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1. Introduction 

Conversion of carbohydrates to lactic acid is one of the most employed fermentation 

processes in food industry. Applications of lactic acid fermentation are found in dairy 

industry, production of wine and cider, production of fermented vegetable products and 

meat industry. 

The main markets for lactic acid have been in food, pharmaceutical and cosmetics industry, 

but presently the main growing application of lactic acid is in the production of 

biodegradable and renewable raw material based poly lactic acid (PLA) polymers. 

Production of lactate esters (e.g. butyl lactate) is another growing application as 

environmentally friendly solvents [1]. Lactic acid has two optical isomers, L-(+)-lactic acid 

and D-(−)-lactic acid. Lactic acid is classified as GRAS (generally recognized as safe) for use 

as a food additive, although D(-)-lactic acid can be harmful to human metabolism and result 

in e.g. acidosis [2]. The optical purity of lactic acid is required for the production of PLA. The 

properties of PLA may however be adjusted by the ratio of the L- and D-PLA in a 

copolymer D-form increasing the melting point of the copolymer [3]. Optically pure L- or D- 

lactic acid can be obtained by microbial fermentation and presently more than 95 % of 

industrial production of lactic acid is based on fermentation.   

Production figure of 260,000 t as 100 % lactic acid for conventional (excluding PLA) markets 

in 2008 and forecast over 1 million ton annual production of lactic acid for conventional 

markets and PLA by 2020 has been presented in 2010 [4]. DuPont patented PLA already in 

1954 but it took almost 50 years before first large-scale production was started. The US-

based NatureWorks is the largest producer of PLA having lactic acid production capacity of 

180,000 t/a. The sustainability of the PLA product Ingeo® from NatureWorks has been 
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evaluated [5]. Greenhouse gas emissions and nonrenewable energy consumption for Ingeo 

from cradle to factory-gate are 1.3 kg CO2 eq./kg polymer and 42 MJ/kg polymer. These 

compare favorably with e.g. fossil-based PET (polyethylene terephtalate) with 3.2 kg CO2 

eq./kg polymer and 80 MJ/kg polymer, respectively. There is a huge potential for 

biodegradable and renewable raw materials based polymers if and when the economics for 

these become competitive. It is estimated that altogether 140 million tons of petroleum-

based synthetic polymers are produced annually [6]. It should be emphasized that also 

many petroleum-based synthetic polymers (e.g. polyesters) are biodegradable. However at 

the moment there are only three commercial synthetic polymers replacing petroleum-based 

ones and produced on renewable raw materials: PLA, PTT (polytetramethylene terephtalate 

which is partly renewable) and PHA (polyhydroxyalkanoates). Natural polymers such as 

starches and celluloses are biodegradable and based on renewable raw materials, but their 

applications are limited by their properties. Reliance Life Sciences is producing copolymers 

of PLA and glycolic acid mainly for high-value medical applications. Lactic acid in this case 

is produced by bacterial fermentation.  

The price of PLA is ca. 2.2 $/kg, the target being half of that [7]. This means that the price of 

lactic acid in captive use should be less than 0.8 $/kg. A major cost factor is the raw material 

used in fermentation medium. This is especially the case with fastidious lactic acid bacteria. 

Processes based on cheap polymeric waste and side stream materials are indeed widely 

studied. So far research on alternative fermentation modes and reactor systems has been 

mainly academic. PLA production requires both optically and chemically pure lactic acid. 

Optical purity can be guaranteed with several microbial strains under optimized 

fermentation conditions. Chemical purity is mainly dependent on the constituents in the 

fermentation medium especially when cheap materials are being used. Contrary to many 

other fermentation products lactic acid yield on monosaccharides is usually very high (> 90 

%) the main impurity being the cell mass itself, which is easily separated from the product. 

The key economic drivers in the fermentative production of lactic acid are optimization of 

the production medium, high product yields, productivity, and the concentration of 

products formed, which influences the down-stream processing costs [8]. 

Lactic acid bacteria (LAB) are a group of Gram-positive bacteria belonging to genera 

Aerococcus, Alloiococcus, Atopobium, Bifidobacterium, Carnobacterium, Enterococcus, 

Lactobacillus (Lb.), Lactococcus (L.), Leuconostoc (Leuc.), Oenococcus, Pediococcus, 

Streptococcus (S.), Tetragenococcus, Vagococcus and Weissella (W.). LAB are non-

sporulating rods or cocci which produce lactic acid as the main fermentation product under 

suitable substrates. LAB are oxidase and benzidine negative, lack cytochromes, and do not 

reduce nitrates to nitrite [9]. Most of the LAB are anaerobic, but some of them can shift to 

oxygen-dependent metabolism in aerobic conditions [10,11]. Lactic acid bacteria have 

complex nutrient requirements, including specific minerals, B vitamins, several amino acids, 

and purine and pyrimidine bases.  

LAB ferment sugars via homo-, hetero-, or mixed acid fermentation. Homofermentative 

LAB produce lactic acid as main product from sugars, while hetero- or mixed acid 

fermentations produce also ethanol and/or acetic acid, formic acid and carbon dioxide. 
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Although it is a common practice to divide LAB into homo- and heterofermentative strains, 

the division is not that straightforward as the actual metabolism is dependent on both the 

nature of the C/energy substrate (e.g. hexose vs. pentose sugars) and fermentation 

conditions (e.g. growth rate and availability of the C/energy source). LAB used for lactic acid 

production are used to be classified as homofermentative (Lactococcus, Enterococcus, 

Streptococcus and some lactobacilli) as their hexose metabolism under non-limiting 

conditions is entirely via Embden-Meyerhof pathway to pyruvate which is then used to 

regenerate the reducing power (NADH) in the lactate dehydrogenase (LDH) catalyzed 

reaction to lactic acid. However at slow growth rate and low glycolytic flux mixed acid 

fermentation may take place and acetic acid, formic acid and ethanol are formed in addition 

to lactic acid [12]. The key enzyme in this metabolic shift e.g. in L. lactis is claimed to be 

pyruvate-formate lyase (PFL) [13]. There are two types of LDH for both enantiomers D-LDH 

and L-LDH. In addition some species have a racemase enzyme catalyzing the reaction 

between the two enantiomers. Thus enantiomerically pure lactic acid is produced by species 

with only one type of LDH and no racemase. A comprehensive list of different LAB strains 

used in lactic acid production is available elsewhere [1].  

Biotechnical production of lactic acid may be based on several alternative micro-organisms. 

In addition to lactic acid bacteria filamentous fungi (e.g. Rhizopus spp.), other gram-positive 

bacteria (e.g. Bacillus coagulans) and metabolically engineered yeasts have been used also in 

industrial scale. The advantage of fungi is that they are active at and tolerate low medium 

pH. Low pH reduces significantly the consumption of neutralizing agent (Ca(OH)2) in the 

fermentation stage and subsequent formation of gypsum (CaSO4) in the product recovery 

stage. The advantage of filamentous fungi, Bacillus spp. and yeasts compared to lactic acid 

bacteria is their simple nutrient requirement in the fermentation medium. Filamentous fungi 

and Bacillus spp. are better suited to lignocellulosic fermentation raw materials as they are in 

general able to utilize pentose sugars in addition to hexoses. Anaerobic fermentation is 

generally speaking more feasible and this favors yeasts and lactic acid bacteria. When 

optimized the technical parameters such as product yield, RP and final product 

concentration are quite similar for each of these production organisms.  

In the wide literature on lactic acid production two examples based on other than lactic acid 

bacteria should be taken up. The first of them presents results with a thermotolerant B. 

coagulans strain [14]. High lactic acid YP/S on both glucose and xylose (96 % and 88 %, 

respectively) were achieved at reasonable RP (2.5 g/lh) and product concentration (100 g/l). 

Exceptionally high levels of lactic acid (200 g/l) were produced in fed-batch fermentation. 

Yeasts have been metabolically engineered aiming at lactic acid production since 1990’s [15]. 

A recent article reported on metabolic engineering of Candida utilis having pyruvate 

decarboxylase deleted and a bovine L-lactate dehydrogenase expressed under the pdc 

promoter resulting in the production of lactic acid with high yield from glucose (95 %) and 

reasonable RP (4.9 g/lh) ending up with lactic acid concentration of 103.3 g/l and more than 

99.9 % enantiomeric purity [16]. 

Heterofermentative LAB (Leuconostoc, Weissella and some lactobacilli such as Lb. brevis) 

utilize both hexose and pentose sugars via phosphoketolase pathway (PKP). Several LAB 
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possess the genes for PPP as well. The different pathways are presented in Fig. 1. 

Heterofermentative LAB may be applied for the production of side products such as polyols 

(mannitol, erythritol) and ethanol or acetic acid. This is only feasible if the markets for the 

side products are comparable to those of lactic acid and the production more than covers the 

added down-stream processing costs. 

 

Figure 1. The main metabolic pathways in LAB. EMP: Embden-Meyerhof-Parnas pathway. PPP: 

pentose phosphate pathway. PKP: phosphoketolase pathway. Glu: glucose. LA: lactic acid. HAc: acetic 

acid. FA: formic acid. EtOH: ethanol. -P: energy-rich phosphate group. Pi: inorganic phosphate. Xyl: 

xylose. Xu: xylulose. 6-PG: 6-phosphogluconate. Ru: ribulose. R: ribose. Ga: glyceraldehyde. E: 

erythrose. Su: seduheptulose. Fru: fructose. Ac-CoA: acetyl-coenzymeA. Pyr: pyruvate. AcA: 

acetaldehyde. Ac-P: acetyl-phosphate. Pfl: pyruvate-formate lyase. XylA: xylose isomerase. XylB: 

xylulokinase. All carbohydrates are in D-form. Various metabolic end-products are presented with the 

dark background. 

2. Future raw materials for production of lactic acid by LAB 

The carboxylate platform is comprised of biological and chemical pathways that can be used 

in order to convert waste to bioproducts, such as lactic acid [17]. Lactic acid is a relatively 

cheap product, and one of the major challenges in its large-scale fermentative production is 

the cost of the raw material. This is the situation even in case of so called low-cost substrates 

[18]. Therefore, development of processes that utilize cheap raw materials at minimal costs 

have been under extensive studies. These substrates can be roughly classified as starch-
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based non-processed biomasses, lignocellulosic non-processed biomasses, and waste or side 

stream feedstocks. The former are nowadays generally considered as non-ideal feedstocks 

due to ethical reasons, and therefore they are not discussed in this review. Extensive reviews 

including starch-based feedstocks are available elsewhere [19]. With respect to future 

applications, the most likely raw materials for the lactic acid production are industrial side-

streams and lignocellulosic biomasses. Recent advances in case of both raw material groups 

are discussed in the following. 

As in other bioconversion processes, also in lactic acid production the focus of research has 

turned towards the use of lignocellulosic feedstocks. The major driving forces are fossil fuel 

deprivation and general paradigm change to bioeconomy, and the abundancy of lignocellulose 

materials. Generally, the effective utilization of lignocellulosic biomass for biochemical 

processes is limited due to seasonal availability, scattered distributions and high logistics cost 

[20]. The fermentation of lignocellulosic biomasses can also be hampered by inefficient 

pretreatment, high enzyme costs and end-product inhibition, formation of unwanted by-

products under metabolism of pentoses, and carbon catabolite repression caused by the 

heterogeneous substrates. These challenges are further discussed in a recent review [8].  

Paper industry residues and recycled paper products include various possible feedstocks for 

lactic acid production, which are together with agroindustrial residues discussed in a recent 

review [21]. Due to economical and ecological reasons, an intensive research interest is 

currently devoted to complex industrial by-products. In this field the advances presented 

during the past five years include the utilization of cellulosic biosludges from a Kraft pulp 

mill [22,23], and recycled paper sludge [24]. In both cases a nutrient supplement has 

increased the lactic acid productivity. LAB could be used for the bioconversion of 

hemicellulose fractions, e.g. from alfafa processing [25] to lactic acid. Direct conversion of 

xylan to lactic acid by LAB is already possible by use of genetically modified strains [26]. 

Food industry residues comprise a large variety of different biomasses and sludges that can 

be roughly categorized to agricultural wastes and food production wastes. Since the use of 

agricultural residues for lactic acid production is summarized in a recent review [21], it is 

not futher discussed here. Food production residues have been tested for bioconversion 

applications for ages, and the variety of used materials is large. Whey and other dairy 

industry residues are the prominent raw materials with respect to lactic acid production, 

reviewed in e.g. [27,28]. Whey retains about 55% of total milk nutrients, from which 

approximately 70% consists of lactose [29]. Availability of the lactose carbohydrate reservoir 

and the presence of other essential nutrients, such as proteins and phosphates, for the 

growth of microorganisms make whey and other cheese-making residues potent raw 

materials for the production of biochemicals.  

Other quite often referred raw materials include brewery residues, especially spent grain 

[30], and winery wastes [31-35]. Additionally, there are various other proposed food 

industry residues that could fit to the lactic acid fermentation. The recently proposed 

include e.g. apple pomace [36], canned pineapple syrup [37], cashew apple juice [38], 

Jerusalem artichoke tubers [39], macaroni milk and rice-green pea-salad refectory wastes 
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[40], rice residues [41], sap from palmyra and oil palms [42], and spent coffee grounds [43]. 

Despite of the large variety of the raw materials, the main conclusions of these studies are 

that the optimization and control of pH and temperature is critical for the process, and that 

the supplementation of low-cost substrate with e.g. inorganic salts and yeast extract is 

necessary or at least improves the productivity remarkably. In a recent study the use of 

mixed cultures of Lb. casei, Lb. helveticus, and S. thermophilus was observed to reduce the 

demand of supplements compared to single strain cultures [44].  

The required supplements and their concentrations depend on the low-cost substrate. 

Drawbacks of complex supplements are their cost and extensive down-stream processing 

required for the purification of lactic acid from fermentation broth, especially in applications 

requiring high purity. Therefore, the optimization of supplement concentration is essential. 

Although yeast extract is often considered superior to other supplements in terms of efficiency, 

its major drawback is the relatively high cost, and therefore substitutive supplements have 

been suggested. Equal productivities may be achieved via use of cheaper alternatives, such as 

inorganic phosphates [45], and microbial lysates [46,47]. It is notable that the use of lysates in 

combination to e.g. whey proteins could cause unwanted proteolytic activity. Other options for 

the increased productivity include e.g. the addition of manganese, which is a constituent of 

lactate hydrogenase [48], whey protein hydrolyzate [49], malt combing nuts [49], corn steep 

liquor [50], fish hydrolyzates and other fishery by-products [51-53], hydrolyzed spent cells [54] 

or red lentil flour [55]. It is likely that this is one of the future trends in lactic acid production, 

i.e. fermentation media are optimized from mixtures of different low-cost raw materials in 

order to avoid the use of expensive complex supplements.  

The modern biorefineries are looking into oceans in order to find new abundant and less 

land- or water-using biomasses for the production of commodities. Among the plenty 

marine biomasses, brown seaweed and especially species Laminaria japonica, a common food 

in Japan, has been recognized as a potential raw material for the production of platform 

chemicals. L. japonica is interesting due to its high carbohydrate content and fast growth. 

Production of lactic acid from L. japonica hydrolyzates was reported in a recent study [56]. 

Another potential raw material for bioconversion is shrimp shell waste, which is produced 

in vast amounts as a by-product of food industry. It has been reported that the production of 

lactic acid can be combined to the recovery of biopolymer chitin, a precursor for largely 

applied chitosan [57,58]. Since the recovery of chitin is traditionally done via chemical 

processing, the integrated process offers both economical and ecological advantage. Similar 

to the previous examples of other food industry residues, also the marine food processing 

industry generates various different side streams, such as fish waste and shells that could 

perhaps be combined in biochemical production. 

3. Novel LAB strains 

Metabolic engineering in general is applied when e.g. YP/S, RP, substrate flux through a 

desired pathway in growth phases or resting cells are aimed at. Metabolic engineering 

studies aiming at increased flux in glycolysis to lactic acid in LAB are fairly scarce. That may 
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be explained by the fact that the metabolism of LAB is already tuned for efficient lactic acid 

production.  

Some of these studies are listed in a review on metabolic engineering for lactic acid 

production [59]. The overexpression of L-LDH in Lb. plantarum can result 13-fold increase in 

LDH activity, and still show no effect on lactic acid production [60]. It has also been shown 

by overexpression that glyceraldehyde-3-P dehydrogenase (GAPDH) is not limiting the 

glycolytic flux either in growing or resting cells of a L. lactis strain [61]. Metabolic flux and 

control analysis (MFA and MCA) combined with the estimation of the kinetic parameters of 

the enzymes of a pathway are indeed needed in systematic and systemic approach to study 

and optimize also such seemingly simple - there is always growth and maintenance 

functions involved as well - metabolic pathway as that from glucose to lactic acid in LAB. 

An excellent view on topic is available in a review [62], which includes several references 

also for LAB (e.g. [63-66]).  

More straightforward work on lactic acid production has been performed to achieve high 

enantiomeric purity by expressing and deleting respective genes for LDH. There are several 

examples of these as discussed in the recent review [59], such as construction of two different 

strains of Lb. helveticus for optically pure L-lactic acid production [67]. These strains differed 

from each other at the level of L-LDH activity (53 and 93 % higher than the wild type strain). 

Lactic acid production in a fermentation batch was equal to that of the wild type strain. 

However, at low pH when the growth and production are uncoupled, the strain with higher 

activity produced 20 % more lactic acid compared to construct with the lower activity.  

Another straightforward target for the construction of genetically modified strains is widening 

of the raw materials for the production of lactic acid especially to lignocellulosic biomass-

based materials. There are no reports on work to produce cellulolytic enzymes in LAB. Instead 

several groups have tried to produce xylanase in LAB [26]. This is however focused on 

heterofermentative LAB as they are naturally able to utilize pentoses and especially Lb. brevis 

as it has been shown to have endogenous beta-xylosidase activity [68]. Another approach is 

based on L. lactis IO-1 strain being able to metabolize xylose both via PKP and PPP [69]. PPP 

provides a homolactic fermentation route for pentoses. As the molecular biology tools or 

protocols for this strain were not available, another strain of L. lactis was used as the host. 

XylRAB genes from IO-1 strain were expressed in the host. XylA and XylB encode genes for 

xylose isomerase and xylulokinase, respectively. XylR is a putative transcriptional activator of 

the XylAB operon. In addition the gene for phosphoketolase was disrupted. Such a strain 

construct had homolactic fermentation for xylose. The rate of xylose fermentation was further 

improved by overexpressing the gene for transketolase, one of the enzymes in PPP. Almost 

theoretical YP/S of lactic acid (1.58 vs. 1.67 mol/mol xylose) was achieved with lactic acid 

concentration of 50,1 g/l. Acetic acid concentration was as low as 0.3 g/l. Enantiomeric purity 

was very high (99.6 %). Similar approach has been applied for the production of D-lactic acid 

from xylose and L-arabinose [70,71]. 

Typical LAB fermentations are run at minimum pH of 5 – 5.5, which is much higher than the 

pKa-value of lactic acid (i.e. 3.8). Thus more than 90 % of the product exists as lactate. This is 
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a major cost factor in the product recovery stage as well as the cause of high salt burden 

and/or gypsum formation. The tolerance to acid and low pH is difficult to explain at genetic 

level and thus hardly be affected by metabolic engineering methods on specific genes. A 

successful approach to engineer LAB strains for lower fermentation pH has been genome 

shuffling. E.g. populations from nitrosoguanidine (NTG) mutations and low pH 

acclimatization in chemostat cultivation have been used for the shuffling [72]. The resultant 

population grew at pH 3.8 and lowered pH by lactic acid formation down to 3.5. This is a 

promising result even though the population was not used with realistic sugar 

concentrations. Similar approach has been reported aiming at improving acid tolerance as 

well as RP and glucose tolerance, respectively, with Lb. rhamnosus [73,74]. NTG and UV 

irradiation were used for mutagenesis and lethal mutants were fused from protoplasts. The 

best strain of [73] lowered pH down to 3.25 and increased average RP by 60 % compared to 

the wild type strain. However, average RP was still moderately low (ca. 1 g/lh). Final lactic 

acid concentration and YP/S from glucose were 84 g/l and 82 %, respectively. In [74] higher 

YP/S (> 95 %) and RP (ca. 3.6 g/lh) were reached with the best strains on industrially relevant 

fermentation medium with 150 g/l glucose. The YP/S from 200 g/l glucose was still 90 %, but 

the average RP decreased to 2 g/lh. In a recent study Lb. casei mutants induced by NTG were 

screened in high glucose concentration (360 g/l) [75]. A mutant strain with highest osmotic 

tolerance produced 198.2 g/l lactic acid from 210 g/l glucose with increased RP (5.5 g/lh). 

4. Novel process technologies 

From fermentor design point of view lactic acid production by LAB is quite simple and 

conventional as the process requires no gassing, gas exchange or gas mass transfer. When 

the production strain and fermentation conditions are optimized for lactic acid production 

there is no or little formation of side products (metabolites, cellular mass, 

exopolysaccharides). Thus e.g. the rheology of the fermentation broth is Newtonian and very 

close to that of water. Power consumption is mainly for the sake of homogeneity and 

reduction of gradients of pH-controlling agents. The biggest challenges for process 

technology are to minimize osmotic effects by substrates and the product, to reach high RP 

and to minimize the costs and waste formation in the product recovery stage.  

Typical fermentation approaches other than simple batch include repeated batch and fed-batch 

fermentation and continuous fermentation with cell-recycle as solutions with free cells and the 

use of immobilized cells in different reactor types (fixed or fluidized bed). A novel fed-batch 

strategy was developed recently by combining pH-control and substrate feeding [76]. The 

rationale behind the strategy was the linear relationship between the consumption amounts of 

alkali and that of substrate. Thus these two components were mixed together in the feeding 

liquid. This resulted in higher efficiency compared to batch fermentation, but the efficiency 

parameters were not especially high if compared with data from several other reports. By far 

the most studied method to increase the RP and/or separate cell growth from product 

formation is based on the immobilization of the cells. These have also been reviewed [27]. 

Several immobilization methods have been applied including entrapment within gels such as 

alginate [77,78], modified alginate [79,80], or pectate [81], adsorption on granulated DEAE-
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cellulose [82] or porous glass [83], and biofilm formation on solid supports [84,85]. Solid 

incompressible supports and carrier materials such as granulated cellulose and porous glass 

may be applied in any scale and in various reactor designs while gels as compressible 

materials suit less well for larger scale especially in fixed-bed column reactors.  

Immobilized cells may be utilized in various fermentation modes and reactor designs such 

as repeated batch or fed-batch, continuous fermentation with cell retention or recycle, in 

continuous stirred tank reactors (CSTR), fixed-bed or fluidized-bed reactors. High RP (19-22 

g/lh) have been achieved in a two-stage process with immobilized cells [86]. A special 

arrangement consisting of a CSTR for pH-control and substrate feeding and a fixed-bed 

reactor with immobilized cells was used in a concept with intermittent refreshing of the cells 

in a patent [87]. Short residence time within the column was possible because of the 

incompressible nature of the carrier material. Chemically pure product was achieved by 

using a production medium with few nutrients. Once the productivity decreased below a 

threshold value based on the consumption of alkali the cells were refreshed with nutrients. 

Incompressible carriers for cell adsorption have obvious advantages. However, new 

solutions to secure cell adherence on the carrier are required. This would facilitate efficient 

use of fluidized-bed reactors with minimal pressure losses in the reactor. Biological means 

for cell adherence may be one solution which could offer a further advantage to selectively 

keep the productive cells in the reactor. 

Another approach to increase RP is high cell-density fermentation with free cells recycled by 

membrane separation technique. This has been in use in industrial scale for lactic acid 

production already in 1980’s in Finland. Several academic reports on this approach have been 

since published demonstrating very high RP of 26 g/lh [88], 31.5 g/lh [89] and up to 57 g/lh [90]. 

It should be kept in mind that RP is affected by the concentration of lactic acid. Thus not all 

published figures are comparable. Product inhibition may be diminished by in-situ recovery 

of the product. Electrodialysis [91,92], nanofiltration [93] and ion-exchange [94,95] have thus 

been coupled with the fermentation system.  

Conventional lactic acid recovery from fermentation broth consists of cell and other solids 

separation, lactic acid precipitation as calcium lactate and precipitate recovery, acidification 

of the precipitate by sulfuric acid and the separation of the gypsum precipitate formed. The 

amount of gypsum is usually higher than the amount of lactic acid produced. Lately 

NatureWorks has reported to have reduced the formation of gypsum significantly. Probably 

this has been achieved by performing the fermentation at lower pH e.g. by using 

metabolically engineered yeast for the production of lactic acid. The amount of gypsum can 

be avoided by using electrodialysis for the acidification and separation of the acid and alkali 

formed with bipolar membranes [96]. The alkali formed may be recycled back to the 

fermentation. Electrodialysis has been considered too expensive technology for lactic acid 

recovery [97]. However, specific energy consumption of only 0.25 kWh/ kg lactic acid is 

presented [96]. Nanofiltration has been used as a pretreatment method to remove Mg- and 

Ca- and sulfate-ions and color before electrodialysis increasing significantly the capacity in 

electrodialysis [98]. Alternative techniques for lactic acid recovery are extraction [99] and 

use of ion-exchange [100,101], neither of which is a proper solution to the salt burden. 
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5. Conclusions 

Lactic acid production in LAB has both cell mass and growth dependent portions. Typically 

LAB require several nutrient components for their growth increasing the fermentation and 

down-stream processing costs. Down-stream processing is especially important in the 

production of lactic acid for PLA. As RP is the a major investment factor affecting costs, the 

minimization of medium and product purification costs should be accompanied by methods 

increasing cell mass concentration without excess growth. For this several different 

strategies have been applied so far mainly in academia (cell immobilization, cell-recycling 

and cell-retention). As history shows some of these could be applicable in industrial 

production as well, however pilot and demonstration plant studies and some risk-taking are 

required. 

The main C/energy source spectrum available for LAB has been widened significantly. 

Reports of new possible substrates are frequently published, and the utilization of industrial 

side streams is a growing trend. Into this direction major successes have also been achieved 

with metabolic engineering providing strains for efficient production of lactic acid from 

pentoses as well, which is to promote sustainable use of renewables. 

In an ideal fermentation process product inhibition should be minimized so that high RP 

would be achieved even at high lactic acid concentrations resulting in feasible average 

productivities. For this purpose both acclimatization and mutagenesis has been applied 

successfully. However, it has to be considered how far can we go in respect to fermentation 

pH and lactic acid concentration. There are already remarkable alternatives to LAB with 

naturally better properties in this sense. Some success has been achieved with in-situ 

product recovery, but also these procedures lack experiences in any larger scale. 

Conventional lactic acid production process with LAB is accompanied with the formation of 

large amounts of gypsum in the product recovery stage. Fermentation at lower pH 

diminishes this amount, but does not prevent its formation. Electrodialysis has been 

considered too expensive technique for the recovery of such cheap, bulk products as lactic 

acid. However, recent reports claim promising results with this technology. Forecasted 

figures for lactic acid market show up to one million tons per year. The growth would come 

mainly from the growth of PLA as a biodegradable polymer based on renewable raw 

materials. Economies of scale should decrease the production costs, but new technical 

approaches are also needed to reach these figures. 
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Abbreviations 

η % - Efficiency, i.e. the ratio of YP/S to the maximum theoretical value 

D-LDH - D-lactate dehydrogenase 

LAB – lactic acid bacteria 

L-LDH - L-lactate dehydrogenase 

NTG – Nitrosoguanidine 

RP - Volumetric productivity g/l*h 

SSF – Simultaneous saccharification and fermentation 

PLA – poly lactic acid 

PPP - Pentose phosphate pathway 

PKP - Phosphoketolase pathway 

YP/S – Yield of lactic acid per substrate consumed g/g 

YP/X – Yield of lactic acid per cell mass g/g 
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