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1. Introduction 

Fermented milk products have naturally high nutritional value, and as an extra benefit 

many health-promoting effects, such as improvement of lactose metabolism, reduction of 

serum cholesterol and reduction of cancer risk [1]. The beneficial health effects associated 

with some fermented dairy products may, in part, be attributed to the release of bioactive 

peptide sequences during the fermentation process. Numerous peptides and peptide 

fractions, having bioactive properties have been isolated from fermented dairy products. 

These activities include immunomodulatory, cytomodulatory, hypocholesterolemic, 

antioxidative, antimicrobial, mineral binding, opioid and bone formation activities. Many 

recent articles and book chapters have reviewed the release of various bioactive peptides 

from milk proteins through microbial proteolysis [2-5]. 

Many industrially utilized dairy starter cultures are highly proteolytic. The use of bioactive 

peptides producers microbial cultures (starter and non-starter) may allow the development 

new fermented dairy products. The proteolytic system of lactic acid bacteria e.g. Lactococcus 

(L.) lactis, Lactobacillus (Lb.) helveticus and Lb. delbrueckii ssp. bulgaricus, is already well 

characterized. This system consists of a cell wall-bound proteinase and a number of distinct 

intracellular peptidases, including endopeptidases, aminopeptidases, tripeptidases and 

dipeptidases [6]. Lb. helveticus are known to have high proteolytic activities [7], causing the 

release of oligopeptides from digestion of milk proteins [8]. These oligopeptides can be a 

direct source of bioactive peptides following hydrolysis by gastrointestinal enzymes. Rapid 

progress has been made in recent years to elucidate the biochemical and genetic 

characterization of these enzymes. The fact that the activities of peptidases are affected by 

growth conditions makes it possible to manipulate the formation of peptides to a certain 

extent [9]. 

Cardiovascular disease (CVD) is the single leading cause of death for both males and 

females in technologically advanced countries in the world. In lesser-developed countries it 

generally ranks among the top five causes of death. The World Health Organization 
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estimates that by 2020, heart disease and stroke will have surpassed infectious diseases to 

become the leading cause of death and disability worldwide [10]. Consequently, there has 

been an increased focus on improving diet and lifestyle as a strategy for CVD risk reduction. 

Elevated blood pressure is one of the major independent risk factors for CVD [11]. 

Angiotensin I-converting enzyme (ACE) plays a crucial role in the regulation of blood 

pressure as it promotes the conversion of angiotensin I to the potent vasoconstrictor 

angiotensin II as well as inactivates the vasodilator bradykinin. By inhibiting these 

processes, synthetic ACE inhibitors (ACEI) have long been used as antihypertensive agents. 

In recent years, some food proteins have been identified as sources of ACEI peptides and are 

currently the best-known class of bioactive peptides [12, 13]. These nutritional peptides have 

received considerable attention for their effectiveness in both the prevention and the 

treatment of hypertension.  

Oxidant stress, the increased production of reactive oxygen species (ROS) in combination 

with outstripping endogenous antioxidant defense mechanisms, is another significant 

causative factor for the initiation or progression of several vascular diseases. ROS can cause 

extensive damage to biological macromolecules like DNA, proteins and lipids. Specifically, 

the oxidative modification of LDL results in the increased atherogenicity of oxidized LDL. 

Therefore, prolonged production of ROS is thought to contribute to the development of 

severe tissue injury [14]. Some peptides derived from hydrolyzed food proteins exert 

antioxidant activities against enzymatic (lipoxygenase-mediated) and nonenzymatic 

peroxidation of lipids and essential fatty acids [15]. The antioxidant properties of these 

peptides have been suggested to be due to metal ion chelation, free radical scavenging and 

singlet oxygen quenching.  

This review centers on liberation during fermentation, of bioactive peptides with properties 

relevant to cardiovascular health including the effects on blood pressure and oxidative 

stress. The focus is mainly to those peptides with in vivo blood pressure lowering effects. 

Moreover, bioavailability of peptides and aspects of necessary further information is given. 

2. Release and identification of peptides 

2.1. Peptides in cheese 

Proteolysis in cheese has been linked to its importance for texture, taste and flavour 

development during ripening. Changes of the cheese texture occur due to breakdown of the 

protein network. It contributes directly to taste and flavour by the formation of peptides and 

free amino acids as well as by liberation of substrates for further catabolic changes and 

thereby formation of volatile flavour compounds. Besides sensory quality aspects of 

proteolysis, formation of bioactive peptides as a result of proteolysis during cheese ripening 

has been reported. Cheese contains phosphopeptides as natural constituents [16, 17], and 

secondary proteolysis during cheese ripening leads to the formation of other bioactive 

peptides, such as those with ACEI activity. The findings by Meisel et al. [18] showed that 

inhibitory activity increased as proteolysis developed, however, the bioactivity decreased 
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when proteolysis during ripening exceeded a certain level. Another link between potential 

antihypertensive peptides and proteolysis was found in Parmesan cheese [19]. A bioactive 

peptide derived from s1-casein was isolated from 6-month old cheese, but it was degraded 

further during maturation and was not detectable after 15 month of ripening. ACEI peptide 

fractions having different potencies have been isolated from various Italian cheeses, e.g. 

Crescenza (37% inhibition), mozzarella (59% inhibition), Gorgonzola (80% inhibition) and 

Italico (82% inhibition) [20]. ACEI peptides have also been found in enzyme-modified 

cheeses [21], in a low-fat cheese made in Finland [22] and Manchego cheeses manufactured 

with different starter cultures [23]. Mexican Fresco cheese manufactured with Enterococcus 

faecium or a L. lactis ssp. lactis-Enterococcus faecium mixture showed the largest number of 

fractions with ACEI activity among tested lactic acid strains [24]. Pripp et al. [25] 

investigated the relationship between proteolysis and ACE inhibition in Gamalost, Castello, 

Brie, Pultost, Norvegia, Port Salut and Kesam. The traditional Norwegian cheese Gamalost 

had per unit cheese weight higher ACE inhibition potential than Brie, Roquefort and 

Gouda-type cheese. However, ACE inhibition expressed as IC50 per unit peptide 

concentration from ethanol soluble fraction assessed by the OPA-assay was highest for 

Kesam, a Quark-type cheese with a low degree of proteolysis.  

When -casomorphins were looked from commercial cheese products, no peptides were 

found or their concentration in the cheese extract was below 2 g/ml [26]. They further 

noted that the enzymatic degradation of -casomorphins was influenced by a combination 

of pH and salt concentration at the cheese ripening temperature. Therefore, if formed in 

cheese, -casomorphins may be degraded under conditions similar to Cheddar cheese 

ripening. Precursors of -casomorphins, on the other hand, have been identified in 

Parmesan cheese [19]. -Casomorphins were found at a higher level in the mould cheeses 

(166–648 mg/100 g), whereas the opioid peptides with antagonistic activity (casoxin-6) were 

identified at a higher level in the semi-hard cheeses (136–276 mg/100 g) and a low quantity 

of casomorphins (4–100 mg/100 g) [27]. Immunomodulating properties in water-soluble 

extracts from traditional French Alps cheeses, Abondance and Tomme de Savioe have been 

observed [28]. However, no correlation between peptide composition and in vitro 

immunomodulation of T-lymphocyte cells could be established. 

A limited number of bioactive peptides have been isolated and identified in Gouda, 

Manchego, Festivo and Crescenza cheeses (Table 1). Several ACEI peptides have been 

identified from N-terminal of αs1-casein of Gouda, Festivo, Cheddar and Fresco cheeses [22, 

24, 29, 30]. In addition, peptides from casein, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn (β-cn, 

f(60–68)); and Met-Pro-Phe-Pro-Lys-Tyr-Pro-Val-Gln-Pro-Phe (β-cn, f(109–119)) from Gouda 

[29] and Tyr-Gln-Glu-Val-Leu-Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val (-cn, f(193-

209)) from Cheddar [30] have been identified. Antihypertensive peptides Val-Pro-Pro (VPP) 

(β-cn, f(84–86)) and Ile-Pro-Pro (IPP) (β-cn, f(74–76) and κ-cn, f(108–110)), have also been 

identified and quantified in different cheese varieties [31-33]. In some varieties 

physiologically relevant amounts was observed, however, a large variation exists between 

samples of the same cheese variety, as well as between different varieties. The 

concentrations of VPP and IPP were in the range of 0-224 mg/kg and 0-95 mg/kg, 
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respectively, indicating that some cheese varieties contain similar concentrations of VPP and 

IPP to fermented milk products. Milk pretreatment, cultures, scalding conditions, and 

ripening time were identified as the key factors influencing the concentration of these two 

naturally occurring bioactive peptides in cheese. Thus, it is necessary to develop a 

reproducible cheese-making process with selected cultures to produce higher concentrations 

of these peptides that could be used for clinical trials. 

 

Cheese variety Milk protein fragment Peptide sequence ACE-inhibition 

IC50 M 

Ref 

Gouda s1-cn f( 1-9)

s1-cn f(1-13) 

-cn f(68-66) 

β-cn f(109–119) 

RPKHPIKHQ

RPKHPIKHQGLPQ 

YPFPGPIPN 

MPFPKYPVQPF  

13.4

ND 

14.8 

ND 

29 

Manchego ovine s1-cn f(102-109)

ovine s1-cn f(205-208) 

KKYNVPQL

VRYL 

77.2

24.1 

23 

Cheddar (with 

probiotics) 

s1-cn f(1-9)

s1-cn f(1-7) 

s1-cn f(1-6)  

s1-cn f(24-32) 

-cn f(193-209) 

RPKHPIKHQ

RPKHPIK 

RPKHPI 

FVAPFPEVFGK 

YQEPVLGPVRGPFPIIV 

ND 30 

Swiss cheese 

varieties 

β-cn, f(84–86)

β-cn, f(74–76) and 

 κ-cn, f(108–110) 

VPP

IPP 

9

5 

31-

34 

Fresco cheese s1-cn f(1-15)

s1-cn f(1-22)  

s1-cn f(14-23) 

s1-cn f(24-34) 

-cn f(193-205)  

-cn f(193-207)  

-cn f(193-209) 

RPKHPIKHQGLPQEV

RPKHPIKHQGLPQEVLNEN

LLR 

EVLNENLLRF 

FVAPFPEVFGK 

YQEPVLGPVRGPF 

YQEPVLGPVRGPFPI 

YQEPVLGPVRGPFPIIV 

ND 24 

ND: Not described 

IC50: Peptide concentration that shows 50% inhibition of ACE activity 

One letter amino acid codes used 

Table 1. Examples of identified bioactive peptides in different cheese varieties 

2.2. Fermented milk 

During fermentation process, lactic acid bacteria hydrolyze milk proteins, mainly caseins, 

into peptides and amino acids which are used as nitrogen sources necessary for their 

growth. Hence, bioactive peptides can be generated by starter and non-starter bacteria used 

in the manufacture of fermented dairy products (Table 2). Proteolytic system of Lb. 

helveticus, Lb. delbrueckii ssp bulgaricus, L. lactis ssp. diacetylactis, L. lactis ssp. cremoris, and 

Streptococcus (Str.) salivarius ssp. thermophilus strains have demonstrated to hydrolyze milk 

proteins and release ACEI peptides. Among lactic acid bacteria, Lb. helveticus has high 
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extracellular proteinase activity and the ability to release large amount of peptides in 

fermented milk. As a result, among various kinds of fermented milk, antihypertensive effect 

related to ACEI peptides were found in milk produced by Lb. helveticus. Two ACEI peptides 

have been purified from sour milk and identified as VPP and IPP [34].  

 

Organisms ACE-

inhibition 

Identified peptides 

 

Dose Response (Δ 

SBP mmHg) 

Ref. 

 IC50 

mg/ml 

Sequence IC50 µM    

Lb. helveticus and Str. 

thermophilus 

ND VPP 

IPP 

9 

5 

5 ml/kg -21.8 ±4.2 after 6 

h 

34 

Lb. helveticus  VPP 

IPP 

9 

5 

27 

ml/day 

-21 after 4 

weeks 

67 

Lb.helveticus CPN4 ND YP 720 10 

ml/kg 

32.1 ±7.4 after 6 

h 

42 

Lb. helveticus CHCC637 

Lb. helveticus CHCC641 

0.16 

0.26 

  10ml/kg -12 after 4-8 h 

 -11 after 4-8 h 

37 

Lact. delbrueckii ssp. 

bulgaricus 

Str. salivarius ssp 

thermophilus and L.lactis 

biovar diacetylactis 

 SKVYPFPGPI 

SKVYP 

1.7 

mg/ml 

1.5 

mg/ml 

 ND 43 

Lb. jensenii 0.52 LVYPFPGPIHNSLP

QN 

LVYPFPGPIH 

71  

89  

0.2 

kg/kg 

approx -12 after 

2 h 

38 

Enterococcus faecalis 

CECT 5727 

0.053 LHLPLP 

LVYPFPGPIPNSLP

QNIPP 

5.5 

5.2 

2 mg/kg

6 mg/kg

-21.87 ±4.51 

after 4h1) 

approx -15 after 

4 h 

44 

Lb. delbrueckii subsp. 

bulgaricus SS1  

L. lactis subsp. cremoris 

FT4 

ND NIPPLTQTPV  

LNVPGEIVE  

DKIHPF 

173.3 

300.1 

256.8 

 ND 36 

Mixed lactic acid 

bacteria (Lb. casei, 

acidophilus, bulcaricus, 

Str. themophilus, 

Bifidobacterium) and 

protease 

0.24 GTW 

GVW 

464.4  

240.0  

5 mg/ml SBP -22 after 8 

weeks 

76 

One letter amino acid codes used 

ND Not described 

1) Pure synthetic peptides were used in the study 

Table 2. ACE-inhibitory and antihypertensive activity in spontaneously hypertensive rats of peptides 

produced by fermentation of milk 
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Pihlanto-Leppälä et al. [35] studied the potential formation of ACEI peptides from cheese 

whey and caseins during fermentation with various commercial dairy starters used in the 

manufacture of yogurt, ropy milk and sour milk. No ACEI activity was observed in these 

hydrolysates. Further digestion of the above samples with pepsin and trypsin resulted in the 

release of several strong ACEI peptides derived primarily from αs1-casein and β-casein. The 

formation of ACEI peptides was demonstrated in two dairy strains, Lb. delbrueckii ssp. 

bulgaricus and L. lactis ssp. cremoris, after fermentation of milk separately with each strain for 

72 hours [36]. The most inhibitory fractions of the fermented milk mainly contained -

casein-derived peptides with inhibitory concentration (IC50) values ranging from 8.0 to 11.2 

g/ml. Fuglsang et al. [37] tested a total of 26 strains of wild-type lactic acid bacteria, mainly 

belonging to L. lactis and Lb. helveticus, for their ability to produce a milk fermentate with 

ACEI activity. All tested strains produced ACEI substances in varying amounts, and two of 

the strains exhibited high ACE inhibition and a high OPA index, which correlates well with 

peptide formation. In another study 25 lactic acid strains of Lactobacillus, Lactococccus and 

Leuconsotoc were used [38]. The strains were tested alone or in combination and the highest 

activities were observed in Lb. jensenii, Lb. acidophilus and Leuc. mesenteroides strains and all 

strains showed correlation between ACE inhibition and degree of proteolysis. In a recent 

study, milk was fermented to defined pH values with 13 strains of lactic acid bacteria. The 

highest ACEI activity was obtained with two highly proteolytic strains of Lb. helveticus and 

with the Lactococcus strains. Fermentation from pH 4.6 to 4.3 with these strains slightly 

increased the ACEI activity, whilst fermentation to pH 3.5 with Lb. helveticus reduced the 

ACEI activity [39]. Moreover, four different Enterococcus faecalis strains, isolated from raw 

milk, produced fermented milk with potent ACEI activity [40]. In a recent research it was 

found that L. lactis strains isolated from artisanal dairy starters or commercial starter 

cultures are potential for the production of fermented dairy products with ACEI properties. 

Especially, a strain isolated from artisanal cheese presented the lowest IC50 (13µg/ml) [41]. 

Bioactive peptides isolated from skim milk and whey fermented using a range of organisms 

are summarized in Table 2. The majority of identified peptides are casein-derived ACEI 

peptides having IC50 values ranging from 5 to 500 µM. The best characterized ACEI and 

antihypertensive peptides liberated with Lb. helveticus alone or in combination with 

Saccharomyces cerevisiae are the tripeptides IPP, and VPP. Yamamoto et al. [42] identified an 

ACEI dipeptide (Tyr-Pro) from a yogurt-like product fermented with Lb. helveticus CPN4 

strain. This peptide sequence is present in all major casein fractions, and its concentration 

was found to increase during fermentation, reaching a maximum concentration of 8.1 g/ml 

in the product. Ashar and Chand [43] identified an ACEI peptide from milk fermented with 

Lb. delbrueckii ssp. bulgaricus. The peptide showed the sequence Ser-Lys-Val-Tyr-Pro-Phe-

Pro-Gly-Pro-Ile from casein with an IC50 value of 1.7 mg/ml. In combination with Str. 

salivarius ssp. thermophilus and L. lactis biovar. diacetylactis, a peptide structure with a 

sequence of Ser-Lys-Val-Tyr-Pro was obtained from β-casein with an IC50 value of 1.4 

mg/ml. Both peptides were markedly stable to digestive enzymes, acidic and alkaline pH, as 

well as during storage at 5 and 10 ºC for four days. Two -casein-derived peptides were 

identified from water soluble fraction of milk fermented with Lb. jensenii. The identified 

peptides were Leu-Val-Try-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser-Leu-Pro-Gln-Asn, and 
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Leu-Val-Try-Pro-Phe-Pro-Gly-Pro-Ile-His [38]. Quirós et al. [44] identified two peptides in 

fermented milk with Enterococcus faecalis that corresponded to  -casein fragments Lys-His-

Leu-Pro-Leu-Pro and Lys-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-ASn-Ser-Leu-Pro-Gln-Asn-

Ile-Pro-Pro, with potent ACEI activity. 

Many kinds of proteolytic enzymes have been reported from lactic acid bacteria, and have 

been reviewed extensively [6, 45]. The components of the proteolytic systems of lactic acid 

bacteria are divided into three groups, including the extracellular proteinase that catalyzes 

casein breakdown to peptides, peptidases that hydrolyze peptides to amino acids and a 

peptide transport system. The extracellular proteinase activity was almost correlated with 

ACEI activity in the fermented milk, suggesting that the proteolysis of casein by the 

extracellular proteinase is the most important parameter in the processing of active 

components [46]. The importance of the proteinase was also supported by the fact that a 

proteinase negative mutant was not able to generate antihypertensive peptides in the 

fermented milk, whereas the wild-type strain had the ability to release strong 

antihypertensive peptides in the fermented milk [47]. The enzymatic process generating the 

antihypertensive peptides VPP and IPP in Lb. helveticus has been elucidated. By the 

proteolytic action of the extracellular proteinase long peptide with amino acid residue 

including VPP and IPP sequences were generated. Next the long peptide would be 

hydrolyzed to shorter peptides by intracellular peptidases. A key enzyme that can catalyze 

C-terminal processing of Val-Pro-Pro-Phe-Leu and Ile-Pro-Pro-Leu-Thr to VPP and IPP has 

been purified from Lb. helveticus CM4. The endopeptidase has sequence homology in amino 

terminal sequence to a previously reported pepO-gene product [48]. Kilpi et al. [49] found 

out higher ACE inhibition in milk fermentation using peptidase-deletion mutants compared 

to the wild-type of Lb. helveticus strain. Unlike with the wild type strain, ACEI remained 

constant during the course of fermentation with the proline-specific peptidase mutant. The 

mutant strains had also different peptide profiles than the wild-type strain.  

2.3. Other 

Various types of fermented soybean foods are consumed in Asian countries such as Korea, 

China, Japan, Indonesia and Vietnam. Soybeans are traditionally fermented primarily by 

Bacilli species during the early stage of fermentation followed by Aspergillus species, which 

predominate during the remaining fermentation period [50]. ACEI peptides have been 

found in many traditional Asian fermented soy foods, such as soybean paste, soy sauce, 

natto and tempeh. ACEI peptide His-His-Leu was isolated from Korean fermented soybean 

paste [51]. Rye gluten sourdoughs fermented with Lb. reuteri and added protease were 

found to contain the lactoripeptides VPP, IPP [52]. Moreover, our recent studies showed that 

fermentation of rapeseed or flaxseed meals with Bacillus subtils or Lb. helveticus strains 

produced ACEI activity [53]. 

2.4. Other activities 

It is reasonable to expect that lactic acid bacteria produce scavengers for hydroxyl radical, 

which can be metabolic compounds produced by bacteria or degradation products of milk 
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proteins. The results have demonstrated that the antioxidant production is commonly 

higher within the group of obligately homofermentative lactobacilli, than within the 

facultatively or obligately heterofermentative strain groups. Also heterofermentative 

Lactobacillus sp. have been reported to exhibit antioxidative activity. Lb. acidophilus, Lb. 

bulgaricus, Str. thermophilus and Bifidobacterium longum exhibited antioxidative activity by 

various mechanisms, like metal ion chelating capacity, scavenging of reactive oxygen 

species (ROS), reducing activity and superoxide dismutase activity [54, 55]. Peptides 

liberated during fermentation can be partially responsible for the reported antioxidative 

properties. An antioxidative peptide derived from -casein was detected in milk after 

fermentation with Lb. delbrueckii subs. bulgaricus [56]. Moreover, Hernández-Ledesma et al. 

[57] found a moderate ABTS radical scavenging capacity in commercial fermented milk 

from Europe. Further studies of this radical scavenging activity in different HPLC fractions 

showed low TEAC values. Virtanen et al. [58] found that fermentation with Leuc. 

mesenteroides ssp. cremoris, Lb. jensenii and Lb. acidophilus strains produced compounds that 

showed both radical scavenging activity and inhibition of lipid peroxidation.  

Inflammation plays a key role in the development of cardiovascular disease. It often begins 

with inflammatory changes in the endothelium, which begins to express the adhesion 

molecule VCAM-1. VCAM-1 attracts monocytes, which then migrate through the 

endothelial layer under the influence of various proinflammatory chemoattractants [59]. 

Accordingly, fermentation by lactic acid may be able to release components that possess 

immunomodulatory properties. Most of the studies have been done with synthetic peptides 

derived from enzymatic treatment of milk proteins using different in vitro models. Leblanc 

et al. [60] investigated the effect of peptides released during the fermentation of milk by Lb. 

helveticus on the humoral immune system and on the growth of fibrosacromas. The study 

showed that bioactive components were released during fermentation that contributed to 

the immunoenhancing and antitumor properties. Antimutagenic compounds were 

produced during fermentation by Lb. helveticus, and release of peptides is one possible 

explanation [61]. The permeate fraction obtained from milk fermented by Lb. helveticus was 

able to modulate the in vitro proliferation of lymphocytes by acting on the production of 

cytokines [62]. Tompa et al. [63] found that peptide fractions form Lb. helveticus BGRA43 

fermented milk have anti-inflammatory potential. Matar et al. [64] fed milk fermented with 

a Lb. helveticus strain to mice for three days and detected significantly higher numbers of IgA 

secreting cells in their intestinal mucosa, compared with control mice fed with similar milk 

incubated with a non-proteolytic variant of the same strain. The immunostimulatory effect 

of fermented milk was attributed to peptides released from the casein fraction.  

3. Antihypertensive effects in vivo  

The search for in vitro ACEI is the most common strategy followed in the selection of 

potential antihypertensive peptides derived from food proteins. In vitro ACEI activity is 

generally measured by monitoring the conversion of an appropriate substrate by ACE in the 

presence and absence of inhibitors. The antihypertensive effects have been assessed by in 

vivo experiments using spontaneously hypertensive rats (SHR) as an animal model to study 
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human essential hypertension [7]. Following a positive response in animal studies human 

studies may be carried out to ascertain the ACEI potential  

3.1. Animal studies 

A great number of studies have addressed the effects of both short-term and long-term 

administration of potential antihypertensive peptides using this animal model. Fermented 

milks with different IC50-values ranging from from 0.08 to 1.88 mg/ml have been shown to 

decrease blood pressure in SHR from 10 to 32 mmHg (Table 2).  

The first antihypertensive effect of milk casein-derived peptides was first demonstrated by 

casein hydrolysate formed by purified proteinase from Lb. helveticus CP790 and milk 

fermented with the same bacteria [65]. The authors concluded that peptides deliberated 

from casein by extracellular proteinases were responsible for the antihypertensive effect. 

The active substances were liberated during fermentation of milk with Lb. helveticus and 

Saccharomyces cerevisiae and were identified to be IPP and VPP. Oral administration of 

fermented milk or pure tripeptides were shown to produce strong antihypertensive effect in 

SHR after single-dose [34, 66]. Thereafter, several animal studies have been conducted to 

characterize the long-term effects of lactotripeptides or fermented milk containing them. 

These studies were mainly conducted with SHR but also Goto-Kakizaki (GK) rats and 

double transgenic rats (dTGR) with malignant hypertension have been used. The 

development of hypertension was attenuated significantly in rats receiving fermented milk 

product containing lactotripeptides, attenuation in systolic blood pressure was 12-21 mmHg 

in SHR, 10 mmHg in high salt-fed GK rats and 19 mmHg in dTGR in comparison to control 

group [67-69]. Pure tripeptides did not produce as strong antihypertensive effect as the milk 

products containing them. In addition, minerals alone did not attenuate the development of 

blood pressure as much as the fermented milk products [68]. These studies indicate that the 

bioavailability of peptides may be better from milk in comparison of water or is improved 

by other milk components.  

After the blood pressure monitoring has been completed the effect of long-term intake of 

lactotripeptides on vascular function has been assessed [68,70,71]. Jauhiainen et al. [70], 

showed improved endothelium-dependent relaxation in mesenteric arteries and aortas of rats 

that had received minerals and lactotripeptide. Endothelial function of mesenteric arteries was 

strongly impaired in all groups of salt-loaded GK rats, and significantly improved 

endothelium-dependent relaxations were observed after treatment with different fermented 

milk products [68]. Protection of endothelial function after incubation with tripeptides IPP and 

VPP for 24 h was found in a study with isolated SHR mesenteric arteries [71]. 

Evidence from ACE inhibition was gained by Masuda et al. [72], who found that after 

receiving a single-dose of Calpis™ sour milk, ACE activity was decreased in SHR aorta. The 

lactotripeptides were detected in solubilized fraction from the abdominal aorta of SHR but 

not from WKY given the sour milk. Moreover, in SHR, plasma rennin activity increased 

after long-term treatment of fermented milk product containing the lactotripeptides [67]. In 

addition, treatment with fermented milk containing lactotripeptides and plant sterols 
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decreased serum ACE activity [73]. In salt-loaded GK rats, fermented milk with 

lactotripeptides decreased serum ACE and aldosterone levels [68]. 

Besides the most extensively studied lactotripeptides, also other fermented milk products 

and peptides have been found. Different strains of lactic acid bacteria, such as Lb. helveticus 

CPN4, Lb. bulgaricus, Lb. jensenii and Str. thermophilus, have been also shown to provoke 

liberation of peptides with antihypertensive activity in SHR [36, 37, 41]. Two peptides, 

corresponding to  -casein fragments Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn-Ser-

Leu-Pro-Gln-Asn-Ile-Pro-Pro and Leu-His-Leu-Pro-Leu-Pro, have been isolated in 

fermented milk with Enterococcus faecalis and their antihypertensive effect in SHR, after 

acute and long-term administration has been proved. The administration of 2 mg/kg of 

peptide Leu-His-Leu-Pro-Leu-Pro resulted in a significant decrease of the SBP in SHR 4 h 

post-administration [74,75]. Fermentation of milk with one or more lactic acid bacteria 

strains followed by hydrolysis using food-grade enzymes liberated tripeptides (Gly-Thr-Trp 

and Gly-Val-Trp). Oral administration of this fermented whey lowered significantly SBP in 

SHR from 9 to 15 weeks of age. Bioactive substances, tripeptides and -aminobutyric acid 

(GABA), contributed to lowering blood pressure of SHR [76].  

Some of ACE-inhibitory peptide fractions from cheese have shown in vivo activities. A 

water-soluble peptide preparation isolated from Gouda ripened for 8 months was found to 

have the most potent antihypertensive activity (maximum decrease in SBP = 24.7 (± 0.3) 

mmHg (P ≤ 0.01) after 6 h) when administered to SHR by gastric intubation at doses 

between 6.1 and 7.5 mg/kg body weight. Three peptide fractions were isolated from water-

soluble extract by hydrophobic chromatography using different concentrations of 

acetonitrile. The fractions eluting between 15% and 30%, 30–45% and 60–75% acetonitrile 

decreased SBP in SHR by 15.0, 29.3 and 18.8 mmHg (P ≤ 0.01), respectively, 6 h after gastric 

intubation. The peptide fraction eluting between 30% and 45% acetonitrile was shown to 

contain the sequences (αs1-cn f(1–9)) Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln and (β-cn f(60–

68)) Tyr-Pro-Phe-Gly-Pro-Ile-Pro-Asn (Table 1), which, respectively, decreased SBP in SHR 

by 9.3 (± 4.8) and 7.0 (± 3.8) mmHg 6 h after gastric intubation [29]. 

Several sequences have been proposed as responsible for the antihypertensive activity of soy 

protein hydrolysates and fermented products, but only the peptide His-His-Leu derived 

from fermented soy paste was assayed in pure form in SHR, where a decrease of 32 mm Hg 

of SBP was reached at a dose of 100 mg/kg. Moreover, the synthetic tripeptide His-His-Leu 

resulted in a significant decrease of ACE activity in the aorta [77]. Soybean-derived products 

contain isoflavones, which are thought to possess a favourable effect in reducing 

cardiovascular risk factors as well as vascular function [78]. However, on the basis of in vitro 

results and literature review, Wu and Muir [79] have indicated that the contribution of 

isoflavones to a blood-pressure-lowering effect in soybean ACEI peptides may be negligible. 

Similarly, it has been reported that the reduction of hypertension of a fermented product 

from soy milk was contributed mainly by peptides of 800–900 Da but it could be also 

attributable to GABA [80]. Moreover, fermented soy product, miso, with added tripeptides 
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(VPP and IPP) from casein was reported to act as antihypertensive agents in SHR [81]. 

Recently, Nakahara et al. [82] used the Dahl salt-sensitive rats as a model of salt-sensitive 

hypertension to evaluate the antihypertensive effect of a peptide-enriched soy sauce-like 

seasoning. The results of these tests have highlighted an important lack of correlation 

between the in vitro ACEI activity and the in vivo action. This fact has provided doubts on 

the use of the in vitro ACEI activity as the exclusive criteria for potential antihypertensive 

substances, since physiological transformations may occur in vivo, and because other 

mechanisms of action than ACE inhibition might be responsible for the antihypertensive 

effect.  

3.2. Effects in clinical studies 

Evidence of the beneficial effects of bioactive peptides has to be based on clinical data. 

Most research has been focused in lactotripeptides, VPP and IPP, and their 

antihypertensive properties. About twenty human studies have been published linking 

the consumption of products containing lactotripeptides with significant reductions in 

both SBP and DBP. Oral administration of these tri-peptides included in different 

formulas, fermented milk, dried product, fruit juice, etc., products. However, recent 

studies have provided some conflicting results. Most clinical trials have assessed BP-

lowering effects at multiple points over time. Most of the BP studies with lactotripeptides 

have been done in Japanese subjects, and several studies have been done in Finnish 

subjects [83-88]. Generally, maximum duration of treatment was 8 weeks at doses between 

3 and 52 mg/day (Table 3). From these data, it becomes apparent that the largest part of 

the total BP reduction takes place in the first 1–2 weeks of treatment. Thereafter, a further 

gradual lowering is seen, but to a lesser extent than in the first period [84-86]. The first 

significant effects of lactotripeptides on BP in hypertensive subjects were observed after 

1–2 weeks of treatment with dosages as low as 3.8 mg/d. Maximum BP-lowering effects of 

lactotripeptides approximate 13 mmHg SBP and 8 mmHg DBP active treatment v. 

placebo, and are likely reached after 8–12 weeks of treatment. Lactotripeptides exert a 

gradual effect on BP lowering after start of intake and return of BP after end of treatment 

as well [85, 86, 89]. The highest effective dosage of lactotripeptides was evaluated in a 

safety study, and consisted of 52.5 mg/d [88]. After 10 weeks of active treatment, mean 

SBP in subjects with hypertension decreased by 4.1 mmHg and DBP by 1.8 mmHg. The 

next highest dose of lactotripeptides that was tested amounted to 13.0 mg/d [89]. After 4 

weeks of active treatment, SBP in subjects with mild hypertension decreased by 11.2 

mmHg compared to placebo, and DBP tended to decrease by 6.5 mmHg. In none of the 

trials with normotensives were statistically significant BP changes found [90-92]. Even at 

the highest dosage of lactotripeptides used in normotensives, which included a total of 

29.2 mg/d during a period of 7 d, no BP lowering effects by lactotripeptides were 

observed [93]. Thus lactotripeptides only seem to be active at elevated BP values. 

Evidence indicates that effectiveness is positively associated with BP level, which is in line 

with existing data for BP-lowering medication [94]. 
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Design Duration Study population Treatment BP changes 

mmHg 

Ref. 

 (weeks)  IPP 

mg/d 

VPP 

mg/d 

Source of 

peptides 

Formula SBP DBP  

R, p-c, s-

bld, 

parallel 

8 30 eldery 

hypertensive 

patients 

1.1 

 

1.5 

 

Lb. helv + Str. cer 1 x 95 ml 

milk drink 

-14.1 -6.9 83 

R, p-c, d-

bld, 

parallel 

8 64 subjects with SBP 

140-159 and DBP 

90-99 mmHg 

1.58 2.24 Lb. helv + Str. cer. 2 x 150 g 

milk drink 

-13 -8.4 84 

R, p-c, d-

bld, 

parallel 

8 32 subjects with SBP 

140 - 180 and DBP 

90-105 mmHg 

1·60  2·66 Lb. helv + Str. cer. 1 x 120 g 

milk drink 

-12.1 -5.8 85 

R, p-c, d-

bld, 

parallel 

8 18 hypertensive and 

26 normotensive 

subjects 

1.1 1.5 Lb. helv + Str. cer. 2 x 100 g 

milk drink 

-7.6 -2 91 

R, p-c, d-

bld, 

parallel 

8 30 subjects with SBP 

140-180 and DBP 

90-105 mmHg 

1.52 2.53 Lb. helv + Str. cer. 2 x 160 g 

milk drink 

-13.2 -7.8 92 

R, p-c, d-

bld, 

parallel 1) 

21 39 subjects with SBP 

133-176 and DBP 

86-108 mmHg 

2.25 3.0 Lb. helv 

LBK-16H 

2 x 150 ml 

milk drink 

-6.7  -3.6 86 

R, p-c, d-

bld, 

parallel 

Cross- 

over2) 

10 

 

7 

60 Finnish subjects 

with SBP 140-180 

and DBP 90-110 

mmHg 

2.4-2.7 2.4-

2.7 

Lb. helv 

LBK-16H 

1 x 150 ml 

milk drink 

-2.3  

 

-12.3 

-0.5 

 

-3.7 

87 

R, p-c, d-

bld, 

parallel 

10 94 hypertensive 

patients 

30 22.5 Lb. helv 

LBK-16H 

2 x 150 ml 

milk drink 

4.1 1.8 88 

R, p-c, d-

bld, 

parallel 

1 20 healthy 

volunteers 

normal blood 

pressure (<130 

mmHg SBP and <85 

mmHg DPB). 

11.5 17.7 Lb. helv 

 CM4 

1 x 14 

tablets 

2.6 2 93 

R, p-c, d-

bld, 

parallel 

8 135 Dutch subjects 

with untreated 

high-normal BP or 

mild hypertension 

4.2 5.8 Fermentation 1 x 200 ml 

yoghurt 

drink 

-0.5 -1.2 97 

R, p-c, d-

bld, 

crossover 

4 70 Caucasian 

subjects with 

prehypertension or 

stage 1 

hypertension 

15 - Hydrolysis by 

endopeptidase 

2 x 7.5 mg 

capsules 

-3.8 -2.3 102 

1) Results reported as changes in SBP and DBP after each month of treatment for all subjects (intention-to-treat 

analysis), and as mean changes over the total intervention period among subjects who had BP measurements for each 

month (per protocol analysis); 2) First part of the study was carried out in parallel design and second part of the study 

was carried out in crossover design. 

Table 3. Hypotensive effects of fermented milks with bioactive peptides in humans 
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The results have been included in two meta-analysis [95, 96], which described decreases 

around 5 mmHg for SBP and 2.3 mmHg for DBP. In general, the effects described in Japanese 

studies on lactotripeptides are larger than those reported in Finnish studies. However, it is 

unlikely that genetic differences can account for these differential effects. Moreover, clinical 

trials in Dutch and Danish subjects have described controversial results since no effect on 

blood pressure was found [97, 98]. In a recent meta-analysis with a total of 18 trials, it was 

found a reduction of 3.73 mm Hg for SBP and 1.97 mm Hg for DBP but it was highlighted that 

the effect was more evident in Asian subjects that in Caucasian ones [99]. The relevance of 

these findings in genetics or dietary patterns should be further investigated. Comparative 

studies on antihypertensive medication in different races/ethnic groups have demonstrated 

that pharmacokinetic parameters and haemodynamic effects are essentially the same in 

Chinese and Japanese subjects compared with Caucasian subjects [100]. 

Hypertension is a complex multifactor disorder that is thought to result from an interaction 

between environmental factors and genetic background. Subject characteristics such as age 

and race/ethnicity can affect BP, including the BP response to specific antihypertensive 

medication. For certain antihypertensive drugs, it has been reported that a polymorphism 

found in humans can affect the clinical effectiveness, and similarly, these differences could be 

also affecting clinical trials of functional ingredients [101]. Although ACE inhibition has been 

postulated as the underlying mechanism of these lactotripeptides, results about the inhibition 

of this enzyme are not conclusive in humans. Several studies have shown that rennin or ACE 

activity was not affected by the oral administration of the tripeptides [95, 102]. Therefore, other 

mechanisms could be implicated in the observed blood pressure reduction. It has been found 

that the intake of fermented milk containing these peptides may decrease sympathetic activity, 

leading to a diminished heart rate variability, heart rate and total peripheral resistance, 

although differences did not reach statistical significance [98]. 

4. Bioavailability 

Bioavilability of bioactive peptides is an important target to establish the relationship 

between in vitro and in vivo activities. The likelihood of any bioactive peptide released 

during fermentation mediating a physiological response is dependent on the ability of that 

peptide to reach an appropriate target site. Therefore, peptides may need to be resistant to 

further degradation by proteolytic and peptidolytic enzymes in digestive tract. Thereafter 

peptides should be absorbed and enter systemic circulation. Resistance to hydrolysis is one 

of the main factors influencing the bioavailability of bioactive peptides. The effects of 

digestive enzymes on bioactive peptides, in particular ACEI peptides derived from different 

food matrices, have been evaluated in vitro gastrointestinal simulated systems. The common 

purpose of these experiments was to assess the effects of the peptidases of the stomach and 

the pancreas on the preservation of the ACEI activity of different hydrolysates. Studies have 

shown that the ACEI is low after fermentation but increases during hydrolysis that 

simulates gastrointestinal digestion [35,103]. The ACEI peptides in rapeseed hydrolysate 

exhibited good stability in an in vitro digestion model using human gastric and duodenal 

fluids [104]. The digestion of some peptides have been reported. For example, Ile-Val-Tyr 
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was hydrolysed by pepsin, trypsin and chymotrypsin alone or in combination and IC50-

value did not change significantly during digestion [105]. Proline- and hydroxyproline-

containing peptides are usually resistant to degradation by digestive enzymes. Tripeptides 

containing C-terminal proline-proline are generally resistant to proline-specific peptidases 

[106]. In some cases, pancreatic digestion is needed to produce active peptide. For instance, 

the active form of peptide Lys-Val-Leu-Pro-Val-Pro-Glu is generated by hydrolysis of the 

glutamine residue at the C-terminal during pancreatic digestion [107]. The results are not 

completely predictive of the resistance of the bioactive peptides because they do not mimic 

all the physiological factors affecting food digestion, as pH variations, the relative amounts 

of the enzymes, the interactions with other molecules, and the ratio peptidase/tested 

compound. These variations may affect the rate of enzymatic degradation of the bioactive 

peptides under study, therefore affecting the estimated bioavailability of these bioactive 

peptides. Moreover, commercial enzymes appear to digest whey proteins more efficiently 

compared with human digestive juices when used at similar enzyme activities [108]. This 

could lead to conflicting results when comparing human in vivo protein digestion with 

digestion using purified enzymes of non-human species. 

Peptides have been reported to have poor permeation across biological barriers (e.g. 

intestinal mucosa) [109]. Peptides can be transported by active transcellular transport or by 

passive processes. Although substantial amino acid absorption occurs in the form of di- and 

tripeptides at the apical side of enterocytes, efflux of intact peptides via the basolateral 

membrane into the general circulation seems to be negligible [110]. The intestinal absorption 

of peptides have been performed using in vitro tests with monolayer of intestinal cell lines, 

simulating intestinal epithelium, as well as analysis of peptides and derivatives in blood 

samples after animal and clinical studies. Foltz et al. [111] investigated the transport of IPP 

and VPP by using three different absorption models and demonstrated that these 

tripeptides are transported in small amounts intact across the barrier of the intestinal 

epithelium. The major transport mechanisms of IPP and VPP were demonstrated to be 

paracellular transport and passive diffusion [112]. Another ACEI peptide, Leu-His-Leu-Pro-

Leu-Pro resisted gastrointestinal simulation but was degraded to His-Leu-Pro-Leu-Pro by 

cellular peptidases before crossing Caco-2 cell monolayer. The pentapeptide was rapidly 

transported through Caco-2 cell monolayers through paracellular route [113].  

Vascular endothelial tissue peptidases and soluble plasma peptidases further contribute to 

peptide hydrolysis. As a consequence, for most peptides, the plasma half-life is limited to 

minutes as shown for endogenous peptides such as angiotensin II and glucagon-like peptide 

1 [114]. In order to exert antihypertensive effect ACEI peptides need to resist different 

peptidases such as ACE. In this regard ACEI peptides can be classified into three groups: the 

inhibitor type, of which the IC50-value is not affected by preincubation with ACE; the 

substrate type, peptides that are hydrolysed by ACE to give peptides with a weaker activity; 

the pro-drug type inhibitor, peptides that are converted to true inhibitors by ACE or other 

proteases/peptidases. Only peptides belonging to pro-drug or inhibitor type exert 

antihypertensive properties after oral administration. There are some examples showing 

that peptides are absorbed and can exert in vivo activities. As regard to casein-derived IPP, 
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Jauhiainen et al. [115] used radiolabelled tripeptide and showed that it absorbed partly 

intact from the gastrointestinal tract after a single oral dose to rats. Considerable amounts of 

radioactivity were found from several tissues, e.g., liver, kidney and aorta. The excretion of 

IPP was slow; even after 48 hours the radiolabelled peptide had not been completely 

excreted. IPP did not bind to albumin or other plasma proteins in vitro. Considering this and 

the long-lasting retention of the radioactivity in the tissues, accumulation of IPP may occur 

in sufficient concentrations to cause blood pressure lowering effects e.g., by ACE-inhibition 

in the vascular wall. In another study the absolute bioavailability of the tripeptides in pigs 

was below 0.1%, with an extremely short elimination half-life ranging from 5 to 20 min 

[116]. In humans, maximal plasma concentration did not exceed picomolar concentration 

[117].  

The improvement of limited absorption and stability of peptides has been a goal when 

evaluating their effectiveness. For example, some carriers interact with the peptide molecule 

to create an insoluble entity at low pH which later dissolves and facilitates intestinal uptake, 

by enhancing peptide transport over the non-polar biological membrane [118]. 

Bioavailability of bioactive tripeptides (VPP, IPP, LPP) was improved by administering 

them with a meal containing fiber, as compared to a meal containing no fiber. High 

methylated citrus pectin was used as a fiber [119]. Ko et al. [120] applied emulsification, 

microencapsulation and lipophilization to enhance the antihypertensive activity of a 

hydrolysate of tuna cooking juice. Among these treatments, lipophilization was the most 

effective, followed by microencapsulation and lecithin emulsification, getting for each of 

them a stronger effect than the obtained with the double untreated dosage. 

Antihypertensive effect of ovokinin (Phe-Arg-Ala-Asp-Pro-Phe-Leu) increased four-times 

compared to the untreated dosage after administration with egg yolk [121]. In this case, 

phospholipids were identified as responsible for enhancing the antihypertensive effect, 

particularly phosphatidylcholine, that could improve intestinal absorption or by protecting 

ovokinin of peptidases. Among drug delivery systems, emulsions have been used to 

enhance oral bioavailability or promoting absorption through mucosal surfaces of peptides 

and proteins [118]. Individually, various components of emulsions have been considered as 

candidates for improving bioavailability of peptides. 

5. General conclusions 

The interest on foods possessing health-promoting or disease-preventing properties has 

been increasing. An increasing number of foods sold in developed countries bears nutrition 

and health claims. Fermented milk with putative antihypertensive effect in humans could be 

an easy applicable lifestyle intervention against hypertension. In fact, much work has been 

done with dietary antihypertensive peptides and evidence of their effect in animal and 

clinical studies. Moreover, there are numerous available patents of products containing 

antihypertensive bioactive peptides. However, certain aspects, such as identification of the 

active form in the organism and the different mechanisms of action that contribute in the 

antihypertensive effect still need to be further investigated. Recent advances on specific 
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analytical techniques able to follow small amounts of the peptides or derivatives from them 

in complex matrices and biological fluids will allow performing these kinetic studies in 

model animals and humans. Similarly, advances in new disciplines such as nutrigenomic 

and nutrigenetic will open new ways to follow bioactivity in the organism by identifying 

novel and more complex biomarkers of exposure and/or of activity. There is still poor 

knowledge on the resistance of peptides to gastric degradation, and low bioavailability of 

peptides has been observed. This reinforces the need of various strategies to improve the 

oral bioavailability of peptides.  

More emphasis has been put on the legal regulation of the health claims attached to the 

products. Authorities around the world have developed systematic approaches for review 

and assessment of scientific data. Evidence on the beneficial effects of a functional food 

product should be enough detailed, extensive and conclusive for the use of a health claim in 

the product labeling and marketing. Besides being based on generally accepted scientific 

evidence, the claims should be well understood by the average consumer. First, it is 

necessary to identify and quantify the active sequences. Antihypertensive peptides are only 

minor constituents in highly complex food matrices and, therefore, a monitoring of the 

large-scale production by hydrolytic or fermentative industrial process is mandatory. 

Second, extensive investigations to prove the antihypertensive effect in humans as well as 

the minimal dose to show this effect are necessary to fulfill the requirements of the 

legislation concerning functional foods. Japan was the pioneer with the Foods for Special 

Health Use (FOSHU) legislation in 1991. Europe adopted a joint Regulation on Nutrition 

and Health Claims made on Foods in 2006 being the European Food Safety Authority 

(EFSA). At present, EFSA have concludes that the evidence is insufficient to establish a 

cause and effect relationship between the consumption of the tripeptides VPP and IPP and 

the maintenance of normal blood pressure. Bearing in mind that 'essential hypertension' 

consists of disparate mechanisms that ultimately lead to elevations in systemic BP, it is most 

probably that that products containing lactotripeptides offer a valuable option as a non-

pharmacological, nutritional treatment of elevated blood pressure for some groups of 

people. 
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