitro that mDCs
in CAD operate in a normal way, whereas pDCs from CAD patients are not only reduced in
number, but also seem to be functionally impaired [75].

Most evidence points to a proatherogenic role for mDCs. Apolipoprotein E (ApoE)/IL-12 dou-
ble knockout mice develop smaller atherosclerotic lesions than ApoE deficient (ApoE”) mice,
illustrating the proatherogenic effect of IL-12, which is the main cytokine secreted by mDCs
[85]. Moreover, daily IL-12 administration promotes atherosclerosis in ApoE” mice [86]. Be-
cause mDCs from CAD patients are still able to mature [75], it is plausible that the blood mDCs
that are activated by atherosclerosis-favouring factors in the circulation migrate to the athero-
sclerotic plaque or the lymph nodes attached to the atherosclerotic wall segments. Once ar-
rived, they might initiate and maintain the inflammatory response by continuous T-cell
stimulation. Nevertheless, DCs are not only implicated in the immune response in atheroscle-
rosis, they are also involved in cholesterol homeostasis. A recent study using a mouse model in
which the receptor for diphtheria toxin was expressed under the CD11c promoter (CD11c-
DTR) showed that (transient) depletion of CD11c* ¢cDCs resulted in enhanced cholesterolae-
mia [87]. The latter indicates that DCs are important in regulating the accumulation of lipids
during the earliest stages of plaque formation. In contrast, enhancement of the life span and
immunogenicity of DCs by specific overexpression of the anti-apoptotic gene hBcl-2 under the
control of the CD11c promoter was associated with an atheroprotective decrease in plasma
cholesterol levels, neutralizing the proatherogenic signature of enhanced T cell activation, a
Th1 and Th17 cytokine expression profile, and elevated production of T-helper 1-driven IgG2c
autoantibodies directed against oxidation-specific epitopes. -As a net result, there was no ac-
celeration of atherosclerotic plaque progression [87].

It is not yet clear whether pDCs are proatherogenic or atheroprotective. PDCs might be in-
volved in plaque destabilization, as they have the unique ability of producing large amounts of
type I IFNs. This cytokine exerts strong antiviral effects, but more importantly, it induces
marked upregulation of tumour necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) on CD4* T cells, which might lead to killing of plaque-resident cells, potentially weak-
ening the scaffold of the lesion and rendering the plaque vulnerable [88]. In addition, nucleoti-
des released from necrotic or apoptotic cells can induce IFN-a production by pDCs in the
presence of antimicrobial peptides released from inflammatory cells [89]. Plaque-residing
pDCs have also been shown to respond to CpGs (containing motifs typically found in microbi-
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al DNA) leading to enhanced IFN-a expression. This process amplifies inflammatory TLR-4,
TNEF-«, and IL-12 expression by mDCs, and correlates with plaque instability [90]. A recent
study in ApoE” mice reported that administration of a plasmacytoid dendritic cell antigen-1
(PDCA-1) antibody to deplete pDCs protected from lesion formation [91], demonstrating that
pDCs indeed exert proatherogenic functions during early lesion formation. In contrast, pDC
depletion by administration of the 120G8 monoclonal antibody promoted plaque T-cell accu-
mulation and exacerbated lesion development and progression in LDLr~~ mice [92]. PDC de-
pletion was accompanied by increased CD4* T-cell proliferation, IFN-y expression by splenic
T cells, and plasma IFN-vy levels, pointing to a protective role for pDCs in atherosclerosis. Thus,
the exact role of pDCs in atherosclerosis remains to be further unravelled.

7. DCs as therapeutic targets

Until now, it is impossible to fully inhibit the formation or progression of atherosclerotic le-
sions in the clinic. Current therapies for atherosclerosis (e.g. statins, stent placement) focus
on relieving symptoms, and consequently many patients remain at high risk for future acute
coronary events. A very effective strategy in other immune-related pathologies is vaccina-
tion, where the culprit protein or the weakened/dead version of the micro-organism is in-
jected to the body in order to create a highly specific primary humoral immune-response
[93]. New vaccines have recently been developed that deliver relevant antigens and adju-
vants to redirect the immune system for the individual’'s benefit [94]. Because DCs are the
most effective antigen presenting cells that initiate and regulate the immune response, they
seem extremely suitable as vaccine basis. On the one hand, they can activate T cells, on the
other hand, they can specifically silence unwanted immune reactions by inducing tolerance
[95]. They might function as natural adjuvants for the induction of antigen-specific T-cell re-
sponses. Approaches using DCs in atherosclerosis immunotherapy may be comparable to
those already used for cancer immunotherapy [96,97,98], although a different immune re-
sponse is required. One approach that is already intensively studied is the immunization
with autologous, monocyte-derived DCs from the patient that are loaded with appropriate
antigens ex vivo [96]. Such ex vivo generated and antigen-loaded DCs have nowadays been
used as vaccines to improve immunity in patients with cancer [99] and chronic human im-
munodeficiency virus (HIV) infection [100,101], providing a “proof of principle” that DC
vaccines can work.

In the context of atherosclerosis, immunization of hypercholesterolemic animals with oxLDL
or specific epitopes of ApoB100 has already been shown to inhibit atherosclerosis
[102,103,104,105,106]. When LDL receptor-deficient (LDLr”") rabbits were immunized with
malondialdehyde modified LDL (MDA-LDL), a reduction in the extent of atherosclerotic le-
sions was observed in the aortic tree [102]. These observations were confirmed in LDLr” and
apolipoprotein E deficient (ApoE”) mice [103,104]. Also hypercholesterolemic rabbits that
were immunized with oxLDL showed reduced atherosclerotic lesions in the proximal aorta
[107]. Possibly, oxLDL-pulsed DCs or DCs pulsed with immunogenic components of oxLDL



Dendritic Cells in Atherogenesis: From Immune Shapers to Therapeutic Targets
http://dx.doi.org/10.5772/52900

could be used for vaccination as well, thereby avoiding the side effects of direct vaccination
with oxLDL [108]. A series of studies have already used pulsed DCs as an immunotherapy
for atherosclerosis in mice, however, results were not always consistent. Repeated injection
of LDLr” mice with oxXLDL-pulsed mature DCs resulted in attenuation of lesion develop-
ment with a decreased amount of macrophages and increased collagen content, contributing
to a more stable plaque phenotype [109]. Moreover, a similar approach was carried out us-
ing mice expressing the full-length human ApoB100 in the liver and humanized lipoprotein
profiles [110]. Those mice were repeatedly injected with mature DCs that were incubated
with IL-10 and ApoB100, prior to the initiation of a Western diet. The immunosuppressive
cytokine IL-10 was used to induce tolerogenic DCs [110]. This approach resulted in attenua-
tion of atherosclerotic lesion development in the aorta, which was associated with decreased
cellular immunity to ApoB100. Also, decreased Thl and Th2 responses most likely due to
enhanced regulatory T cell (Treg) expansion were observed [110]. In contrast, subcutaneous
injection of DCs that were simultaneously pulsed with LPS and MDA-LDL into ApoE” mice
at frequent intervals during lesion formation caused a significant increase in lesion size in
the aortic root [111]. These differential effects may be due to different forms of antigen pre-
sentation leading to qualitatively different immune responses. Apart from oxLDL, DCs
might also be pulsed ex vivo by cultivating them with a total extract or suspension of athero-
sclerotic plaque tissue, for example, from patients undergoing carotid endarterectomy
[95,108] (figure 6). A major advantage of such a therapy, where a patient is vaccinated with
its own DCs pulsed by its own antigens is the efficiency, because it would imitate events as
they occur in plaques in situ in the patient.
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Figure 6. Promising areas for further research to treat immune-mediated diseases, such as atherosclerosis. Immuniza-
tion of patients with autologous, monocyte-derived DCs that are loaded with appropriate antigens ex vivo. This ap-
proach has already been proven successful in cancer and HIV patients.
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Another promising area for further research is the development of tolerogenic vaccines for
immune-mediated diseases (figure 7). Both foreign and self-antigens can be targets of tolero-
genic processes. DCs can be converted to ‘tolerogenic DCs’ by addition of various immuno-
modulating agents, including IL-10, transforming growth factor-beta (TGF-8) and 1,25-
dihydroxyvitamin D3 [8], or they can be generated by using small interfering RNA (siRNA)
that specifically targets IL-12p35 gene [112] (figure 7). Tolerogenic DC-based immunothera-
py has recently been tested in mice as a possible novel approach to induce immunological
tolerance for prevention or treatment of atherosclerosis [110]. Hermansson et al. [110] used
IL-10 to induce tolerogenic DCs. Another group showed that oral administration of calci-
triol, the active form of vitamin D3, induced the generation of tolerogenic DCs as well as a
significant increase in Foxp3* Tregs in the lymph nodes, spleen, and atherosclerotic lesions
of ApoE” mice, which resulted in an inhibition of atherosclerosis [113]. This was associated
with increased IL-10 and decreased IL-12 mRNA expression. Furthermore, DCs from the
calcitriol group showed reduced CD80 and CD86 expression and decreased proliferative ac-
tivity of T lymphocytes, indicating that tolerogenic or maturation-resistant DCs show some
similarities with immature DCs [113]. Hussain and colleagues [114] hypothesized that aspir-
in may also induce tolerogenic DCs and CD4* CD25" FoxP3" Treg cells activity/augmenta-
tion in experimental models of autoimmune atherosclerosis. Aspirin-induced tolerogenic
DCs initiated regulatory activity in responder T cells as they showed a decreased expression
of costimulatory molecules and an increased expression of immunoglobulin-like transcript 3
(ILT-3), which is a co-inhibitor of T cell activation required to induce Tregs [114,115,116]. In-
deed, the presentation of antigen complexes to T cells in the absence of costimulatory signals
could lead to anergy or apoptosis of T cells, or the induction of Treg. Therefore, it might also
be useful to adjust the expression of costimulatory molecules on pulsed DCs ex vivo prior to
the vaccination [96,98,97,94,117,118].
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Figure 7. Generation of tolerogenic DCs to develop tolerogenic vaccines. Tolerogenic DC-based immunotherapy has
recently been successfully tested in mice as a possible novel approach to induce immunological tolerance for preven-
tion or treatment of atherosclerosis.

A completely different strategy that might be used in therapeutic intervention implicates the
use of DCs to deplete specific immune cells, such as the detrimental Thl or Th17 cells, in
atherosclerosis. The opposite approach has been shown to work in a mouse model of athero-
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sclerosis. Van Es et al. [119] used DCs to deplete atheroprotective Tregs by vaccinating
LDLr” mice with DCs which were transfected with Foxp3 encoding mRNA. This approach
resulted in a cytotoxic T lymphocyte (CTL) response against Foxp3 and a subsequent deple-
tion of Foxp3" Tregs. Vaccination against Foxp3 aggravated atherosclerosis, it resulted in a
reduction of Foxp3* regulatory T cells in spleen, lymph nodes and circulation, and in an in-
crease in initial atherosclerotic lesion formation. Besides an increase in lesion size, vaccina-
tion against Foxp3 also induced a 30% increase in cellularity of the initial lesions, which may
indicate an increase in inflammation within the lesions [119].

Another approach for therapeutic intervention against atherosclerosis might involve the di-
rect targeting of DCs in vivo by manipulating the functions of different DC subsets [95].
Based on the hypothesis that cDCs act rather proatherogenic, whereas pDCs might be athe-
roprotective (see section 4), suppression of the myeloid DC subset and activation of the lym-
phoid subset might enable immune reactions in atherosclerosis to be regulated [95]. For
future studies, it would be very useful to isolate DCs resident in plaques to be able to identi-
ty a unique antigen(s) on their surface. That would possibly lead to new strategies where
plaque DCs can be targeted to deliver biologically active substances to atherosclerotic le-
sions. The challenge is to selectively identify regulatory molecules and novel therapies in or-
der to inhibit DC migration and function during atherogenesis without affecting normal DC
function under physiological conditions.

8. Conclusion

As it is now well accepted that atherosclerosis is an immune-mediated disease, the target-
ing of its cellular components might open possibilities for new therapeutic strategies to at-
tenuate the progression of the disease. DCs seem to initiate and regulate immune
responses in atherosclerosis and they are also involved in controlling cholesterol homeo-
stasis by yet unknown mechanisms. It would be important to identify the pathway(s)
through which CD11c" cells may modulate the levels of plasma cholesterol. One should
take into account that DCs represent a very heterogeneous population, with many subsets
that have different phenotypes, functions, origin and anatomical distribution. So far, it is
unclear if all DCs have equal antigen-presenting capacities, and very little is known about
a preferential DC subset that is responsible for T cell-induced inflammation in the vessel
wall. Moreover, there is a close relationship between DCs and macrophages, and the dis-
tinction between both cell types is even further complicated by their plasticity. Future
studies are essential to determine which DC subtypes exert pro- or anti-atherogenic ef-
fects. It is crucial to understand the diversity in DC subsets to target DCs for immunomo-
dulation therapies. Furthermore, functional differences between phenotypically similar
mouse and human DC subtypes should also be studied. Nevertheless, DC-based vaccina-
tion strategies have been proven successful and animal studies provide some promising
data for the treatment of atherosclerosis as well. Yet, several issues, such as the most ap-
propriate antigen(s) for loading DCs and the optimal type of DC used for vaccination re-
main to be further investigated.
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